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Abstract 

Ceria-Yttria co-doped tetragonal zirconia is an attractive class of materials having high strength, 

toughness and thermal stability. In this study, several co-doped zirconia powders with different 

stabilizers contents were synthesized via continuous hydrothermal flow synthesis (CHFS). The 

CHFS was concluded as a suitable method in synthesizing ultrafine tetragonal zirconia particles 

with controlled morphology. The synthesized powders as well as some commercial powders were 

heat-treated both in the form of powders and pellets between 1150 and 1500°C and their crystalline 

structure after cooling to room temperature was studied. The results were used to map out the 

stability range of the tetragonal phase. The developed diagrams are useful tools to select the 

appropriate amounts of stabilizers applicable for different sintering temperatures and for samples 

with different target densities. 
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1.  Introduction 

Tetragonal zirconia is a widely studied and technologically important material due to its wide 

range of applications from structural and engineering ceramics to catalytic materials. Superior 

mechanical properties of tetragonal zirconia have made it an interesting structural ceramic for use in 

solid oxide fuel and electrolysis cells, membranes, and biomedical applications [1–7].  

In pure zirconia, under certain conditions, the tetragonal crystalline phase can be maintained at 

room temperature, in a metastable form. The metastable tetragonal form can be fully retained while 

being calcined at temperatures in the range of 400-800°C. However, further increase in the 

temperature will result in a tetragonal to monoclinic phase transformation during subsequent cooling 

[8–12]. The phase transformation entails a volume expansion and a shear strain of approximately 4 

and 16%, respectively [13]. 

For most engineering applications the component manufacturing process includes sintering at 

high temperatures, usually above 1100°C. Consequently, in practice to retain the tetragonal phase, 

zirconia is doped with certain amounts of stabilizing element(s). The stabilizer content should be high 

enough to preserve the tetragonal phase upon cooling from a high sintering temperature. This prevents 

undesired volumetric expansion from spontaneous transformation to the monoclinic zirconia, which 

could result in formation of micro-cracks having detrimental effect on the mechanical properties of 

the component. Furthermore, the stabilizer content should not be too high, as it over-stabilizes the 

tetragonal phase, thus inhibits transformation toughening [14–18]. The transformation toughening 

mechanism occurs when the stress field around a propagating crack initiates a stress-induced 

martensitic tetragonal to monoclinic phase transformation. The volume increase associated with the 

transformation leads to extra work (dissipation of energy) associated with the crack propagation and 

consequently to a tougher material. Thus, the stabilizer content should be close to a certain critical 

amount, for a specific grain size, to increase the transformability of the material and make it prone to 

undergo the transformation with the stress field at the crack tip [13,19,20]. 

To summarize; in order to benefit the most from the transformation toughening mechanism, two 

important properties should be carefully balanced; the meta-stability of the tetragonal phase and its 

transformability. Optimum strength and fracture toughness is achieved when the tetragonal zirconia 

is maintained after sintering and cooling but the phase is not over-stabilized (preventing 

transformation toughening, which is a function stabilizer content and grain size) [18,21,22].  

The right amount of stabilizer can be difficult to choose, as it is influenced by several factors 

such as packing density, grain size, and sintering temperature. For example, the tendency for the 

tetragonal to monoclinic transformation is higher in porous bodies (for example used as the support 

component for solid oxide fuel and electrolysis cells and membranes, where a porosity of more than 

35% is typically desirable) than in fully dense ceramics for which most investigations have been 

carried out [23,24]. Nanocrystalline structures are another example; they have the potential for 

achieving a high toughness by decreasing the stabilizer content, since the small grain size, initially 

and after sintering, can inhibit loss of the tetragonal phase [25]. However, a significantly lower 

fracture toughness is also reported in literature for nanostructured stabilized zirconia ceramics as 

compared to larger grained zirconia. The reason has been attributed to a lower transformability of the 

smaller grains [26,27]. Another factor to consider is the amount of monoclinic or cubic phases that 

form during manufacturing, as these take up space for tetragonal crystals thereby decreasing the 

number of grains active for the stress-induced transformation.  

Yttria and ceria stabilized tetragonal zirconia (Y-TZP and Ce-TZP) have been widely studied 

and used due to their excellent mechanical properties [13,22]. Compared to Y-TZP, Ce-TZP has a 
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higher toughness but a lower strength. Moreover, Ce-TZP is less prone to low temperature 

degradation (LTD) [16,18,28]. Therefore, co-doping with Y and Ce is a promising route to optimize 

strength, toughness and thermal stability of TZP ceramics [29–37]. Lin and co-workers [33–35] 

studied the mechanical properties of ceria-yttria co-doped zirconia ceramics sintered at 1500°C 

containing different amounts of stabilizers. They concluded that CeO2 and YO1.5 contents of 6.5-7 

mol% and 2.25-3 mol%, respectively, were the optimum amounts giving the highest toughness and 

strength. Duh and co-workers [29] reported a very high toughness for the zirconia ceramic stabilized 

with 5.5 mol% CeO2 and 2 mol% YO1.5 sintered at 1500°C, among different studied compositions. 

Duh and co-workers [31] reported that ceramic with 10 mol% CeO2 and 1 mol% YO1.5 sintered at 

1500°C was the toughest material; however, the studied materials had considerable amounts of 

monoclinic phase after sintering. Accordingly, from literature it is difficult to determine conclusively 

the range of stabilizers providing the optimum strength and toughness for the Ce-Y co-doped 

ceramics. 

For porous structures, the typical lower sintering temperatures makes it possible to decrease the 

stabilizer content without experiencing spontaneous tetragonal to monoclinic phase transformation 

on cooling, and thus to gain further strength and fracture toughness. On the other hand, the stability 

of the tetragonal phase in a porous body is lower than that in a dense structure. Therefore, it is 

important to understand the dependency of the stability of the tetragonal phase on sample density and 

sintering temperatures. There is however a lack of studies on appropriate Ce-Y stabilizer contents 

optimizing strength and toughness in porous systems, especially when using low sintering 

temperatures, i.e. below 1200°C. Although some works have studied the equilibrium phase diagram 

data using thermodynamic calculations [38–40], the metastable phase diagrams of ZrO2–Y2O3–CeO2 

system are rare in literature. Moreover, stabilized zirconia powders especially in the nanocrystalline 

form, often show different metastable tetragonal phase stability behavior compared to the equilibrium 

bulk phase diagram data [41–43], so it is necessary to study the stability ranges of the metastable 

tetragonal zirconia when varying sintering temperature and particle packing (density) in Ce-Y co-

doped zirconia.  

Consequently, the objective of this work is to map out the stable domains, in terms of stabilizer 

content and sintering temperatures, for the tetragonal Ce-Y co-doped zirconia in both porous and 

dense states. We have thus investigated different Ce-Y co-doped nanocrystalline zirconia powders 

and pellets with compositions ranging from 0 to 6% YO1.5 and 0 to 7% CeO2 at three different 

sintering temperatures, i.e. 1150°C, 1350°C and 1500°C. After heat treatment, the phase composition 

of the samples was investigated to identify the optimum amount of stabilizer at the specific sintering 

temperature. The results are used to construct transformation phase diagrams applicable for different 

porosities and heat-treatment temperatures (as required for the specific component targeted).  

  



Tetragonal phase stability map in Y-Ce TZP Khajavi et al. Ceram. Int. 2020 4 

 

2.  Experimental 

2.1.  Materials 

Table 1 presents the compositions of the samples studied in this work. The samples are denoted 

as mCe nY-SZ, where m and n signify the content of CeO2 and YO1.5 in mol%, respectively and SZ 

stands for ‘Stabilized Zirconia’.  

Ce-Y co-doped nanocrystalline zirconia powders of six compositions were synthesized by 

Continuous Hydrothermal Flow Synthesis (CHFS) using an in-house developed two-stage reactor 

[44]. ZrO(NO3)2·xH2O (with x~1), Y(NO3)3·6H2O and Ce(NO3)3·6H2O (Sigma Aldrich) and KOH 

(Alfa Aesar) were used as the raw materials.  

The as-received zirconium, yttrium and cerium salts were first dissolved separately in DI water 

to prepare the “stock solutions”. To ascertain the cation concentrations of the prepared solutions, ca. 

5 gr of each solution was calcined in a muffle furnace in air at 900°C for 6 h in order for the salt to 

be fully converted to the corresponding metal oxide. By measuring the weight of the samples before 

and after the calcination the concentration of the cations in the initial solutions was established. Later, 

these stock solutions were diluted and mixed to prepare the aqueous “precursor solution” for the 

powder syntheses.  

 

Table 1:  The samples studied in this work; the sample composition is designated mCe nY-SZ. 

Supplier Ce mol% (m) Y mol% (n) 

Synthesized in this 

work (CHFS) 

3 3 

4.5 1.5 

2.5 2.5 

5.5 2.5 

7 0 

6 1 

Cerpotech 

4 1 

4.5 1.5 

5 2 

0 4.6 

Tosoh 

0 4 

0 5 

0 6 

Nanoe 

1.5 4.5 

3 3.6 

5 3 
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The precursor solution for each specific composition was prepared considering the 

stoichiometric molar ratios of yttrium, cerium and zirconium. A total cation concentration of 0.05 

mol/L was applied for the solutions. Aqueous alkali solutions with a concentration of 1 mol/L were 

also prepared by dissolving KOH pellets in DI water and used as “mineralizer” in the syntheses. 

Syntheses pressure and temperature were 27 MPa and 683 K, respectively.  

To extend the range of the studied compositions, ten different Y doped and Ce-Y co-doped 

zirconia compositions were also purchased from external suppliers (Tosoh, Japan; Nanoe, France; 

Cerpotech, Norway). For comparison with the synthesized powders, one of the purchased compounds 

was such chosen to have a similar composition as one of the synthesized powders (see Table 1).  

Some of the powders were pressed into pellets by a uniaxial press (200 MPa) and further 

densified using cold isostatic pressing (4 GPa). The two set of samples (powders and pellets) were 

heat treated for 2 h in air at 3 different temperatures; 1150, 1350, and 1500°C, with a heating and 

cooling rate of 90 °C/h. 

 

2.2.  Characterization 

X-ray diffraction (XRD) was performed using a Bruker D8 diffractometer (Bruker, Germany) 

with Cu Kα radiation. The diffraction patterns of all samples were recorded over three different 2θ 

ranges. A wide scan was first carried out over the 10-90° range with step size and scan speed of 0.03° 

and 0.015°/s, respectively. Two high-resolution scans with step size and scan speed of 0.003° and 

0.0015°/s were also performed over the ranges of 25.5-33.5° and 70.5-76.5° to identify precisely the 

presence of monoclinic and cubic phases in the samples.  

When no cubic phase was detected in the samples (from the high-resolution scans over 70.5-

76.5°), the volume fractions of the tetragonal and monoclinic phases (Vt and Vm) were evaluated from 

the integrated peak intensities, I, of the (101)t, (111)m and (1̅11)m planes using the method developed 

by Toraya et al. [45]  

𝑋𝑚 =
𝐼𝑚(111) + 𝐼𝑚(1̅11)

𝐼𝑚(111) + 𝐼𝑚(1̅11) + 𝐼𝑡(101)
 (1) 

𝑉𝑚 =
1.311𝑋𝑚

1 + 0.311𝑋𝑚
 (2) 

𝑉𝑡 = 1 − 𝑉𝑚 (3) 

The subscripts m and t represent the monoclinic and tetragonal polymorphs, respectively.  

The average crystallite size of the tetragonal phase (d) in the synthesized samples was estimated 

from the (101)t diffraction peak using the Scherrer equation [46], 

𝑑 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
 (4) 

where K is the shape constant (≈ 0.9), λ is the radiation wavelength, θ is the diffraction peak 

angle and β is the corrected full width at half-maximum intensity (FWHM). A NIST standard silicon 

powder was used as a standard to correct for the instrumental broadening. XRD data were also 

analyzed through the Rietveld refinement method [47] using the WINPOW, a modified version of 
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the LHMP program [48]. The background and peak profiles were fitted using Chebyshev polynomials 

and Pseudo-Voigt functions, respectively.  

For samples containing the cubic phase, the crystalline phase composition was determined using 

the Rietveld refinement. 

The morphology of the CHFS powders was studied with a JEOL 3000F transmission electron 

microscope with a field emission gun operating at 300 kV. The particles were dispersed in ethanol by 

means of ultrasonic treatment and dropped onto a holey carbon film/Cu grid.  

The specific surface area of the pristine (starting) and calcined powders was measured using the 

Brunauer-Emmett-Teller (BET) method [49] on a Quantachrome surface area analyzer 

(Quantachrome, USA). Assuming that the powders are composed of monodispersed and spherical 

particles, the average particle sizes of the powders were estimated from their BET surface area (SBET) 

and density (ρ) using the following equation [50]: 

𝑑𝐵𝐸𝑇 =
6

𝑆𝐵𝐸𝑇 𝜌
 (5) 

Density of the sintered pellets was determined using their weight and geometric volume. 

Microstructure of the sintered pellets was studied using field emission scanning electron 

microscopy (FE-SEM, Zeiss Merlin, Germany). The samples were polished and then thermally etched 

at 1150°C for 15 min with a heating and cooling rate of 250 °C/h. The average grain size of each 

sample was determined by measuring the size of ca. 100 grains. 

 

 

3.  Results and discussion 

3.1.  Morphology of the synthesized powders 

Figure 1a, b show high resolution TEM images of the as-synthesized 5.5Ce 2.5Y-SZ powder. 

The nanoparticles have a nearly spherical morphology and display a monodisperse particle size 

distribution with an average size of 8.6 nm (standard deviation 1.6 nm) determined by measuring the 

diameter of 60 particles. Moreover, the particles are fully crystallized. From the higher magnification 

image (Figure 1b) the interplanar spacing and the angle between planes are measured to be 2.97 Å, 

2.60 Å, 1.82 Å and 55°, which is consistent with the (101), (002), (112) planes and ∠[(101)/(002)] of 

a tetragonal crystal. For comparison, the calculated interplanar spacing of the crystal planes of the 

tetragonal 5.5Ce 2.5Y-SZ on basis of lattice parameters derived from the Rietveld refinement of the 

XRD data are provided in the appended Supporting Information.  

Figure 2a is a micrograph of a particle from the 5.5Ce 2.5Y-SZ powder after calcination at 

1500°C. The particle size has markedly increased due to sintering of the primary nanosized particles. 

The sintering effect is more clearly observed in the high-resolution image (Figure 2b), showing a 

distinguishable grain boundary in the particle. The particle is polycrystalline with randomly-oriented 

grains (Figure 2c). 

The CHFS, as a type of high-throughput synthesis technique, is thus well suited for synthesizing 

very fine, monodisperse crystalline zirconia particles in a continuous and efficient synthesis process.  
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Figure 1:  (a, b) high-resolution TEM micrographs of the as-synthesized 5.5Ce 2.5Y-SZ nanoparticles and (c) 

the particle size distribution determined from the diameter of 60 particles. The higher magnification 

micrograph (b) shows visible lattice fringes that are attributed to crystal planes based on the measured 

interplanar spacing. The inset provides a zoom-in view of the lattice fringe (highlighted by the dashed square) 

for a better readability.  
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3.2.  Crystalline phase of the synthesized powders 

The XRD patterns of the as-synthesized powders (Figure 3) show that these are all crystalline. 

The crystallite sizes of the powders, measured from the XRD results, are also presented in Figure 3. 

The 8.1 nm crystallite size determined for the 5.5Ce 2.5Y-SZ powder is in a good agreement with the 

particle size measured by TEM (8.6 nm).  

 

Figure 2: (a) BF-TEM micrograph of a calcined 5.5Ce 2.5Y-SZ particle (b) BF-TEM micrograph of the 

highlighted area in (a), and (c) High-resolution image of an area in the calcined particle. The measured 

interplanar spacing (2.97 Å) matches well to the (101) plane of the tetragonal crystal. 

 

The high-resolution scans over the 70.5-76.5° range (inset, Figure 3) show that all the powders 

are tetragonal. However, peaks for the (400) and (004) tetragonal planes are not well separated, and 

whether the (400) peak of the cubic phase is present or not is not well discernible. The question is 

thus if a small amount of cubic phase is present in the samples. It is in general difficult to distinguish 

between cubic and tetragonal phases from the XRD pattern of a nanocrystalline zirconia, as the 

inherent strong peak broadening causes peak overlap. It is reported in some studies that the cubic 

phase can also be stabilized at room temperature in pure zirconia powders having ultrafine crystallites, 

i.e. in the range of 2-20 nm [51–54]. Doping with stabilizers as done here, might well increase the 

possibility of forming the cubic phase. Considering the very small crystallite size of the powders 
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synthesized in this work, the possible presence of small amounts of the cubic phase was further 

investigated by the Rietveld refinement analysis [55] of the XRD data for one specific composition. 

The as-synthesized 5.5Ce 2.5Y-SZ powder, having high content of stabilizers (and hence most 

susceptible to formation of the cubic phase) was chosen for the analysis.  

 
Figure 3: XRD patterns of the as-synthesized CHFS nanopowders; the inset shows the high-resolution scans 

within the range of 70.5°-76.5°. 

 

 
Figure 4: Rietveld refinement profiles of the XRD data for the as-synthesized 5.5Ce 2.5Y-SZ powder, refined 

based on (a) the tetragonal and (b) the cubic structures. The red and green lines represent the observed and 

calculated intensities, respectively. Bragg positions are indicated by the verticals. The difference curves are 

plotted by the blue lines. The refinement parameters are also presented for each set of refinement. 
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First, the refinement was carried out for the tetragonal and cubic phases individually. Figure 

4presents the Rietveld refinement plots based on the tetragonal and cubic phases together with the 

corresponding goodness of fit (GoF) and reliability factors. A much better fitting, i.e. matching 

between the observed and calculated intensities, was achieved when the pattern was fitted with the 

tetragonal phase than with the cubic structure. This could also be concluded by comparing the 

refinement parameters of the two sets of analysis, where smaller R-factors and a GoF closer to unity 

are only obtainable for the tetragonal structure. 

In addition, the Rietveld refinement was performed to investigate the presence of mixed 

tetragonal-cubic polymorphs. Here, the amount of cubic phase was concluded to be very low, i.e. less 

than 0.1%, after finishing the refinement. The results of the Rietveld refinement studies thus show 

that the as-synthesized powders are in the tetragonal phase, which is consistent with the HRTEM 

results of the 5.5Ce 2.5Y-SZ powder. 

 

3.3.  Specific surface areas of the powders 

The BET specific surface area of selected powders, pristine and after calcination at 1150°C, is 

shown in Table 2. For each set of powders, at least one compound is investigated. The as-synthesized 

CHFS powder has the highest surface area, significantly higher than the other pristine samples. This 

is consistent with the ultrafine morphology of the CHFS powders as discussed earlier. The other 

pristine samples have comparable surface areas. In the calcined form, the surface area of the powders 

ranges between 0.5 – 5.9 m2/g. The estimated average particle size of the calcined powders 

determined from their BET surface areas and the average crystallite size of their tetragonal and 

monoclinic phases measured from XRD are also presented in Table 2. The calcined powders (in 

particular CHFS powder) are composed of big agglomerates of smaller grains. 

 

Table 2: BET specific surface area (SBET), BET particle size (dBET), and the average crystallite size of the 

tetragonal (dt) and monoclinic (dm) phases estimated using XRD patterns 

Supplier Compound 
Pristine powder Calcined at 1150°C 

SBET (m2/g) dBET (nm) SBET (m2/g) dBET (nm) dt (nm) dm (nm) 

CHFS 4.5Ce 1.5Y-SZ 102.6 10 0.5 2004 26.3 25.4 

Cerpotech 

4Ce 1Y-SZ 10.3* 97 - - - 47.7 

4.5Ce 1.5Y-SZ 12.3* 81 5.9 173 69.5 44.1 

5Ce 2Y-SZ 13* 76 - - 53.2 - 

4.6Y-SZ 10.3* 97 - - 53.6 - 

Tosoh 4Y-SZ 12.7 80 4.9 208 53.2 35.5 

Nanoe 1.5Ce 4.5Y-SZ 20 51 2.4 412 52.8 - 

* Reported by the supplier 

- not analyzed/not applicable 
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3.4.  Tetragonal phase stability maps 

The crystalline phase compositions of all the studied powders after calcination at 1150, 1350, 

and 1500°C are tabulated in Table 3. For the 4.5Ce 1.5Y-SZ compound, the powder synthesized in 

this work and the purchased powder have very close phase compositions after calcination at all 

temperatures. The similar phase compositions and comparable crystallite sizes of these two powders 

despite their different extent of agglomeration (Table 2) suggest that the trend in the tetragonal to 

monoclinic phase transformation in the synthesized and purchased powders can be assumed similar. 

In other words, the phase transformation is more dependent on the stabilizer content than the 

preparation method of the starting powders in this case. 

Density of the sintered pellets is also presented in Table 3. The density of pellets sintered at 

1150°C varies between 60 – 80 % with the highest density pertinent to the pellets made of CHFS 

powder. This corresponds well with the very high surface area of its starting powder. The density of 

the pellets sintered at 1350 and 1500°C ranges between 80 – 100 %.   

The amount of retained tetragonal phase for each compound is also presented in Figure 5a-c. 

Using these results, the tetragonal to monoclinic phase transformation boundaries for powders 

calcined at the three studied calcination temperatures can be developed, as shown by the dashed lines 

in Figure 5.  

From thermodynamic analysis and assuming that the tetragonal crystallites fully transform to the 

monoclinic crystallites and not partially [56–58], the critical crystallite size (i.e. the size above which 

the tetragonal to monoclinic phase transformation occurs spontaneously) for the tetragonal to 

monoclinic phase transformation for unconstrained zirconia particles (𝐷𝑐) at a given temperature (𝑇) 

can be expressed as:  

𝐷𝑐 =  −6 
∆𝜎

𝑞 (1 −
𝑇
𝑇𝑏

)
 

(6) 

where ∆𝜎 is the difference between surface free energy of the tetragonal and monoclinic phases, 

q is the enthalpy of the tetragonal to monoclinic phase transformation and 𝑇𝑏 is the transformation 

temperature, all defined for a crystal with infinite size.  

For a constrained system, the critical grain size for the transformation (𝐷𝑐
∗) is obtained 

considering the difference between interfacial energy of the tetragonal and monoclinic phases (∆𝜎∗) 

and strain energy difference of the two phases (∆𝜖): 

𝐷𝑐
∗ =  −6 

∆𝜎∗

𝑞 (1 −
𝑇
𝑇𝑏

) + ∆𝜖
 (7) 

Equations (6) and (7) suggest that for a certain composition the critical grain size in a bulk solid 

material (constrained state) is larger than the critical crystallite size in the powder form (unconstrained 

state), resulting from the contribution of the strain and interfacial energies in the constrained state. 

This is in good agreement with experiments [59]. For instance, the critical crystallite size for 

stabilizing the tetragonal phase at room temperature for 0.5YSZ (0.5mol% yttria doped zirconia), 

1YSZ and 1.5YSZ powders has been reported to be 30, 51, and 71 nm, while in the constrained solid 

state, the corresponding critical grain size for each composition is found to be 70, 100 and 155 nm 

[59].  

The contribution of the strain energy to stabilize the tetragonal phase is dependent on its 

magnitude. The extent of the strain energy decreases by increasing the porosity of the solid, as the 



Tetragonal phase stability map in Y-Ce TZP Khajavi et al. Ceram. Int. 2020 12 

 

pores provides free surfaces and lowers the elastic modulus [60]. As a consequence, more grains in a 

porous body will have the opportunity to transform to the monoclinic phase upon cooling. For 

instance, Lange [60] reported the amount of tetragonal phase retained at room temperature in 2.5 

mol% yttria doped zirconia sintered at 1500°C to be 97, 83, and 77% for relative densities of 92, 73, 

and 65%, respectively.  

Therefore, the developed diagrams based on the calcined powders in Figure 5are not descriptive 

for dense sintered bodies. To consider the effects of matrix constraint, the transformation boundary 

diagrams were completed using the crystalline phase analysis results of sintered pellets. The powders, 

in which the high temperature tetragonal phase could not be fully retained after cooling to room 

temperature, were further investigated in the pellet form. The crystalline phase composition of the 

pellets sintered at 1150, 1350, and 1500°C is also provided in Table 3 (in brackets) and in Figure 5a-

c. The transformation boundaries for the dense state at the three studied temperatures, derived from 

the results for the sintered pellets, are drawn in Figure 5 as solid lines. As expected the stability of 

the tetragonal phase in the pellets was higher than that in the powder due to the stabilizing effects of 

the matrix constraints in the solid form. 
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Figure 5: Amount of retained tetragonal phase for each compound in the form of powder (right number) and 

pellet (left number) after the heat treatment at (a) 1150°C, (b) 1350°C and (C) 1500°C. The dashed and solid 

lines indicate the approximate transformation boundary diagrams for calcined powders and sintered pellets, 

respectively. 
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Table 3: Crystalline phase composition of the calcined powders and sintered pellets and relative density (D) of the sintered pellets studied in this work. 

The phase composition of the sintered pellets is shown in the brackets. The uncertainty of the porosity measurements is around 1-2%. 

 
 Samples heat-treated at 1150°C Samples heat-treated at 1350°C Samples heat-treated at 1500°C 

Supplier Compound Phase composition D 

(%) 

Phase composition D 

(%) 

Phase composition D (%) 

monoclinic tetragonal cubic monoclinic tetragonal cubic monoclinic tetragonal cubic 

CHFS 3Ce 3Y-SZ 0.0 100 0.0 - 0.0 100 0.0 - 0.2 99.8 0.0 - 

4.5Ce 1.5Y-SZ 82 18 0.0 - 97.8 2.2 0.0 - 98.8 1.2 0.0 - 

2.5Ce 2.5Y-SZ 69.8 [69.7] 30.2 

[30.3] 

0.0 [0.0] 81 72.3 [51.1] 27.7 [48.9] 0.0 [0.0] 90.6 88.9 [67.6] 11.1 [32.4] 0.0 [0.0] 95.7 

5.5Ce 2.5Y-SZ 0.8 99.2 0.0 - 0.0 100.0 0.0 - 0.0 100.0 0.0 - 

7Ce-SZ 95.3 [90.9] 4.7 [9.1] 0.0 [0.0] 78.5 98.7 [95.6] 1.3 [4.4] 0.0 [0.0] 90.1 99 [98.7] 1 [1.3] 0.0 [0.0] 94.5 

6Ce 1Y-SZ 94.1 5.9 0.0 - 97.3 2.7 0.0 - 99.1 0.9 0.0 - 

Cerpotech 4Ce 1Y-SZ 99.2 [98.4] 0.8 [1.6] 0.0 [0.0] 63.5 99.7 [99.7] 0.3 [0.3] 0.0 [0.0] 84.3 99.8 [99.8] 0.2 [0.2] 0.0 [0.0] 91.2 

4.5Ce 1.5Y-SZ 84.7 [0.9] 15.3 

[99.1] 

0.0 [0.0] 58.9 99.5 [99.2] 0.5 [0.8] 0.0 [0.0] 79.6 99.6 [99.3] 0.4 [0.7] 0.0 [0.0] 90.4 

5Ce 2Y-SZ 0.3 [0.0] 99.7 [100] 0.0 [0.0] 62 13 [0.0] 83 [100] 0.0 [0.0] 80.5 95.9 [0.0] 4.1 [100] 0.0 [0.0] 93.1 

4.6Y-SZ 0.0 100.0 0.0 - 9.9 90.1 0.0 - 11.1 [0.0] 88.9 [100] * 94.8 

Tosoh 4Y-SZ 67.5 [0.0] 32.5 [100] 0.0 [0.0] 70.9 74.4 [0.0] 25.6 [100] 0.0 [0.0] 98 67.9 [0.2] 32.1 (98.8) 0.0 [0.0] 99.1 

5Y-SZ 0.0 100.0 0.0 - 0.0 100.0 0.0 - 1.2 98.8 * - 

6Y-SZ 0.0 100.0 0.0 - 0.0 100.0 * - 0.0 96.5 [96.9] 3.5 [3.1] 97.8 

NanoE 1.5Ce 4.5Y-SZ 0.8 99.2 0.0 - 0.4 99.6 0.0 - 0.7 99.3 * - 

3Ce 3.6Y-SZ 0.0 100.0 0.0 - 0.0 100.0 0.0 - 0.0 100.0 0.0 - 

5Ce 3Y-SZ 0.0 100.0 0.0 - 0.0 100.0 0.0 - 0.0 100.0 0.0 - 

* Negligible 
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As can be seen in Figure 5and Table 3, the retained tetragonal phase in the calcined powders 

typically decreases with increased calcination temperature. For instance, in the 5Ce 2Y-SZ compound 

the amount of tetragonal phase maintained at room temperature after calcination at 1150, 1350, 

1500°C is 99.7, 83 and 4.1%, respectively. This trend can be attributed to the higher temperatures 

promoting grain growth to a size larger than the critical one. However, in some of the samples the 

amount of retained tetragonal phase increased or showed only little variation with increasing 

calcination temperature. For example, in the case of 4Y-SZ powder the amount of retained tetragonal 

phase after calcination at 1150, 1350 and 1500°C was 32.5, 25.6 and 32.1%, respectively.  

In fact, by increasing the calcination temperature the degree of aggregation and crystallite size 

both increase. The former enhances the stability of the tetragonal phase, while the latter has a 

destabilizing effect. Hence, a possible explanation for the observed results in 4Y-SZ powder can be 

the stabilizing effect of the added constraint dominating the destabilizing effect of grain growth for 

the sample calcined at 1500°C. Confirming this hypothesis requires studying the evolution in 

crystallite size and degree of aggregation (or grain size and density level in the pellet form) during 

heat treatment, which is beyond the scope of this work. 

The results indicate that the stability of the tetragonal phase is a complex function of stabilizer 

content, particle packing and sintering temperature (and dwelling time). The critical grain size for the 

tetragonal to monoclinic transformation depends not only on the composition (type and content of 

stabilizing agents) but also on sample density (i.e. the order of the constraint on transforming 

particles). Furthermore, the density might also have a destabilizing effect as increased density 

facilitates grain growth.   

Equation (6) predicts the critical crystallite size for unstrained isolated crystals. However, in 

practice the critical crystallite size in the powder form may be different arising from the fact that the 

presence of hard agglomerates and/or aggregates will somewhat introduce a certain strain (also 

interfacial) energy. For pure zirconia nanopowders forming aggregates, Shukla and co-workers [8] 

found the critical diameter to be 41 nm, higher than the 10 nm calculated value for a single isolated 

particle, which is in good accordance with the reported experimental values [8,9]. Nanocrystalline 

powders are typically highly aggregated after heat treatment at high temperatures (e.g. as seen in 

Figure 2). The crystalline phase results of the studied powders in this work can thus be considered 

representative of solid ceramics with high porosities (> 50%).  

Therefore, for each individual sintering temperature, the area between the corresponding dashed 

and solid lines in Figure 5demarcates the region, where the appropriate amounts of stabilizers can be 

chosen. For a dense system, the solid lines specify the lowest limit of stabilizers, where a further 

decrease in stabilizer(s) can cause losing the tetragonal grains upon cooling. For a porous system on 

the other hand, a higher amount of stabilizer should be utilized, as the tetragonal grains in a porous 

matrix can easier undergo the transformation. The appropriate amount of the Ce-Y stabilizers can 

approximately be shown by the dashed lines (concluded from the results of samples in the powder 

state). Here, a further increase will probably over-stabilize the tetragonal grains. The developed 

transformation phase diagrams thus take all the three effective parameters (density, stabilizer content 

and sintering temperature) into account.  

From the developed transformation boundary diagrams, the slope of the dashed lines at the three 

studied temperatures is approximately equal to 2, showing that for a porous system the YO1.5 

stabilizer can be replaced with CeO2 at twice the concentration. For a dense system, the solid lines 

have slightly different slopes, i.e. 2.1, 2.4, and 2.35 for heat treating at 1150, 1350, and 1500°C, 

respectively. Accordingly, the stabilizing effect of YO1.5 can, as a rule of thumb, be considered twice 
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that of CeO2. This difference in stabilizing efficiency can possibly be explained by considering the 

different stabilizing mechanisms of these two stabilizers. 

The very small size of Zr4+ cations (0.84 Å) compared to O2- onions (1.38 Å) is not ideal for the 

8-fold oxygen coordination in fluorite structure (considering its minimum required cation-anion 

radius ratio of 0.732, vs 0.609 here). The resulting “oxygen overcrowding” around the Zr4+ cations 

makes the high temperature tetragonal and cubic phases unstable at room temperature. Doping 

aliovalent cations in the zirconia lattice can reduce this oxygen “overcrowding”, consequently 

stabilizing the tetragonal (and cubic) zirconia. The stabilizing- mechanism(s) and efficiency of the 

dopant cations differ depending on their valence state and size (in comparison to the Zr4+). Oversized 

Y3+ (1.019 Å) contribute to the stabilization by two mechanisms, first generating oxygen ion 

vacancies associated to the Zr cations, and second by expanding the cation lattice. These both 

decrease the oxygen “overcrowding” around the zirconium cations. Doping Ce4+ (having the same 

valence state as zirconium cation) does not (theoretically) create any oxygen vacancies. The 

stabilizing effect of oversized Ce4+ (0.97 Å) is thus the result of dilating the cation network reducing 

the “overcrowding” [61–64]. This is why the stabilizing efficiency of Y3+ is reported to be higher 

than Ce4+ [16], and as observed here to give similar stabilization effect for half the amount. 

From the horizontal axes of the diagrams, for a porous system the critical YO1.5 content to 

achieve the tetragonal phase in a YO1.5-doped zirconia is concluded to be approximately 4.5, 4.9 and 

5 mol% for heat treating temperatures of 1150, 1350 and 1500°C, respectively. The corresponding 

values for a dense form are approximately 3.9, 3.9, and 4.1. By defining the stabilizing ratio of YO1.5 

to CeO2 stabilizers as S (equals to the slope of the dashed and solid lines), an effective amount of 

critical stabilizer in terms of YO1.5 can be expressed as: 

(𝑌𝑂1.5)𝑐𝑟
𝑒𝑓𝑓

= 𝑌𝑂1.5 (𝑚𝑜𝑙%) + 𝐶𝑒𝑂2 (𝑚𝑜𝑙%) 𝑆⁄  (8) 

where S varies slightly with sintering temperature and density. 

 

3.5.  Grain growth in the sintered pellets 

Figure 6shows the microstructure of pellets prepared from CHFS, Cerpotech and Tosoh powders 

sintered at 1150 and 1500°C. The average grain sizes and densities of the samples are presented in 

Figure 7a. For the samples sintered at 1150°C, the 5Ce 2Y-SZ and 4Y-SZ compounds have close 

average grain sizes (127 and 139 nm, respectively) while the 2.5Ce 2.5Y-SZ compound has a larger 

average grain size (180 nm). The grain size distribution of these samples (sintered at 1150°C) is 

shown in Figure 7b. The largest grains in 4Y-SZ and 5Ce 2Y-SZ pellets are around 250 nm. As the 

two pellets were fully tetragonal (Table 3), it can be concluded that the critical grain size for the 

tetragonal to monoclinic phase transformation on cooling for the 4Y-SZ and 5Ce 2Y-SZ compounds 

at the measured densities is above 250 nm.  

The 2.5Ce 2.5Y-SZ pellet had only 30.2 % tetragonal phase. Its grain size distribution shows 

that 30.2 % of grains have a size of less than 140 nm. Therefore, one can estimate the 140 nm as a 

critical grain size for the tetragonal to monoclinic phase transformation for the 2.5Ce 2.5Y-SZ 

ceramic at the density of 81 %. This is significantly smaller than the 250 nm grain size discussed 

before. As a result, even if the 2.5Ce 2.5Y-SZ pellet had a similar grain size distribution as the 4Y-

SZ and 5Ce 2Y-SZ pellets, it would not be fully tetragonal after being sintered at 1150°C. This 

suggests that although the samples sintered at different temperatures have slightly different grain size 



 

Tetragonal phase stability map in Y-Ce TZP Khajavi et al. Ceram. Int. 2020 17 

 

distributions and densities, it is still possible to consider their phase compositions to specify the 

stability regions where a full stabilization of the tetragonal phase is expected.  

At 1500°C, the 2.5Ce 2.5Y-SZ and 5Ce 2Y-SZ pellets have close grain size distributions and 

densities (Figure 7a), despite the latter containing pure tetragonal phase while the former having 67.6 

% of the monoclinic phase. This confirms the chief effect of stabilizer concentration in stabilizing the 

tetragonal phase, where a slight change of stabilizer content change significantly the stability 

behavior.  

 

Figure 6: SEM images of 5Ce 2Y-SZ, 2.5Ce 2.5Y-SZ and 4Y-SZ pellets sintered at 1150 and 1500°C. 

 

As discussed earlier, the stability of the tetragonal phase requires the grain size of zirconia to 

remain below the critical size for the tetragonal to monoclinic phase transformation. Grain growth is 

dependent on several parameters, including the sintering method, heat-treatment profile (i.e. ramp 

rate and dwell time) and characteristics of the initial powder/green ceramic (particle size distribution, 

agglomeration, morphology, density etc.). This may explain the variation of the phase stability results 

in literature. For instance, Bravo-Leon and co-workers [26] obtained a fully tetragonal ceramic in 1.5 

mol% YO1.5 doped zirconia (1.5YSZ) sintered at 1175°C for 5 h, while Trunec and co-workers [65] 
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concluded the 1100°C as the maximum sintering temperature to avoid the tetragonal to monoclinic 

phase transformation in 1.5YSZ. Thus, definitive transformation boundaries can hardly be drawn due 

to the differences in characteristics of starting powders, ceramic processing techniques and sintering 

profiles. 

 

 

Figure 7:  (a) Average grain size (blue bars) and density (green bars) of 5Ce 2Y-SZ, 2.5Ce 2.5Y-SZ and 4Y-

SZ pellets sintered at 1150 and 1500°C, (b) grain size distribution of the pellets sintered at 1150°C. 

 

In this study, we processed nanometric powders using conventional sintering and a relatively 

common heat-treatment profile. The phase composition and grain size distribution analyses 

confirmed that the results can be appropriately used to develop phase transformation maps. Therefore, 

although this is not to be considered as definitive transformation boundary diagrams, the results of 

this study can be applied as a processing guide for stabilizer selection in Ce-Y co-doped zirconia 

ceramics while using nanometric powders and conventional sintering.  
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4.  Conclusions 

The stability of the tetragonal phase in Ce-Y co-doped nanocrystalline zirconia heat-treated at 

1150, 1350 and 1500°C was studied in this work. To elucidate the effect of particle packing (density) 

on the phase stability, samples were investigated in the form of both powders and pellets and the 

results were used to construct phase transformation boundaries for both systems. The developed 

diagrams present the compositional region of suitable stabilizer amounts resulting in a balanced 

stability and transformability of the tetragonal zirconia. It is further concluded that: 

 YO1.5 and CeO2 supplement each other in stabilizing the tetragonal phase, and for a porous 

system YO1.5 can, to achieve similar stability, be replaced with S-times the amount of CeO2. 

For the porous samples S was found to be equal to 2 for all the heat treatment temperatures. 

For materials in dense form the S values are 2.1, 2.4, and 2.35 for heat treatment temperatures 

of 1150, 1350, and 1500C, respectively. 

 Simplifying above summarized findings; as a rule of thumb, the stabilizing effect of YO1.5 can 

be considered twice that of CeO2.  

 For calcined powders, (𝑌𝑂1.5)𝑐𝑟
𝑒𝑓𝑓

 is 4.5, 4.9 and 5 mol% when sintering at 1150, 1350 and 

1500C, respectively. In a dense system the corresponding values are 3.9, 3.9, and 4.1 mol%. 

 The critical amount of stabilizer needed to stabilize a dense system is thus ca. 10 ‒ 20 % 

smaller than in a porous system. This should be borne in mind when designing the processing 

conditions for porous bodies. 

 Continuous hydrothermal flow synthesis was found to be a suitable method to synthesize fine, 

monodispersed Ce-Y co-doped particles. The synthesized particles had an average crystallite 

size of 7 to 8.5 nm and were all fully tetragonal. 
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Supporting Information 

 

Table S1. Refined lattice parameters of the as-synthesized and calcined 5.5Ce 2.5Y-SZ powder (Numbers in 

parenthesis indicate the estimated standard deviations) 

 As-synthesized 
Calcined at 

1500°C 

a (Å) 3.613 (2) 3.6147 (9) 

c (Å) 5.1918 (5) 5.1999 (2) 

 

Table S2. Interplanar spacing of different planes in as-synthesized and calcined 5.5Ce 2.5Y-SZ powder 

(calculated using the refined lattice parameters) 

Planes (hkl) d (Å) 

h k l As-synthesized 
Calcined at 

1500°C 

1 0 1 2.966 2.968 

0 0 2 2.596 2.600 

1 1 0 2.555 2.556 

1 0 2 2.108 2.111 

1 1 2 1.821 1.823 

2 0 0 1.806 1.807 

2 0 1 1.706 1.707 

1 0 3 1.561 1.563 

2 1 1 1.543 1.544 

2 0 2 1.483 1.484 

2 1 2 1.372 1.373 

0 0 4 1.298 1.300 

2 2 0 1.277 1.278 

1 0 4 1.222 1.223 

2 1 3 1.181 1.182 

3 0 1 1.173 1.174 

1 1 4 1.157 1.159 

2 2 2 1.146 1.147 

3 1 0 1.143 1.143 

 

 


