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F76801 Saint Étienne du Rouvray.
email: Thierry.de-la-Rue@univ-rouen.fr

Outline

Glossary 2

1 Definition of the subject 4

2 Introduction 4

3 Joinings of two or more dynamical systems 6
3.1 The set of joinings . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 From disjointness to isomorphy . . . . . . . . . . . . . . . . . . . 7

3.2.1 Disjointness . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.2 Joinings and isomorphism . . . . . . . . . . . . . . . . . . 8

3.3 Joinings and factors . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Markov intertwinings and composition of joinings . . . . . . . . . 12

4 Self-joinings 13
4.1 Self-joinings and commuting transformations . . . . . . . . . . . 13
4.2 Minimal self-joinings . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Simple systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Relative properties with respect to a factor . . . . . . . . . . . . 17

5 Some applications and future directions 18
5.1 Filtering problems . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Joinings proofs of Ornstein’s and Krieger’s theorems . . . . . . . 18
5.3 Joinings and Rohlin’s multifold mixing question . . . . . . . . . . 19

5.3.1 Pairwise-independent joinings . . . . . . . . . . . . . . . . 20
5.3.2 Host’s and Ryzhikov’s theorems . . . . . . . . . . . . . . . 21

5.4 Joinings and multiple ergodic averages . . . . . . . . . . . . . . . 21
5.5 Joinings and conjectures in number theory . . . . . . . . . . . . . 23
5.6 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1



Glossary

Disjoint measure-preserving systems

The two measure-preserving dynamical systems (X,A , µ, T ) and (Y,B, ν, S)
are said to be disjoint if their only joining is the product measure µ⊗ ν.

Joining

Let I be a finite or countable set, and for each i ∈ I, let (Xi,Ai, µi, Ti) be a
measure-preserving dynamical system. A joining of these systems is a probabil-
ity measure on the Cartesian product

∏
i∈I Xi, which has the µi’s as marginals,

and which is invariant under the product transformation
⊗

i∈I Ti.

Marginal of a probability measure on a product space

Let λ be a probability measure on the Cartesian product of a finite or countable
collection of measurable spaces

(∏
i∈I Xi,

⊗
i∈I Ai

)
, and let J = j1, . . . , jk be a

finite subset of I. The k-fold marginal of λ on Xj1 , . . . , Xjk is the probability
measure µ defined by:

∀A1 ∈ Aj1 , . . . , Ak ∈ Ajk , µ(A1×· · ·×Ak) := λ

A1 × · · · ×Ak ×
∏
i∈I\J

Xi

 .

Markov intertwining

Let (X,A , µ, T ) and (Y,B, ν, S) be two measure-preserving dynamical systems.
We call Markov intertwining of T and S any operator P : L2(X,µ)→ L2(Y, ν)
enjoying the following properties:

• PUT = USP , where UT and US are the unitary operators on L2(X,µ) and
L2(Y, ν) associated respectively to T and S (i.e. UT f(x) = f(Tx), and
USg(y) = g(Sy)).

• P1X = 1Y ,

• f ≥ 0 implies Pf ≥ 0, and g ≥ 0 implies P ∗g ≥ 0, where P ∗ is the adjoint
operator of P .

Minimal self-joinings

Let k ≥ 2 be an integer. The ergodic measure-preserving dynamical system T
has k-fold minimal self-joinings if, for any ergodic joining λ of k copies of T , we
can partition the set {1, . . . , k} of coordinates into subsets J1, . . . , J` such that

1. for j1 and j2 belonging to the same Ji, the marginal of λ on the coordinates
j1 and j2 is supported on the graph of Tn for some integer n (depending
on j1 and j2);
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2. for j1 ∈ J1, . . . , j` ∈ J`, the coordinates j1, . . . , j` are independent.

We say that T has minimal self-joinings if T has k-fold minimal self-joinings
for every k ≥ 2.

Off-diagonal self-joinings

Let (X,A , µ, T ) be a measure-preserving dynamical system, and S be an invert-
ible measure-preserving transformation of (X,A , µ) commuting with T . Then
the probability measure ∆S defined on X ×X by

∆S(A×B) := µ(A ∩ S−1B) (1)

is a 2-fold self-joining of T supported on the graph of S. We call it an off-
diagonal self-joining of T .

Process in a measure-preserving dynamical systems

Let (X,A , µ, T ) be a measure-preserving dynamical system, and let (E,B(E))
be a measurable space (which may be a finite or countable set, or Rd, or Cd. . . ).
For any E-valued random variable ξ defined on the probability space (X,A , µ),
we can consider the stochastic process (ξi)i∈Z defined by

ξi := ξ ◦ T i.

Since T preserves the probability measure µ, (ξi)i∈Z is a stationary process:
For any ` and n, the distribution of (ξ0, . . . , ξ`) is the same as the probability
distribution of (ξn, . . . , ξn+`).

Self-joining

Let T be a measure-preserving dynamical system. A self-joining of T is a joining
of a family (Xi,Ai, µi, Ti)i∈I of systems where each Ti is a copy of T . If I is
finite and has cardinal k, we speak of a k-fold self-joining of T .

Simplicity

For k ≥ 2, we say that the ergodic measure-preserving dynamical system T is
k-fold simple if, for any ergodic joining λ of k copies of T , we can partition the
set {1, . . . , k} of coordinates into subsets J1, . . . , J` such that

1. for j1 and j2 belonging to the same Ji, the marginal of λ on the coordinates
j1 and j2 is supported on the graph of some S ∈ C(T ) (depending on j1
and j2);

2. for j1 ∈ J1, . . . , j` ∈ J`, the coordinates j1, . . . , j` are independent.

We say that T is simple if T is k-fold simple for every k ≥ 2.
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1 Definition of the subject

The word joining can be considered as the counterpart in ergodic theory of
the notion of coupling in probability theory (see e.g. [63]): Given two or more
processes defined on different spaces, what are the possibilities of embedding
them together in the same space? There always exists the solution of making
them independent of each other, but interesting cases arise when we can do
this in other ways. The notion of joining originates in ergodic theory from
pioneereing works of Furstenberg [18], who introduced the fundamental notion
of disjointness, and Rudolph, who laid the basis of joining theory in his article
on minimal self-joinings [52]. It has today become an essential tool in the
classification of measure-preserving dynamical systems and in the study of their
intrinsic properties.

2 Introduction

A central question in ergodic theory is to tell when two measure-preserving
dynamical systems are essentially the same, i.e. when they are isomorphic.
When this is not the case, a finer analysis consists in asking what these two
systems could share in common: For example, do there exist stationary processes
which can be observed in both systems? This latter question can also be asked in
the following equivalent way: Do these two systems have a common factor? The
arithmetical flavour of this question is not fortuitous: There are deep analogies
between the arithmetic of integers and the classification of measure-preserving
dynamical systems, and these analogies were at the starting point of the study
of joinings in ergodic theory.

In the seminal paper [18] which introduced the concept of joinings in ergodic
theory, Furstenberg observed that two operations can be done with dynamical
systems: We can consider the product of two dynamical systems, and we can also
take a factor of a given system. Like the multiplication of integers, the product
of dynamical systems is commutative, associative, it possesses a neutral element
(the trivial single-point system), and the systems S and T are both factors of
their product S × T . It was then natural to introduce the property for two
measure-preserving systems to be relatively prime. As far as integers are con-
cerned, there are two equivalent ways of characterizing the relative primeness:
First, the integers a and b are relatively prime if their unique positive common
factor is 1. Second, a and b are relatively prime if, each time both a and b are
factors of an integer c, their product ab is also a factor of c. It is a well-known
theorem in number theory that these two properties are equivalent, but this
was not clear for their analog in ergodic theory. Furstenberg reckoned that the
second way of defining relative primeness was the most interesting property in
ergodic theroy, and called it disjointness of measure-preserving systems (we will
discuss precisely in Section 3.2 what the correct analog is in the setting of er-
godic theory). He also asked whether the non-existence of a non-trivial common
factor between two systems was equivalent to their disjointness. He was able to
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prove that disjointness implies the impossibility of a non-trivial common factor,
but not the converse. And in fact, the converse turns out to be false: In 1979,
Rudolph exhibited a counterexample in his paper introducing the important
notion of minimal self-joinings. The relationships between disjointness and the
lack of common factor will be presented in details in Section 3.3.

Given two measure-preserving dynamical systems S and T , the study of
their disjointness naturally leads one to consider all the possible ways these
two systems can be both seen as factors of a third system. As we shall see,
this is precisely the study of their joinings. The concept of joining turns out
to be related with many important questions in ergodic theory, and a large
number of deep results can be stated and proved inside the theory of joinings.
For example, the fact that the dynamical systems S and T are isomorphic is
equivalent to the existence of a special joining between S and T , and this can
be used to give a joining proof of Krieger’s finite generator theorem, as well
as Ornstein’s isomorphism theorem (see Section 5.2). As it already appears in
Furstenberg’s article, joinings provide a powerful tool in the classification of
measure-preserving dynamical systems: Many classes of systems can be char-
acterized in terms of their disjointness with other systems. Joinings are also
strongly connected with difficult questions arising in the study of almost every-
where convergence of non-conventional averages (see Section 5.4).

Amazingly, a situation in which the study of joinings leads to most inter-
esting results consists in considering two or more identical systems. We then
speak of the self-joinings of the dynamical system T . Again, the study of self-
joinings is closely related to many ergodic properties of the system: its mixing
properties, the structure of its factors, the transformations which commute with
T , and so on. . . We already mentioned minimal self-joinings, and we will see in
Section 4.2 how this property may be used to get many interesting examples,
such as a transformation with no root, or a process with no non-trivial factor. In
the same section we will also discuss a very interesting generalization of minimal
self-joinings: the property of being simple.

The range of applications of joinings in ergodic theory is very large; only some
of them will be given in Section 5: The use of joinings in proving Krieger’s and
Ornstein’s theorems, the links between joinings and some questions of pointwise
convergence, and the strong connections between the study of self-joinings and
Rohlin’s famous question on multifold mixing, which has been opened since
1949 [50].

In parallel with the concept of joinings of measure-preserving systems, Fursten-
berg also introduced in [18] the notion of topological joinings, concerning topo-
logical dynamical systems (that is, systems given by a continuous transformation
of a compact metric space). In the present article we have restricted ourselves to
the measure-preserving setting. In addition to Furstenberg’s paper, applications
of topological joinings can be found for example in [21, 38, 67].
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3 Joinings of two or more dynamical systems

In the following, we are given a finite or countable family (Xi,Ai, µi, Ti)i∈I of
measure-preserving dynamical systems: Ti is an invertible measure-preserving
transformation of the standard Borel probability space (Xi,Ai, µi). When it is
not ambiguous, we shall often use the symbol Ti to denote both the transfor-
mation and the system.

A joining λ of the Ti’s (see the definition in the Glossary) defines a new
measure-preserving dynamical system: The product transformation⊗

i∈I
Ti : (xi)i∈I 7−→ (Tixi)i∈I

acting on the Cartesian product
∏
i∈I Xi, and preserving the probability mea-

sure λ. We will denote this big system by
(⊗

i∈I Ti
)
λ
. Since all marginals of λ

are given by the original probabilities µi, observing only the coordinate i in the
big system is the same as observing only the system Ti. Thus, each system Ti
is a factor of

(⊗
i∈I Ti

)
λ
, via the homomorphism πi which maps any point in

the Cartesian product to its i-th coordinate.
Conversely, if we are given a measure-preserving dynamical system (Z,C , ρ, R)

admitting each Ti as a factor via some homomorphism ϕi : Z → Xi, then we
can construct the map ϕ : Z →

∏
i∈I Xi sending z to (ϕi(z))i∈I . We can easily

check that the image of the probability measure ρ is then a joining of the Ti’s.
Therefore, studying the joinings of a family of measure-preserving dynamical

system amounts to study all the possible ways these systems can be together
seen as factors in another big system.

3.1 The set of joinings

The set of all joinings of the Ti’s will be denoted by J(Ti, i ∈ I). Before
anything else, we have to observe that this set is never empty. Indeed, whatever
the systems are, the product measure

⊗
i∈I µi always belongs to this set. Note

also that any convex combination of joinings is a joining: J(Ti, i ∈ I) is a
convex set.

The set of joinings is turned into a compact metrizable space, equipped with
the topology defined by the following notion of convergence: λn −−−−→

n→∞
λ if and

only if, for all family of measurable subsets (Ai)i∈I ∈
∏
i∈I Ai, finitely many of

them being different from Xi, we have

λn

(∏
i∈I

Ai

)
−−−−→
n→∞

λ

(∏
i∈I

Ai

)
. (2)

We can easily construct a distance defining this topology by observing that it is
enough to check (2) when each of the Ai’s is chosen in some countable algebra
Ci generating the σ-algebra Ai. We can also point out that, when the Xi’s are
themselves compact metric spaces, this topology on the set of joinings is nothing
but the restriction to J(Ti, i ∈ I) of the usual weak* topology.
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It is particularly interesting to study ergodic joinings of the Ti’s, whose set
will be denoted by Je(Ti, i ∈ I). Since any factor of an ergodic system is itself
ergodic, a necessary condition for Je(Ti, i ∈ I) not to be empty is that all
the Ti’s be themselves ergodic. Conversely, if all the Ti’s are ergodic, we can
prove by considering the ergodic decomposition of the product measure

⊗
i∈I µi

that ergodic joinings do exist: Any ergodic measure appearing in the ergodic
decomposition of some joining has to be itself a joining. This result can also be
stated in the following way:

Proposition 3.1. If all the Ti’s are ergodic, the set of their ergodic joinings is
the set of extremal points in the compact convex set J(Ti, i ∈ I).

3.2 From disjointness to isomorphy

In this section, as in many others in this article, we are focusing on the case
where our family of dynamical systems is reduced to two of them. We will then
rather call them S and T , standing for (Y,B, ν, S) and (X,A , µ, T ). We are
interested here in two extremal cases for the set of joinings J(T, S). The first one
occurs when the two systems are as far as possible from each other: They have
nothing to share in common, and therefore their set of joinings is reduced to the
singleton {µ ⊗ ν}: This is called the disjointness of S and T . The second one
arises when the two systems are isomorphic, and we will see how this property
shows through J(T, S).

3.2.1 Disjointness

Many situations where disjointness arises were already given by Furstenberg
in [18]. Particularly interesting is the fact that classes of dynamical systems can
be characterized through disjointness properties. We list here some of the main
examples of disjoint classes of measure-preserving systems.

Theorem 3.2.

1. T is ergodic if and only if it is disjoint from every identity map.

2. T is weakly mixing if and only if it is disjoint from any rotation on the
circle.

3. T has zero entropy if and only if it is disjoint from any Bernoulli shift.

4. T is a K-system if and only if it is disjoint from any zero-entropy system.

The first result is the easiest, but is quite important, in particuler when it
is stated in the following form: If λ is a joining of T and S, with T ergodic, and
if λ is invariant by T × Id, then λ = µ⊗ ν.

The second, third and fourth results were originally proved by Furstenberg.
They can also be seen as corollaries of the theorems presented in Section 3.3,
linking the non-disjointness property with the existence of a particular factor.
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Both the first and the second results can be derived from the next theorem,
giving a general spectral condition in which disjointness arises. The proof of this
theorem can be found in [64]. It is a direct consequence of the fact that, if f
and g are square-integrable functions in a given dynamical system, and if their
spectral measures are mutually singular, then f and g are orthogonal in L2.

Theorem 3.3. If the reduced maximum spectral types of T and S are mutually
singular, then T and S are disjoint.

As we already said in the introduction, disjointness was recognized by Fursten-
berg as the most pertinent way to define the analog of the arithmetic property
“a and b are relatively prime” in the context of measure-preserving dynamical
systems. We must however point out that the statement

(i) S and T are disjoint

is, in general, strictly stronger than the straightforward translation of the arith-
metic property:

(ii) Each time both S and T appear as factors in a third dynamical
system, then their product S × T also appears as a factor in this
system.

Indeed, contrary to the situation in ordinary arithmetic, there exist non-trivial
dynamical systems T which are isomorphic to T × T : For example, this is the
case when T is the product of countably many copies of a single non-trivial
system. Now, if T is such a system and if we take S = T , then S and T do not
satisfy statement (i): A non-trivial system is never disjoint from itself, as we
will see in the next Section. However they obviously satisfy the statement (ii).

A correct translation of the arithmetic propert is the following: S and T are
disjoint if and only if, each time T and S appear as factors in some dynamical
system through the respective homomorphisms πT and πS , T × S also appears
as a factor through a homomorphism πT×S such that πX ◦ πT×S = πT and
πY ◦ πT×S = πS , where πX and πY are the projections on the coordinates in
the Cartesian product X × Y (see the diagram below).

3.2.2 Joinings and isomorphism

We first introduce some notations: For any probability measure λ on a mea-

surable space, let ‘A
λ
= B’ stand for ‘λ(A∆B) = 0’. Similarly, if C and D are
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σ-algebras of measurable sets, we write ‘C
λ
⊂ D ’ if, for any C ∈ C , we can find

some D ∈ D such that C
λ
= D, and by ‘C

λ
= D ’ we naturally mean that both

C
λ
⊂ D and D

λ
⊂ C hold.

Let us assume now that our two systems S and T are isomorphic: This
means that we can find some measurable one-to-one map ϕ : X → Y , with
T (µ) = ν, and ϕ ◦ T = S ◦ϕ. With such a ϕ, we construct the measurable map
ψ : X → X × Y by setting

ψ(x) :=
(

(x, ϕ(x)
)
.

Let ∆ϕ be the image measure of µ by ψ. This measure is supported on the
graph of ϕ, and is also characterized by

∀A ∈ A , ∀B ∈ B, ∆ϕ(A×B) = µ(A ∩ ϕ−1B). (3)

We can easily check that, ϕ being an isomorphism of T and S, ∆ϕ is a joining
of T and S. And this joining satisfies very special properties:

• For any measurable A ⊂ X, A× Y ∆ϕ
= X × ϕ(A);

• Conversely, for any measurable B ⊂ Y , X ×B ∆ϕ
= ϕ−1(B)× Y ;

Figure 1: The joining ∆ϕ identifies the sets A× Y and X × ϕ(A).

Thus, in the case where S and T are isomorphic, we can find a special
joining of S and T , which is supported on the graph of an isomorphism, and
which identifies the two σ-algebras generated by the two coordinates. What
is remarkable is that the converse is true: The existence of an isomorphism
between S and T is characterized by the existence of such a joining, and we
have the following theorem:

Theorem 3.4. The measure-preserving dynamical systems S and T are iso-
morphic if and only if there exists a joining λ of S and T such that

{X, ∅} ⊗B
λ
= A ⊗ {Y, ∅}. (4)
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When λ is such a joining, it is supported on the graph of an isomorphism of T
and S, and both systems are isomorphic to the joint system (T ⊗ S)λ.

This theorem finds nice applications in the proof of classical isomorphism
results. For example, it can be used to prove that two discrete-spectrum systems
which are spectrally isomorphic are isomorphic (see [64] or [55]). We will also
see in Section 5.2 how it can be applied in the proofs of Krieger’s and Ornstein’s
deep theorems.

Consider now the case were T and S are no longer isomorphic, but where
S is only a factor of T . Then we have a factor map π : X → Y which has
the same properties as an isomorphism ϕ, except that it is not one-to-one (π
is only onto). The measure ∆π, constructed in the same way as ∆ϕ, is still a
joining supported on the graph of π, but it does not identify the two σ-algebras
generated by the two coordinates any more: Instead of Condition (4), ∆π only
satisfies the weaker one:

{X, ∅} ⊗B
∆π⊂ A ⊗ {Y, ∅}. (5)

The existence of a joining satisfying (5) is a criterion for S being a factor of T .
For more details on the results stated in this section, we refer the reader

to [55].

3.3 Joinings and factors

The purpose of this section is to investigate the relationships between the dis-
jointness of two systems S and T , and the lack of a common factor. The crucial
fact which was pointed out by Furstenberg is that the existence of a common
factor enables one to construct a very special joining of S and T : The relatively
independent joining over this factor.

Let us assume that our systems S and T share a common factor (Z,C , ρ, R),
which means that we have measurable onto maps πX : X → Z and πY : Y → Z,
respectively sending µ and ν to ρ, and satisfying πX◦T = R◦πX and πY ◦S = R◦
πY . We can then consider the joinings supported on their graphs ∆πX ∈ J(T,R)
and ∆πY ∈ J(S,R), as defined in the preceding section. Next, we construct a
joining λ of the 3 systems S, T and R. Heuristically, λ is the probability
distribution of the triple (x, y, z) when we first pick z according to the probability
distribution ρ, then x and y according to their conditionnal distribution knowing
z in the respective joinings ∆πX and ∆πY , but independently of each other.
More precisely, λ is defined by setting, for all A ∈ A , B ∈ B and C ∈ C

λ(A×B × C) :=

∫
C

E∆πX
[1x∈A|z] E∆πY

[1y∈B |z] dρ(z). (6)

Observe that the 2-fold marginals of λ on X × Z and Y × Z are respectively
∆πX and ∆πY , which means that we have z = πX(x) = πY (y) λ-almost surely.
In other words, we have identified in the two systems T and S the projections
on their common factor R. The 2-fold marginal of λ on X ×Y is itself a joining
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of T and S, which we call the relatively independent joining over the common
factor R. This joining will be denoted by µ⊗Rν. (Be careful: The projections
πX and πY are hidden in this notation, but we have to know them to define this
joining.) From (6), we immediately get the formula defining µ⊗Rν:

∀A ∈ A ,∀B ∈ B,

µ⊗Rν(A×B) :=

∫
Z

E∆πX
[1x∈A|z] E∆πY

[1y∈B |z] dρ(z). (7)

This definition of the relatively independent joining over a common factor can
easily be extended to a finite or countable family of systems sharing the same
common factor.

Figure 2: The relatively independent joining µ⊗Rν and its disintegration over z.

Note that µ⊗Rν coincides with the product measure µ⊗ν if and only if the
common factor is the trivial one-point system. We therefore get the following
result:

Theorem 3.5. If S and T have a non-trivial common factor, then these systems
are not disjoint.

As we already said in the introduction, Rudolph exhibited in [52] a coun-
terexample showing that the converse is not true. There exists however an
important result, which was published in [26, 40] allowing us to derive some
information on factors from the non-disjointness of two systems.

Theorem 3.6. If T and S are not disjoint, then S has a non-trivial common
factor with some joining of a countable family of copies of T .

This result leads to the introduction of a special class of factors when some
dynamical system T is given: For any other dynamical system S, call T -factor
of S any common factor of S with a joining of countably many copies of T . If
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(Z,C , ρ, R) is a T -factor of S and π : Y → Z is a factor map, we say that the σ-
algebra π−1(C ) is a T -factor σ-algebra of S. Another way to state Theorem 3.6
is then the following: If S and T are not disjoint, then S has a non-trivial
T -factor. In fact, an even more precise result can be derived from the proof
of Theorem 3.6: For any joining λ of S and T , for any bounded measurable
function f on X, the factor σ-algebra of S generated by the function Eλ[f(x)|y]
is a T -factor σ-algebra of S.

With the notion of T -factor, Theorem 3.6 has been extended in [42] in the
following way, showing the existence of a special T -factor σ-algebra of S com-
prising anything in S which could lead to a non-trivial joining between T and
S.

Theorem 3.7. Given two measure-preserving dynamical systems (X,A , µ, T )
and (Y,B, ν, S), there always exists a maximum T -factor σ-algebra of S, denoted
by FT .

Under any joining λ of T and S, the σ-algebras A ⊗{∅, Y } and {∅, X}⊗B
are independent conditionally to the σ-algebra {∅, X} ⊗FT .

Theorem 3.6 gives a powerful tool to prove some important disjointness
results, such as those stated in Theorem 3.2. These results involve properties of
dynamical systems which are stable under the operations of taking joinings and
factors. We will call these properties stable properties. This is e.g. the case of
the zero-entropy property: We know that any factor of a zero-entropy system
still has zero entropy, and that any joining of zero-entropy systems also has zero
entropy. In other words, T has zero entropy implies that any T -factor has zero
entropy. But the property of S being a K-system is precisely characterized by
the fact that any non-trivial factor of S has positive entropy. Hence a K-system
S cannot have a non-trivial T -factor if T has zero entropy, and is therefore
disjoint from T . The converse is a consequence of Theorem 3.5: If S is not
a K-system, then it possesses a non-trivial zero-entropy factor, and therefore
there exists some zero-entropy system from which it is not disjoint.

The same argument also applies to the disjointness of discrete-spectrum sys-
tems with weakly mixing systems, since discrete spectrum is a stable property,
and weakly mixing systems are characterized by the fact that they do not have
any discrete-spectrum factor.

3.4 Markov intertwinings and composition of joinings

There is another way of defining joinings of two measure-preserving dynamical
systems involving operators on L2 spaces, mainly put to light by Ryzhikov
(see [60]): Observe that for any joining λ ∈ J(T, S), we can consider the operator
Pλ : L2(X,µ)→ L2(Y, ν) defined by

Pλ(f) := Eλ[f(x)|y].

It is easily checked that Pλ is a Markov intertwining of T and S. Conversely,
given any Markov intertwining P of T and S, it can be shown that the measure
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λP defined on X × Y by

λP (A×B) := 〈P1A,1B〉L2(Y,ν)

is a joining of T and S.

This reformulation of the notion of joining is useful when joinings are studied
in connection with spectral properties of the transformations (see e.g. [28]).
It also provides us with a convenient setting to introduce the composition of
joinings: If we are given three dynamical systems (X,A , µ, T ), (Y,B, ν, S) and
(Z,C , ρ, R), a joining λ ∈ J(T, S) and a joining λ′ ∈ J(S,R), the composition
of the Markov intertwinings Pλ and Pλ′ is easily seen to give a third Markov
intertwining, which itself corresponds to a joining of T and R denoted by λ ◦λ′.
When R = S = T , i.e. when we are speaking of 2-fold self-joinings of a
single system T (cf. next section), this operation turns J(T, T ) = J2(T ) into
a semigroup. Ahn and Lemańczyk [1] have shown that the subset J2

e (T ) of
ergodic 2-fold self-joinings is a sub-semigroup if and only if T is semisimple (see
Section 4.3).

4 Self-joinings

We now turn to the case where the measure-preserving dynamical systems we
want to join together are all copies of a single system T . For k ≥ 2, any joining
of k copies of T is called a k-fold self-joining of T . We denote by Jk(T ) the
set of all k-fold self-joinings of T , and by Jke (T ) the subset of ergodic k-fold
self-joinings.

4.1 Self-joinings and commuting transformations

As soon as T is not the trivial single-point system, T is never disjoint from itself:
Since T is obviously isomorphic to itself, we can always find a 2-fold self-joining
of T which is not the product measure by considering self-joinings supported on
graphs of isomorphisms (see Section 3.2.2). The simplest of them is obtained
by taking the identity map as an isomorphism, and we get that J2(T ) always
contains the diagonal measure ∆0 := ∆Id.

In general, an isomorphism of T with itself is an invertible measure-preserving
transformation S of (X,A , µ) which commutes with T . We call commutant of
T the set of all such transformations (it is a subgroup of the group of automor-
phisms of (X,A , µ)), and denote it by C(T ). It always contains, at least, all
the powers Tn, n ∈ Z.

Each element S of C(T ) gives rise to a 2-fold self-joining ∆S supported on
the graph of S. Such self-joinings are called off-diagonal self-joinings. They also
belong to Jke (T ) if T is ergodic.

It follows that properties of the commutant of an ergodic T can be seen in its
ergodic joinings. As an example of application, we can cite Ryzhikov’s proof of
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King’s weak closure theorem for rank-one transformations1. Rank-one measure-
preserving transformations form a very important class of zero-entropy, ergodic
measure-preserving transformations. They have many remarkable properties,
among which is the fact that their commutant is reduced to the weak limits of
powers of T . In other words, if T is rank one, for any S ∈ C(T ) there exists a
subsequence of integers (nk) such that,

∀A ∈ A , µ
(
T−nkA∆S−1A

)
−−−−→
k→∞

0. (8)

King proved this result in 1986 [36], using a very intricate coding argument.
Observing that (8) was equivalent to the convergence, in J2(T ), of ∆Tnk to ∆S ,
Ryzhikov showed in [58] that King’s theorem could be seen as a consequence of
the following general result concerning 2-fold self-joinings of rank-one systems:

Theorem 4.1. Let T be a rank-one measure-preserving transformation, and
λ ∈ J2

e (T ). Then there exist t ≥ 1/2, a subsequence of integers (nk) and another
2-fold self-joining λ′ of T such that

∆Tnk −−−−→
k→∞

tλ+ (1− t)λ′.

4.2 Minimal self-joinings

For any measure-preserving dynamical system T , the set of 2-fold self-joinings
of T contains at least the product measure µ ⊗ µ, the off-diagonal joinings
∆Tn for each n ∈ Z, and any convex combination of these. Rudolph [52]
discovered in 1979 that we can find systems for which there are no other 2-
fold self-joinings than these obvious ones. When this is the case, we say that
T has 2-fold-minimal self-joinings, or for short: T ∈ MSJ(2). It can be shown
(see e.g. [53]) that, as soon as the underlying probability space is not atomic
(which we henceforth assume), 2-fold minimal self-joinings implies that T is
weakly mixing, and therefore that µ ⊗ µ and ∆Tn , n ∈ Z, are ergodic 2-fold
self-joinings of T . That is why 2-fold minimal self-joinings are often defined by
the following:

T ∈ MSJ(2) ⇐⇒ J2
e (T ) = {µ⊗ µ} ∪ {∆Tn , n ∈ Z}. (9)

Systems with 2-fold minimal self-joinings have very interesting properties.
First, since for any S in C(T ), ∆S belongs to J2

e (T ), we immediately see that the
commutant of T is reduced to the powers of T . In particular, it is impossible to
find a square root of T , i.e. a measure-preserving S such that S◦S = T . Second,
the existence of a non-trivial factor σ-algebra of T would lead, via the relatively
independent self-joining over this factor, to some ergodic 2-fold self-joining of
T which is not in the list prescribed by (9). Therefore, any factor σ-algebra of
a system with 2-fold minimal self-joinings must be either the trivial σ-algebra
{∅, X} or the whole σ-algebra A . This has the remarkable consequence that

1An introduction to finite-rank transformations can be found e.g. in [43]; we also refer the
reader to the quite complete survey [14].
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if ξ is any random variable on the underlying probability space which is not
almost-surely constant, then the process (ξ ◦Tn)n∈Z always generates the whole
σ-algebra A . This also implies that T has zero entropy, since positive-entropy
systems have many non-trivial factors.

The notion of 2-fold minimal self-joinings extends for any integer k ≥ 2 to
k-fold minimal self-joinings, which roughly means that there are no other k-fold
ergodic self-joinings than the “obvious” ones: Those for which the k coordinates
are either independent or just translated by some power of T (see the glossary
for a more precise definition). We denote in this case: T ∈ MSJ(k). If T has
k-fold minimal self-joinings for all k ≥ 2, we simply say that T has minimal self
joinings.

Rudolph’s construction of a system with 2-fold minimal self-joinings [52]
was inspired by a famous work of Ornstein [46], giving the first example of a
transformation with no roots. It turned out that Ornstein’s example is a mixing
rank-one system, and all mixing rank-one systems were later proved by King [37]
to have 2-fold minimal self-joinings. This can also be viewed as a consequence
of Ryzhikov’s Theorem 4.1. Indeed, in the language of joinings, the mixing
property of T translates as follows:

T is mixing ⇐⇒ ∆Tn −−−−→
|n|→∞

µ⊗ µ. (10)

Therefore, if in Theorem 4.1 we further assume that T is mixing, then either
the sequence (nk) we get in the conclusion is bounded, and then λ is some ∆Tn ,
or it is unbounded and then λ = µ⊗ µ.

T ∈ MSJ(k) obviously implies T ∈ MSJ(k′) for any 2 ≤ k′ ≤ k, but the
converse is not known. The question whether 2-fold minimal self-joinings implies
k-fold minimal self-joinings for all k is related to the important open problem
of pairwise independent joinings (see Section 5.3.1). But the latter problem is
solved for some special classes of systems, in particular in the category of mixing
rank-one transformations. It follows that, if T is mixing and rank one, then T
has minimal self-joinings.

In 1980, Del Junco, Rahe and Swanson proved that Chacon’s transformation
also has minimal self-joinings [9]. This well-known transformation is also a rank-
one system, but it is not mixing (it had been introduced by R.V. Chacon in
1969 [6] as the first explicit example of a weakly mixing transformation which
is not mixing). For another example of a transformation with 2-fold minimal
self-joinings, constructed as an exchange map on three intervals, we refer to [7].

The existence of a transformation with minimal self-joinings has been used
by Rudolph as a wonderful tool to construct a large variety of striking coun-
terexamples, such as

• a transformation T which has no roots, while T 2 has roots of any order,

• a transformation with a cubic root but no square root,

• two measure-preserving dynamical systems which are weakly isomorphic
(each one is a factor of the other) but not isomorphic. . .

15



Let us now sketch the argument showing that we can find two systems with
no common factor but which are not disjoint: We start with a system T with
minimal self-joinings. Consider the direct product of T with an independent
copy T ′ of itself, and take the symmetric factor S of T ⊗ T ′, that is to say
the factor we get if we only look at the non-ordered pair of coordinates {x, x′}
in the Cartesian product. Then S is surely not disjoint from T , since the pair
{x, x′} is not independent of x. However, if S and T had a non-trivial common
factor, then this factor should be isomorphic to T itself (because T has minimal
self-joinings). Therefore we could find in the direct product T ⊗ T ′ a third
copy T̃ of T , which is measurable with respect to the symmetric factor. In
particular, T̃ is invariant by the flip map (x, x′) 7→ (x′, x), and this prevents
T̃ from being measurable with respect to only one coordinate. Then, since
T ∈ MSJ(3), the systems T , T ′ and T̃ have no choice but being independent.
But this contradicts the fact that T̃ is measurable with respect to the σ-algebra
generated by x and x′. Hence, T and S have no non-trivial common factor.

We can also cite the example given by Glasner and Weiss [27] of a pair
of horocycle transformations which have no nontrivial common factor, yet are
not disjoint. Their construction relies on the deep work by Ratner [49], which
describes the structure of joinings of horocycle flows.

4.3 Simple systems

An important generalization of 2-fold minimal self-joinings has been proposed by
William A. Veech in 1982 [66]. We say that the measure-preserving dynamical
system T is 2-fold simple if it has no other ergodic 2-fold self-joinings than the
product measure {µ⊗µ} and joinings supported on the graph of a transformation
S ∈ C(T ). (The difference with MSJ(2) lies in the fact that C(T ) may contain
other transformations than the powers of T .) It turns out that simple systems
may have non-trivial factors, but the structure of these factors can be explicitly
described: They are always associated with some compact subgroup of C(T ).
More precisely, if K is a compact subgroup of C(T ), we can consider the factor
σ-algebra

FK := {A ∈ A : ∀S ∈ K, A = S(A)},

and the corresponding factor transformation T|FK
(called a group factor). Then

Veech proved the following theorem concerning the structure of factors of a 2-
fold simple system.

Theorem 4.2. If the dynamical system T is 2-fold simple, and if F ⊂ A is a
non-trivial factor σ-algebra of T , then there exists a compact subgroup K of the
group C(T ) such that F = FK .

There is a natural generalisation of Veech’s property to the case of k-fold
self-joinings, which has been introduced by Del Junco and Rudolph in 1987 [10]
(see the precise definition of simple systems in the glossary). In their work,
important results concerning the structure of factors and joinings of simple
systems are proved. In particular, they are able to completely describe the

16



structure of the ergodic joinings between a given simple system and any ergodic
system (see also [64] and [24]). Recall that, for any r ≥ 1, the symmetric factor
of T⊗r is the system we get if we observe the r coordinates of the point in
Xr and forget their order. This is a special case of group factor, associated to
the subgroup of C(T⊗r) consisting of all permutations of the coordinates. We
denote this symmetric factor by T 〈r〉.

Theorem 4.3. Let T be a simple system and S an ergodic system. Assume that
λ is an ergodic joining of T and S which is different from the product measure.
Then there exists a compact subgroup K of C(T ) and an integer r ≥ 1 such that

•
(
T|FK

)〈r〉
is a factor of S,

• λ is the projection on X × Y of the relatively independent joining of T⊗r

and S over their common factor
(
T|FK

)〈r〉
.

If we further assume that the second system is also simple, then in the
conclusion we can take r = 1. In other words, ergodic joinings of simple systems
S and T are either the product measure or relatively independent joinings over
a common group factor. This leads to the following corollary:

Theorem 4.4. Simple systems without non-trivial common factor are disjoint.

As for minimal self-joining, it is not known in general whether 2-fold sim-
plicity implies k-fold simplicity for all k. This question is studied in [25], where
sufficient spectral conditions are given for this implication to hold. It is also
proved that any 3-fold simple weakly mixing transformation is simple of all
order.

4.4 Relative properties with respect to a factor

In fact, Veech also introduced a weaker, “relativised”, version of the 2-fold
simplicity. If F ⊂ A is a non-trivial factor σ-algebra of T , let us denote by
J2(T,F ) the set of 2-fold self-joinings of T which are “constructed over F”,
which means that their restriction to the product σ-algebra F ⊗F coincides
with the diagonal measure. (The relatively-independent joining over F is the
canonical example of such a joining.) For the conclusion of Theorem 4.2 to
hold, it is enough to assume only that the ergodic elements of J2(T,F ) be
supported on the graph of a transformation S ∈ C(T ). This is an important
situation where the study of J2(T,F ) gives strong informations on the way F is
embedded in the whole system T , or, in other words, on the relative properties of
T with respect to the factor T |F . A simple example of such a relative property
is the relative weak mixing with respect to F , which is characterized by the
ergodicity of the relatively-independent joining over F (recall that weak-mixing
is itself characterized by the ergodicity of the direct product T ⊗ T ).

For more details on this subject, we refer the reader to [41]. We also wish to
mention the generalization of simplicity called semisimplicity proposed by Del
Junco, Lemańczyk and Mentzen in [8], which is precisely characterized by the

17



fact that, for any λ ∈ J2
e (T ), the system (T ⊗ T )λ is a relatively weakly mixing

extension of T .

5 Some applications and future directions

5.1 Filtering problems

Filtering problems were one of the motivations presented by Furstenberg for the
introduction of the disjointness property in [18], and he considered in partic-
ular the following situation. Suppose we are given two real-valued stationary
processes (Xn) and (Yn), with their joint distribution also stationary. We can
interpret (Xn) as a signal, perturbed by a noise (Yn). Under which condition
can we recover the original signal (Xn) from the observation of (Xn+Yn)? If this
is possible, we say that the sequence (Xn, Yn) admits a perfect filter. Fursten-
berg proved that a perfect filter exists if the two processes (Xn) and (Yn) are
integrable, and if the two measure-preserving dynamical systems constructed
as the shift of the two processes are disjoint. Furstenberg also observed that
the integrability assumption can be removed if a stronger disjointness property
is satisfied: A perfect filter exists if the system T generated by (Xn) is doubly
disjoint from the system S generated by (Yn), in the sense that T is disjoint
from any ergodic self-joining of S. Several generalizations have been studied
(see [20, 4]), but the question whether the integrability assumption of the pro-
cesses can be removed remained open for a long time. Finally, a short and
clever argument by Garbit [22] proved in 2011 that indeed the only assumption
of disjointness is enough to ensure the existence of a perfect filter.

5.2 Joinings proofs of Ornstein’s and Krieger’s theorems

We have already seen that joinings could be used to prove isomorphisms be-
tween systems. This fact found a nice application in the proofs of two major
theorems in ergodic theory: Ornstein’s isomorphism theorem [45], stating that
two Bernoulli shifts with the same entropy are isomorphic, and Krierger’s fi-
nite generator theorem [39], which says that any dynamical system with finite
entropy is isomorphic to the shift transformation on a finite-valued stationary
process. The idea of this joining approach to the proofs of Krieger’s and Orn-
stein’s theorems was originally due to Burton and Rothstein, who circulated a
preliminary report on the subject which was never published [5]. The first pub-
lished and fully detailed exposition of these proofs can be found in Rudolph’s
book [53] (see also in Glasner’s book [24]).

In fact, Ornstein’s theorem goes far more beyond the isomorphism of two
given Bernoulli shifts: It also gives a powerful tool for showing that a specific
dynamical system is isomorphic to a Bernoulli shift. In particular, Ornstein
introduced the property for an ergodic stationary process to be finitely deter-
mined. We shall not give here the precise definition of this property (for a
complete exposition of Ornstein’s theory, we refer the reader to [47]), but sim-
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ply point out that Bernoulli shifts and mixing Markov chains are examples of
finitely determined processes. Rudolph’s argument to show Ornstein’s theorem
via joinings makes use of Theorem 3.4, and of the topology of J(T, S).

Theorem 5.1 (Ornstein’s isomorphism theorem). Let T and S be two ergodic
dynamical systems with the same entropy, and both generated by finitely de-
termined stationary processes. Then the set of joinings of T and S which are
supported on graphs of isomorphisms forms a dense Gδ in Je(T, S).

Krieger’s theorem is not as easily stated in terms of joinings, because it
does not refer to the isomorphism of two specific systems, but rather to the iso-
morphism of one given system with some other system which has to be found.
We have therefore to introduce a larger set of joinings: Given an integer n,
we denote by Yn the set of double-sided sequences taking values in {1, . . . , n}.
We consider on Yn the shift transformation S, but we do not determine yet
the invariant measure. Now, for a specific measure-preserving dynamical sys-
tem T , consider the set J(n, T ) of all possible joinings of T with some system
(Yn, ν, S), when ν ranges over all possible shift-invariant probability measures
on Yn. J(n, T ) can also be equipped with a topology which turns it into a
compact convex metric space, and as soon as T is ergodic, the set Je(n, T ) of
ergodic elements of J(n, T ) is not empty. In this setting, Krieger’s theorem can
be stated as follows:

Theorem 5.2 (Krieger’s finite generator theorem). Let T be an ergodic dy-
namical system with entropy h(T ) < log2 n. Then the set of λ ∈ J(n, T ) which
are supported on graphs of isomorphisms between T and some system (Yn, ν, S)
forms a dense Gδ in Je(n, T ).

Since any system of the form (Yn, ν, S) obviously has an n-valued generat-
ing process, we obtain as a corollary that T itself is generated by an n-valued
process.

As another nice example of how joinings can be used to describe the isomor-
phisms between two transformations, we can also cite the paper [16] by Foreman,
Rudolph and Weiss. With a clever construction of a family of transformations
for which they can completely describe the joinings between T and its inverse,
they are able to prove that the isomorphism relation between measure preserving
transformations of the unit interval is not Borel.

5.3 Joinings and Rohlin’s multifold mixing question

We have already seen that the property of T being mixing could be expressed
in terms of 2-fold self-joinings of T (see (10)). Rohlin proposed in 1949 [50] a
generalization of this property, called multifold mixing : The measure-preserving
transformation T is said to be k-fold mixing if ∀A1, A2, . . . , Ak ∈ A ,

lim
n2,n3,...,nk→∞

µ
(
A1 ∩ T−n2A2 ∩ · · · ∩ T−(n2+···+nk)Ak

)
=

k∏
i=1

µ(Ai).
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Again, this definition can easily be translated into the language of joinings:
T is k-fold mixing when the sequence (∆Tn2 ,...,Tn2+···+nk ) converges in Jk(T )

to µ⊗k as n2, . . . , nk go to infinity, where (∆Tn2 ,...,Tn2+···+nk ) is the obvious
generalization of ∆Tn to the case of k-fold self-joinings. The classical notion of
mixing corresponds in this setting to 2-fold mixing. (We must point out that
Rohlin’s original definition of k-fold mixing involved k+1 sets, thus the classical
mixing property was called 1-fold mixing. However it seems that the convention
we adopt here is now used by most authors, and we find it more coherent when
translated in the language of multifold self-joinings.)

Obviously, 3-fold mixing is stronger than 2-fold mixing, and Rohlin asked
in his article whether the converse is true. This question is still open today,
even though many important works dealt with it and supplied partial answers.
Most of these works directly involve self-joinings via the argument exposed in
the following section.

5.3.1 Pairwise-independent joinings

Let T be a 2-fold mixing dynamical system. If T is not 3-fold mixing, (∆Tn,Tn+m)
does not converge to the product measure as n and m go to ∞. By compact-
ness of J3(T ), we can find subsequences (nk) and (mk) such that (∆Tnk ,Tnk+mk )
converges to a cluster point λ 6= µ ⊗ µ ⊗ µ. However, by 2-fold mixing, the 3
coordinates must be pairwise independent under λ. We therefore get a 3-fold
self-joining λ with the unusual property that λ has pairwise independent coor-
dinates, but λ is not the product measure.

A system is said to be pairwise independently determined (PID) if for all
k ≥ 3, the only pairwise independent k-fold self-joining of the system is the
product measure. Thus, in the class of PID systems, 2-fold mixing implies
3-fold mixing.

In fact, non-PID systems are easy to find (see e.g. [55]), but the examples
we know so far are either periodic transformations (which can not be counterex-
amples to Rohlin’s question since they are not mixing), or transformations with
positive entropy. However, using an argument provided by Thouvenot, we can
prove that, if there exists a 2-fold mixing T which is not 3-fold mixing, then
we can find such a T in the category of zero-entropy dynamical systems (see
e.g. [54] ). Therefore, a negative answer to the following question would solve
Rohlin’s multifold mixing problem:

Question 5.3. Does there exist a zero-entropy, weakly mixing dynamical system
T which is not PID?

The problem of (non) existence of such pairwise-independent joinings is also
related to the question whether MSJ(2) implies MSJ(3), or whether 2-fold sim-
plicity implies 3-fold simplicity. Indeed, any counter-example to one of these
implication would necessarily be of zero entropy, and would possess a pairwise-
independent 3-fold self-joining which is not the product measure. Moreover, it
is noticed in [24, Corollary 12.22] that if we find a system which is MSJ(2) but
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not MSJ(3), then this system would also be 2-fold mixing without being 3-fold
mixing.

Question 5.3 has been answered by Host and Ryzhikov for some special
classes of zero-entropy dynamical systems.

5.3.2 Host’s and Ryzhikov’s theorems

The following theorem, proved in 1991 by Host [30] (see also [44, 24]), estab-
lishes a spectacular connection between the spectral properties of a finite family
of dynamical systems and the non-existence of a pairwise-independent, non-
independent joining:

Theorem 5.4 (Host’s theorem on singular spectrum). Let (Xi,Ai, µi, Ti)1≤i≤r
be a finite family of measure-preserving dynamical systems with purely singu-
lar spectrum. Then any pairwise-independent joining λ ∈ J(T1, . . . , Tr) is the
product measure µ1 ⊗ · · · ⊗ µr.

Corollary 5.5. If a dynamical system with singular spectrum is 2-fold mixing,
then it is k-fold mixing for any k ≥ 2.

The multifold-mixing problem for rank-one measure-preserving systems was
solved in 1984 by Kalikow [35], using arguments which do not involve the theory
of joinings. In 1993, Ryzhikov [59] extended Kalikow’s result to finite-rank
systems, by giving a negative answer to Question 5.3 in the category of finite-
rank mixing systems:

Theorem 5.6 (Ryzhikov’s theorem for finite rank systems). All finite-rank
mixing transformations are PID.

Corollary 5.7. If a finite-rank transformation is 2-fold mixing, then it is k-fold
mixing for any k ≥ 2.

5.4 Joinings and multiple ergodic averages

Important researches in ergodic theory are devoted to the convergence of so-
called multiple ergodic averages, that is to say expressions of the form

1

n

n−1∑
k=0

f1(T k1 x)f2(T k2 x) · · · fd(T kd x), (11)

where d ≥ 2, T1, . . . , Td are d measure-preserving transformations of the proba-
bility space (X,A , µ) and f1, . . . , fd are bounded measurable functions. A case
of special interest is when Ti = T i (i = 1, . . . , d) for some measure-preserving
transformation T , which is strongly connected to Furstenberg’s ergodic proof
of Szemerédi’s Theorem, and more generally when T1, . . . , Td are commuting
transformations.

The study of convergence in L2 of (11) has a long history, and has led to the
emergence of deep and successful ideas. We can cite in particular the work of
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Host and Kra [31] who established the L2-convergence for successive powers of a
single transformation, introducing and describing the structure of a sequence of
factors for which joinings play a central role. The first proof of the convergence
in L2 of (11) in the case of d commuting transformations has been given by Tao
in [62]. While Tao’s original proof relies on a purely combinatorial argument and
does not make use of joinings, we would like here to emphasize the alternative
proof established by Austin [2], which stronly relies on the theory of joinings,
and how they are involved in the description of the structure of the factors of a
dynamical system. For an even more joining oriented version of Austin’s proof,
see [56].

As far as pointwise convergence of multiple ergodic averages is concerned,
still more questions remain open, and they certainly also involve the theory of
joinings. As a simple example, we present the relationships between the study
of pointwise convergence of (11) when d = 2, that is, we consider two non
necessarily commuting transformations S and T and we study the sequence(

1

n

n−1∑
k=0

f(T kx)g(Skx)

)
n>0

. (12)

It turns out that disjointness of T and S is a sufficient condition for the
almost-sure convergence to hold. Indeed, let us first consider the case where T
and S are defined on a priori different spaces (X,A , µ) and (Y,B, ν) respec-
tively, and consider the ergodic average in the product

1

n

n−1∑
k=0

f(T kx)g(Sky), (13)

which can be viewed as the integral of the function f ⊗ g with respect to the
empirical distribution

δn(x, y) :=
1

n

n−1∑
k=0

δ(Tkx,Sky).

We can always assume that T and S are continuous transformations of compact
metric spaces (indeed, any measure-preserving dynamical system is isomorphic
to such a transformation on a compact metric space: see e.g. [19]). Then
the set of probability measures on X × Y equipped with the topology of weak
convergence is metric compact. Now, here is the crucial point where joinings
appear: If T and S are ergodic, we can easily find subsets X0 ⊂ X and Y0 ⊂ Y
with µ(X0) = ν(Y0) = 1, such that for all (x, y) ∈ X0 × Y0, any cluster point
of the sequence (δn(x, y))n>0 is automatically a joining of T and S. (We just
have to pick x and y among the “good points” for the ergodic theorem in their
respective spaces.) When T and S are disjoint, the only cluster point to the
sequence (δn(x, y)) is therefore µ ⊗ ν. This ensures that, for continuous f and
g, (13) converges to the product of the integrals of f and g as soon as (x, y) is
picked in X0×Y0. The subspace of continuous functions being dense in L2, the
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classical ergodic maximal inequality (see [23]) ensures that, for any f and g in
L2(µ), (13) converges for any (x, y) in a rectangle of full measure X0 × Y0.

Coming back to the original question where the spaces on which T and S
act are identified, we observe that with probability one, x belongs both to X0

and Y0, and therefore the sequence (12) converges.

The existence of a rectangle of full measure in which the sequence of empiri-
cal distributions (δn(x, y))n>0 always converges to some joining has been studied
in [42] as a natural generalization of the notion of disjointness. This property
was called weak disjointness of S and T , and it is indeed strictly weaker than dis-
jointness, since there are examples of transformations which are weakly disjoint
from themselves.

Recent works use joinings to study the pointwise convergence of multiple
ergodic averages. We mention in particular [32], where the case of successive
powers of an ergodic distal transformation is treated, and [12] where this result is
extended to the case of d commuting transformations generating a distal action
of Zd, using some of Austin’s ideas.

Also, let us observe that a strong connection with Question 5.3 on pairwise
independent joinings has been established in [29]. Indeed, using a result of
Bourgain according to which the almost-sure convergence of (11) holds when
d = 2 and T1, T2 are powers of a single transformation, the authors prove that
if T is PID and weakly mixing, then (11) converge almost surely for Ti = T i,
i = 1, . . . , d.

5.5 Joinings and conjectures in number theory

Joinings have recently proved to be a relevant tool in the study of a conjecture
by Sarnak [61], which lies at the interface between number theory and dynamical
systems. Sarnak conjecture deals with the famous arithmetic Möbius function
µ, which is defined for each integer n ≥ 0 by

µ(n) :=

{
0 if there exists a prime p such that p2|n,
(−1)k if n is the product of k distinct prime numbers (k ≥ 0).

A famous heuristic called the Möbius randomness principle states that the pat-
terns of symbols −1, 1 and 0 in the sequence µ behaves so chaotically that µ
has no correlation with any reasonably simple sequence ξ. Sarnak proposed a
precise interpretation of this principle in the context of dynamical systems:

Conjecture 5.8 (Sarnak’s conjecture). For any topological dynamical system
(X,T ) with zero topological entropy, any continuous real-valued function f de-
fined on X and any x ∈ X, we have

1

n

n−1∑
k=0

f(T kx)µ(k) −−−−→
n→∞

0. (14)
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Sarnak pointed out that this conjecture was supported by an older conjecture
of Chowla which says that µ has no autocorrelation of any order. More precisely,
it can be stated as follows:

Conjecture 5.9 (Chowla’s conjecture). For any integers r ≥ 0, i0, i1, . . . , ir ≥
0 with at least one odd ij, we have

1

n

n−1∑
k=0

µ(k)i0µ(k + 1)i1 · · ·µ(k + r)ir −−−−→
n→∞

0.

As pointed out by Sarnak in [61], that the Chowla conjecture implies the
Sarnak conjecture can be proved via ergodic theory arguments. Indeed, an
interpretation of the Chowla conjecture is that µ is the product of µ2 (the
characteristic function of the set of square-free numbers) with a sequence π ∈
{−1, 1}N behaving as a typical output of an infinite sequence of balanced coin
tosses. Now, with the assumptions of the statement of the Sarnak conjecture,
the sequence f(T kx)µ2(k) is produced by a zero-entropy system, whereas the
sequence π comes from a K-system. Hence (14) can be viewed as a consequence
of the disjointness between K-systems and systems of zero entropy. (See e.g.
[13] for details.)

Another reason why joinings are used in the study of Sarnak conjecture
comes from the following criterion introduced by Bourgain, Sarnak and Ziegler [3],
which provides a sufficient condition for a bounded sequence (an) to be orthog-
onal to any bounded multiplicative function ν. Recall that the Möbius function
is itself multiplicative, which means that µ(mn) = µ(m)µ(n) whenever m,n
are coprime integers.

Lemma 5.10 (Criterion of Bourgain, Sarnak and Ziegler). Assume that (an)
is a bounded sequence of complex numbers, such that

lim sup
r,s→∞,

r,s different primes

lim sup
n→∞

∣∣∣∣∣ 1n
n−1∑
k=0

akraks

∣∣∣∣∣ = 0. (15)

Then, for each bounded multiplicative function ν : N→ C, we have

lim
N→∞

1

n

n−1∑
k=0

ak · ν(k) = 0.

To apply the above lemma in the context of the Sarnak conjecture, we have
to consider the sequence ak = f(T kx), hence (15) becomes an assumption on
this kind of multiple ergodic average

1

n

n−1∑
k=0

f
(
(T r)kx

)
f ((T s)kx).
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Now, let us assume for simplification that the topological dynamical system
(X,T ) has a unique invariant probability measure µ. Then arguments similar
to those exposed in Section 5.4 lead to considering joinings of different prime
powers T r and T s of the measure-preserving system (X,T, µ). For example, as
explained in [3], disjointness of different prime powers of T implies the validity
of the Sarnak conjecture for the system. But Lemma 5.10 can also be applied
in a larger class of systems, which is defined below and for which we can control
all possible joinings of different prime powers of T .

The ergodic measure preserving system (X,µ, T ) is said to have Asymp-
totically Orthogonal Powers (AOP) if for each given f and g in L2(µ) with∫
X
f dµ =

∫
X
g dµ = 0, we have

lim
r,s→∞,

r,s different primes

sup
κ∈Je(T r,T s)

∣∣∣∣∫
X×X

f ⊗ g dκ
∣∣∣∣ = 0.

Surprisingly, the class of AOP systems includes examples where all positive
powers of T are isomorphic. Examples of system with AOP and consequences
of this property are given in [15] and references therein. In particular, the
Sarnak conjecture holds for any uniquely ergodic model of an AOP system,
with uniform convergence of (14) with respect to x.

5.6 Future Directions

A lot of important open questions in ergodic theory involve joinings, and we
already have cited several of them: joinings are a natural tool when we want
to deal with some problems of pointwise convergence involving several transfor-
mations (see Section 5.4). It can therefore be assumed that they will play an
important role in future progress on pointwise convergence of multiple ergodic
averages. Their use is also fundamental in the study of Rohlin’s question on
multifold mixing. As far as this latter problem is concerned, we may mention
a recent approach to Question 5.3: start with a transformation for which some
special pairwise-independent self-joining exists, and see what this assumption
entails. In particular, we can ask under which conditions there exists a pairwise-
independent 3-fold self-joining of T under which the third coordinate is a func-
tion of the two others. It has already been proved in [33] that if this function
is sufficiently regular (continuous for some topology), then T is periodic or has
positive entropy. And there are strong evidences leading to the conjecture that,
when T is weakly mixing, such a situation can only arise when T is a Bernoulli
shift of entropy log n for some integer n ≥ 2. A question in the same spirit
was raised by Ryzhikov, who asked in [57] under which conditions we can find
a factor of the direct product T × T which is independent of both coordinates.

There is also a lot of work to do with joinings in order to understand the
structure of factors of some dynamical systems, and how different classes of
systems are related. An example of such a work is given in the class of Gaussian
dynamical systems, i.e. dynamical systems constructed from the shift on a
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stationary Gaussian process: For some of them (which are called GAG, from
the french Gaussien à Autocouplages Gaussiens), it can be proved that any
ergodic self-joining is itself a Gaussian system (see [65, 40]), and this gives a
complete description of the structure of their factors. This kind of analysis is
expected to be applicable to other classes of dynamical systems. In particular,
Gaussian joinings find a nice generalization in the notion of infinitely divisible
joinings, studied by Roy in [51]). These ID joinings concern a wider class of
dynamical systems of probabilistic origin, among which we can also find Poisson
suspensions. The counterpart of Gaussian joinings in this latter class are Poisson
joinings, which have been introduced by Derriennic, Fr

‘
aczek, Lemańczyk and

Parreau in [11]. As far as Poisson suspensions are concerned, the analog of the
GAG property in the Gaussian class can also be considered, and examples of
Poisson suspensions for which the only ergodic self-joinings are Poisson joinings
have been given in [48] and [34]. In [11], a general joining property is described:
T satisfies the ELF property (from the french: Ergodicité des Limites Faibles)
if any joining which can be obtained as a limit of off-diagonal joinings ∆Tnk

is automatically ergodic. It turns out that this property is satisfied by any
system arising from an infinitely divisible stationary process (see [11, 51]). It
is proved in [11] that the ELF property implies disjointness with any system
which is 2-fold simple and weakly mixing but not mixing. The ELF property is
expected to give a useful tool to prove disjointness between dynamical systems
of probabilistic origin and other classes of systems (see e.g. [17] in the case of
R-action for disjointness between ELF systems and a class of special flows over
irrational rotations).
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aczek, M. Lemańczyk, and F. Parreau, Ergodic auto-

morphisms whose weak closure of off-diagonal measures consists of ergodic
self-joinings, To appear in Colloquium Mathematicum.

[12] S. Donoso and W. Sun, Pointwise convergence of some multiple ergodic
averages, arXiv:1609.02529, 2016.

[13] H. El Abdalaoui, J. Ku laga-Przymus, M. Lemańczyk, and T. de la Rue,
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