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Abstract15

We present a theoretical study focusing on exploring the possibility of controlling an-16

thropogenic and natural seismicity. We actively control the pressure of injected fluids17

using a negative-feedback control system. Our analysis is based on the spring-slider model18

for modeling the earthquake instability. We use a general Coulomb-type rheology for de-19

scribing the frictional behavior of a fault system. This model leads to a non-autonomous20

system, whose steady-state and stability are studied using a double-scale asymptotic anal-21

ysis. This approach renders the dominant order of the system time invariant. Established22

tools from the classical mathematical theory of control are used for designing a proper23

stabilizing controller. We show that the system is stabilizable by controlling fluid pres-24

sure. This is a central result for industrial operations. A stabilizing controller is then de-25

signed and tested. The controller regulates in real-time the applied pressure in order to26

assure stability, avoid unwanted seismicity and drive the system from unstable states of27

high potential energy, to stable ones of low energy. The controller performs well even in28

the absence of complete knowledge of the frictional properties of the system. Finally, we29

present two numerical examples (scenarios) and illustrate how anthropogenic and nat-30

ural earthquakes could be, in theory, prevented.31

1 Introduction32

Given the current intense human activity for conventional and unconventional en-33

ergy production (e.g. oil and gas), renewable energies (e.g. geothermal) and potential34

environmental friendly methods related to climate change (e.g. CO2 sequestration), avoid-35

ing anthropogenic seismicity is a challenging topic. Even though evidence and proof of36

the origin of reported seismicity and its relation with human activities will always have37

a degree of uncertainty, it is nowadays generally accepted that humans can induce or trig-38

ger earthquakes. Anthropogenic earthquakes are usually of small to moderate magni-39

tude, i.e. less than Mw = 4 (moment magnitude). However, they usually exceed the40

acceptable limits set by the authorities and can cause damage. Moreover, there are sev-41

eral cases where induced earthquakes had important magnitudes (no distinction is made42

here between triggered and induced earthquakes and both terms are used interchange-43

ably for simplicity). Some examples of induced earthquakes, among several others, are44

the Mw = 5.3 at Trinidad, Colorado earthquake (EQ) in US due to wastewater injec-45

tion (Rubinstein & Mahani, 2015), the Mw = 5.7 at Prague, Oklahoma EQ in US prob-46

–2–



manuscript submitted to JGR: Solid Earth

ably due to wastewater injection (Keranen, Savage, Abers, & Cochran, 2013; McGarr,47

2014) and the Mw = 3.6 at Basel geothermal project in Switzerland (Cornet, 2016; De-48

ichmann & Giardini, 2009). In fact the number and the importance of induced seismic-49

ity events were such that the United States Geological Survey (USGS) incorporated them50

in the 2014 United States National Seismic Hazard Model (Petersen et al., 2015).51

Here we address the general question of earthquake control: Is it possible to con-52

trol and avoid anthropogenic and natural earthquakes and how? We address this ques-53

tion using a mathematically rigorous framework and keeping complexity to a minimum54

degree. In particular, we investigate the conditions under which a simplified, seismogenic55

fault system can be stabilized by automatic fluid pressure adjustment/control. The con-56

cept that pore pressure increase due to fluid injection can stimulate fault slip is well es-57

tablished, nowadays (Frohlich, 2012; Healy, Rubey, Griggs, & Raleigh, 1968; Hubbert58

& Rubey, 1959; Raleigh, Healy, & Bredehoeft, 1976). However, the question of EQ con-59

trol and EQ risk mitigation is still open and challenging.60

Evidence of EQ control from field experiments is very limited. We refer to the sem-61

inal field experiment of Raleigh et al. (1976) in the 70’s in Rangely, Colorado, US, where62

earthquakes could be turned off and on by varying the pore pressure. Another example63

of EQ control is in Dale, New York, US (Fletcher & Sykes, 1977), where earthquakes of64

magnitude -1 to 1.4 formed a cluster about 650m across near the bottom of a 426m in-65

jection well. The earthquake activity was arrested when the top hole pressure dropped66

below 5 MPa. More recent field experiments involve the well monitored tests by Cappa,67

Scuderi, Collettini, Guglielmi, and Avouac (2019); Guglielmi, Cappa, Avouac, Henry, and68

Elsworth (2015) performed at 252m depth within the LSBB underground laboratory in69

France. In these field experiments aseismic slip was systematically preceding seismic slip,70

giving concrete evidence that slip can be also aseismic.71

Here we follow a theoretical approach in order to get useful insight of the control-72

lability of a fault system and the possibility of injecting fluids in a way that guarantees73

aseismic slip (definitions of the terms seismic and aseismic slip, as used here, are given74

in Section 2.2). Our analysis is based on the classical spring-slider model. We adopt a75

general frictional law that depends on slip and rate of slip. Additionally to rock elastic-76

ity (spring) we consider also radiational damping. This is performed by accounting for77

the rock viscosity through a damper in Kelvin-Voigt configuration (see also Wang (2017)).78
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We consider that the rock is saturated and that our system is well oriented for slip in79

the ambient stress-field. Both physics and geometry of the system are kept as simple as80

possible. The role of heterogeneities, of pore fluid diffusivity and special hydrological con-81

ditions are not considered in the present work. Consequently, we don’t focus on EQ rup-82

ture and propagation in details, but only on average (over the fault’s length) using the83

spring-slider model. The above mentioned aspects, as well as the observability of the real84

system and other techno-economical aspects of EQ control, exceed the scope of the present85

article and they are explored in the frame of the ongoing ERC project ”Controlling earth-86

Quakes - CoQuake” (see http://coquake.com).87

We give particular emphasis on the study of the stability of the system which is88

constantly driven by the far-field tectonic velocity. The term stability is used here only89

in the sense of Lyapunov stability (i.e. the system remains close to its equilibrium state90

under small perturbations from it; for a rigorous mathematical definition of Lyapunov91

stability we refer to (Lyapunov, 1892; Stefanou & Alevizos, 2016)). Due to the far field92

tectonic velocity and the general rheology considered for friction, the system is non-autonomous93

(i.e. it depends explicitly on time) and the classical methods of Lyapunov stability can-94

not be directly applied. For this purpose, we use a double-time scale asymptotic anal-95

ysis that a) eliminates the secular terms (i.e. growing, unbounded terms in time), b) pro-96

vides the steady-state of the system describing its slow, creep-like motion and c) allows97

to derive the (in-)stability conditions, i.e. determine when slow, creep-like slip is pos-98

sible and when an earthquake takes place. Based on these results we prove mathemat-99

ically that the system is stabilizable by fluid pressure control. This is a major result. An100

opposite conclusion would mean that EQ control is impossible, implying inevitable risks101

for on-going, large-scale industrial applications.102

Following these mathematical developments and using the classical mathematical103

theory of control we design a stabilizing controller (compensator) and we investigate the104

conditions for which the controller can stabilize the system, even when complete knowl-105

edge on the evolution of the frictional properties of the system is not available. The abil-106

ity of the controller to stabilize the system and avoid unwanted seismicity, is then illus-107

trated through two scenarios of fluid injection at 5km depth. The first one refers to an108

injection project, where an injection under constant pressure rate is planned. It is shown109

that the controller automatically stabilizes the system and avoids the anticipated earth-110

quake event of Mw = 3.8. The second scenario concerns a fault system with higher rup-111
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ture area, able to give earthquakes of Mw = 5.8. In this second scenario, we drive the112

system from its initial, high energy, unstable state to a new, stable one. This is done by113

automatically adjusting the fluid pressure such as to assure a constant slow slip rate. In114

this way no seismicity is observed and the earthquake is avoided. Finally, the robustness115

of the designed controller to successfully mitigate seismicity is challenged by perturb-116

ing the friction properties of the system.117

The paper is organized as follows. In Section 2 we present the basic modeling as-118

sumptions of the spring-slider analog and we study it using double-scale asymptotics in119

time. The steady-state motion is approximated by a power series of the orders of the slow120

time scale, for which we calculate explicitly the dominant one. The necessary and suf-121

ficient conditions for stable and unstable steady-state motion are determined. This asymp-122

totic analysis renders the dominant order of the system time invariant and allows us to123

study it further in Section 3 using the classical mathematical theory of control. The lin-124

earization of the system is investigated in paragraph 3.2 and its stabilizability in para-125

graph 3.3. A stabilizing controller is designed in paragraph 3.4. Asymptotic tracking and126

robustness of the controller are discussed next. Finally, in Section 4 we present two nu-127

merical examples, i.e. the aforementioned scenarios of EQ control.128

2 Steady-state and stability conditions for the spring-slider analog129

Consider the spring-slider model of Figure 1a. This is the classical paradigm and130

starting point for studying the dynamic instability of earthquake nucleation in a math-131

ematically simplified manner (see Burridge and Knopoff (1967); Reid (1910)). In this132

model, the block represents the mobilized rock mass, m, during an earthquake event. With133

the spring, k, we model the elastic deformation of the surrounding to the fault rock. This134

allows to account for the progressive elastic energy build-up due to the far field tectonic135

movement, δ∞. The far field tectonic movement is of the order of some cm’s per year,136

contrary to the seismic slip that can rise up to one meter per second. The coefficient of137

the elastic spring is proportional to the effective shear elastic modulus of the surround-138

ing to the fault rocks, G, and inversely proportional to the fault length, L, i.e. k ∝ G
L .139

This scaling is retrieved from elasticity theory (Palmer & Rice, 1973). With effective shear140

modulus we mean the apparent/averaged shear modulus over a region that extends at141

a distance L in the direction and perpendicular to the fault (see Figure 1b). This region142

includes the damaged area that extends from some meters to some kilometers around143
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the fault (Okubo et al., 2019). Additionally, we consider the effective viscosity of the sur-144

rounding rock, C. This viscosity is represented through an equivalent dashpot of coef-145

ficient η, connected in a Kelvin−Voigt configuration as shown in Figure 1.

Figure 1. Spring-slider analog.

146

With the term fault we mean the region of the rock system that is under pronounced147

localized shear deformation and opposes to the movement of the block, with a frictional148

force F . A fault is usually modeled as a mathematical plane due to its very small thick-149

ness, h, compared to the other characteristic lengths of the problem. Nevertheless, its150

thickness is linked with the softening response of the system, i.e. the reduction of fric-151

tion in function of slip, rate of slip and other variables related to multiphysical couplings.152

This region of extreme shearing is usually consisted of ultracataclastic materials and it153

has a complex structure (Ben-Zion & Sammis, 2003; Brodie, Fettes, Harte, & Schmid,154

2007) due to various physico-chemical phenomena that take place during pre- and co-155

seismic slip (see Anthony and Marone (2005); Rattez, Stefanou, and Sulem (2018); Rat-156

tez, Stefanou, Sulem, Veveakis, and Poulet (2018a, 2018b); Reches and Lockner (2010);157

Scuderi, Collettini, and Marone (2017); Tinti et al. (2016), among others). As a result,158

the apparent friction, F , does not depend only on the extent and the rate of slip, δ, v =159

δ̇, but also on the evolution of the microstructural network, the grain size, the presence160

and pressure of interstitial fluids, the temperature, time (state) and the reactivation of161

chemical reactions (Brantut and Sulem (2012); Veveakis, Alevizos, and Vardoulakis (2010);162

Veveakis, Stefanou, and Sulem (2013), among others).163

As far as it concerns the triggering of the dynamic instability studied here, the knowl-164

edge of the constitutive description of the apparent friction is central. Depending on the165

way that the fault’s apparent friction evolves with shearing, an earthquake can be nu-166
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cleated or arrested. The transition of the system from a potential unstable state to a sta-167

ble one can be studied mathematically.168

Let the apparent fault friction depend on δ and δ̇, i.e. F = F (δ, δ̇). The spring-

slider analog is described by the following equation:

mδ̈ = −Fr(δ, δ̇) + k(δ∞ − δ) + η(v∞ − v) (1)

where δ∞ is the far-field displacement due to the far-field velocity v∞. Notice that the169

above expression considers the dependence of friction on the degree of freedom of the sys-170

tem (slip) and its first derivative (rate of slip) and not on any internal, state variables171

(see rate and state friction laws). Nevertheless, it is often possible to eliminate these in-172

ternal variables and express friction as a function of slip and rate of slip only. Later, in173

paragraph 2.3, the apparent fault friction will depend on the fluid pressure too, which174

will allow to control seismic slip.175

It is worth emphasizing that the above equation is a non-autonomous, non-linear176

dynamic system, whose stability and steady state cannot be directly studied using the177

classical Lyapunov methods (Brauer & Nohel, 1969). Stability of this system has been178

studied in the literature by several researchers who considered it ad-hoc as autonomous179

by either neglecting the far field velocity or by applying a constant force. Nevertheless,180

this is a strong assumption that can lead, in general, to incorrect results regarding sta-181

bility (Brauer & Nohel, 1969). Here we follow a different approach that allows us to asymp-182

totically approximate the steady-state movement of the block and study its (Lyapunov)183

stability.184

Due to the fact that the far-field tectonic movement is many orders of magnitude185

slower than seismic slip (v∞ is a very small quantity) the steady-state solution of the spring-186

slider can be asymptotically approximated using the double-scale approach presented in187

the following paragraph.188

2.1 Double-scale asymptotic analysis189

Equation (1) can be written as follows:

ÿ = −a(y, ẏ) + c (εt− y) + d (ε− ẏ) , (2)

where ÿ and ẏ denote, respectively, the second and first order derivatives with respect190

to time, t, of the unknown function y = y(t), ε is a small parameter (ε � 1) and a,191
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c, d are of O(ε0). The above equation is dimensionless y expresses normalized displace-192

ment and the exact expressions of coefficients are given in Section 4 (Eq.(41)), where the193

theory is applied to specific scenarios of earthquake control.194

We introduce a new variable τ = εt, which defines a long time scale because it

is not negligible when τ is of order ε−1 or larger. In this way the system is expressed in

terms of two time scales, a slow one, τ , and a fast one, t:

ÿ = −a(y, ẏ) + c (τ − y) + d (ε− ẏ) . (3)

This double scale approach allows to seek solutions of y, which are functions of both vari-

ables t and τ , treated as independent (Bender & Orszag, 1999). It is worth emphasiz-

ing that expressing y as a function of two variables is an artifice to remove secular ef-

fects. The exact solution y(t) is a function of t alone. We assume the following pertur-

bation expansion for the unknown function y(t):

y(t) = y0(t, τ) + εy1(t, τ) + ε2y2(t, τ) +O(ε3). (4)

Using the chain rule for differentiation, we obtain:

dy(t)

dt
=
∂y0

∂t
+ ε

(
∂y0

∂τ
+
∂y1

∂t

)
+ ε2

(
∂y1

∂τ
+
∂y2

∂t

)
+O(ε3) (5)

and

d2y(t)

dt2
=
∂2y0

∂t2
+ ε

(
2
∂2y0

∂τ∂t
+
∂2y1

∂t2

)
+ ε2

(
∂2y0

∂τ2
+ 2

∂2y1

∂τ∂t
+
∂2y2

∂t2

)
+O(ε3). (6)

We assume that a(y, ẏ) can be expanded in power series in terms of ε:

a(y, ẏ) = a(y0,
∂y0

∂t
) + ε

[
∂a

∂y

∣∣∣∣
(y0,

∂y0
∂t )

y1 +
∂a

∂ẏ

∣∣∣∣
(y0,

∂y0
∂t )

(
∂y0

∂τ
+
∂y1

∂t

)]
+O(ε3). (7)

Inserting the above equations into Eq.(2) and collecting powers of ε, we obtain the

following cascade problems:

ε0 :
∂2y0

∂t2
= −a(y0,

∂y0

∂t
) + c (τ − y0)− d∂y0

∂t

ε1 :
∂2y1

∂t2
= −

(
∂a

∂y

∣∣∣∣
(y0,

∂y0
∂t )

+ c

)
y1 −

(
∂a

∂ẏ

∣∣∣∣
(y0,

∂y0
∂t )

+ d

)
∂y1

∂t
−

(
∂a

∂ẏ

∣∣∣∣
(y0,

∂y0
∂t )

+ d

)
∂y0

∂τ
− 2

∂2y0

∂t∂τ
+ d

ε2 : . . .

(8)
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2.2 Slow dynamics and Lyapunov stability195

We will first study the first of Eqs.(8). Setting q(t) = ∂y0(t,τ)
∂t and r(t) = y0(t, τ)

we obtain the following first order, non-linear system of ODE’s:

q̇ = −a(r, q) + c (τ − r)− d q

ṙ = q.

(9)

Notice that in this system, τ acts as a parameter, given that t and τ are independent

variables. The above system can be written in vectorial form ˙
¯
z =

¯
f(

¯
z), with

¯
z = (z1, z2) =

(q, r), is autonomous and its stability can be studied using the classical tools of Lyapunov

stability theory (see Brauer and Nohel (1969)). This system has an equilibrium point

(fixed point) at
¯
z∗ = (q∗, r∗) satisfying:

− a(r∗, q∗) + c (τ − r∗) = 0

q∗ = 0.

(10)

The above fixed point shows that the system has zero velocity in terms of the fast time196

variable t, i.e. q∗ =
∂y∗0 (t,τ)

∂t = 0, leading to y0 = y0(τ), which is a function of the197

slow time variable, only. It should be emphasized that the velocity in terms of the slow198

time variable τ is not zero.199

The eigenvalues, λ, of the Jacobian of
¯
f satisfy the characteristic polynomial:

λ2 + λ

(
∂a

∂z1

∣∣∣∣̄
z∗

+ d

)
+

(
∂a

∂z2

∣∣∣∣̄
z∗

+ c

)
= 0. (11)

The system is unstable when a positive eigenvalue exists and stable when all the eigen-200

values are negative. Therefore, if for any τ , exists
¯
z∗ = (0, r∗), such that ∂a

∂z2

∣∣∣∣̄
z∗

+ c <201

0 or ∂a
∂z1

∣∣∣∣̄
z∗

+d < 0, the system is unstable. The system is asymptotically stable when202

∂a
∂z2

∣∣∣∣̄
z∗

+ c > 0 and ∂a
∂z1

∣∣∣∣̄
z∗

+ d > 0. The limiting case ∂a
∂z2

∣∣∣∣̄
z∗

+ c = 0 or ∂a
∂z1

∣∣∣∣̄
z∗

+203

d = 0 is of no particular interest for the physical problem at hand and it is not stud-204

ied herein. However, we can show that in this particular case the system is stable.205

The time evolution of the stable solution of the system is y0 = y∗0 = y∗0(τ). We

call here this state steady-state, given that
∂y∗0
∂t = 0. Eq.(8).2 becomes:

∂2y1

∂t2
= −αy1 − β

∂y1

∂t
− β ∂y

∗
0

∂τ
+ d, (12)

where α = ∂a
∂y

∣∣∣∣
(y∗0 ,0)

+c, β = ∂a
∂ẏ

∣∣∣∣
(y∗0 ,0)

+d and
∂y∗0
∂τ can be determined by differentiating

Eq.(10.1) in terms of τ :

∂y∗0
∂τ

=
c

∂a
∂y |(y∗0 ,0) + c

=
c

α
. (13)
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The general solution of (12) is:

y∗1(t, τ) =
αd− βc
α2

+ C1e
1
2 (−β+

√
∆)t + C2e

1
2 (−β−

√
∆)t, (14)

where C1 and C2 are constants determined by the initial conditions of the ε1 problem206

and ∆ = β2 − 4α.207

The asymptotic approximation of the steady-state solution of the problem, y∗, is

therefore:

y∗(t) = y∗0(εt) + εy∗1(t, εt) +O(ε2). (15)

The steady state velocity, v∗(t), is approximated by the series (see Eq.(5)):

v∗(t) = ε

[
c

α
+ C1

1

2

(
−β +

√
∆
)

e
1
2 (−β+

√
∆)t + C2

1

2

(
−β −

√
∆
)

e
1
2 (−β−

√
∆)t
]

+O(ε2).

(16)

Notice that if β > 0, v∗(t) approximates asymptotically the solution v∗(t) = ε cα +208

O(ε2). Positive β is usually the case, due to the high viscosity of the surrounding to the209

fault rocks.210

2.3 Conditions for steady-state slip of the spring-slider analog211

Considering a monotonous motion (δ̇ ≥ 0) of the spring-slider system, the fric-

tion can be considered as a non-linear function of slip δ and can be expanded in power

series as done in Eq.(7). Under these assumptions, the multiscale asymptotic approach

presented above can be used for the spring-slider system. More specifically, according

to Eq.(16), the slip-rate at steady-state of the spring-slider model is given by:

vss =
v∞

1 + 1
k
∂F
∂δ

, (17)

where ∂F
∂δ is calculated at a given δ(t) = δ0 and at zero slip-rate δ̇ = 0. The above re-

lation can give a useful global estimation of velocity, if the frictional properties of the

system are known. Inversely, if the time evolution of the block velocity is known (e.g.

measured), ∂F
∂δ can be determined:

∂F

∂δ
= k

(
v∞
vss
− 1

)
. (18)

According to the previous paragraph, the steady-state slip is unstable, if and only if for

any δ0:
∂F

∂δ

∣∣∣∣
(δ0,0)

< −k or
∂F

∂δ̇

∣∣∣∣
(δ0,0)

< −η. (19)
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The first condition refers to slip-weakening and coincides with the one described in Di-212

eterich (1978) (see also Goodman (1989); Scholz (2002)). The so-called nucleation length213

(Andrews, 1976) can be retrieved setting k = A 2
π
λ+µ
λ+2µ

µ
L ,where λ and µ = G are the214

Lamé constants (µ not to be confused with the friction coefficient in the next paragraphs)215

and A the slip area. The second condition shows that the system is unstable when the216

friction is slip-rate weakening (velocity-weakening). However, for common parameters217

of frictional velocity weakening (Reches & Lockner, 2010) and viscosity of rocks (Vutukuri218

& Katsuyama, 1994) this instability condition is not critical.219

We assume Coulomb friction, F = µN ′, where N ′ is the effective normal force ap-220

plied on the block, as shown in Figure 1, and µ is the friction coefficient. The coefficient221

of friction varies from an initial value µmax (static friction coefficient), to a residual one222

µres (kinetic friction coefficient). Figure 2a shows schematically the transition between223

static and kinetic friction. This transition is made in a characteristic distance Dc and224

depends on the frictional properties of the fault system. In Figure 2b we show the in-

(a) (b)

Figure 2. Schematic representation of the evolution with slip of (a) the friction coefficient and

(b) of the Coulomb friction force with and without fluid pressure, Pf . The system becomes more

ductile (lower slope) when the fluid pressure increases.

225

fluence of N ′ on the friction force. Due to fluid injection, N ′ = N − Pf , where Pf is226

the force exerted to the block by the fluid due to fluid pressure and N the total force which227

is a fraction of the overburden load depending on the tectonic setting. Forces can be ex-228

pressed in terms of stresses by dividing by the slip area A. It is worth noticing that the229

system becomes more ductile for increasing pore pressure due to the dependence of the230

slope of the softening branch (N−Pf )∆µ
Dc

on Pf , i.e. (N−Pf ) multiplies µ. Under con-231

stant Pf , unstable, seismic slip happens when (N − Pf )∆µ
Dc

< −k, provided that the232
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applied destabilizing force from the spring is high enough. If the force exerted from the233

spring to the block, Fs = k(v∞ − vss) is not high enough (Fs < F ), then no sliding234

takes place and the system is stable. Therefore, the necessary condition for instability235

is Fs = F . In this case we say that an (existing) fault is (re)activated. However, it is236

worth emphasizing that this condition is not a sufficient one for seismic slip (unstable237

behavior). If the aforementioned instability conditions (19) are not satisfied, we have slip,238

but this a slow, aseismic, creep-like slip with velocity given by Eq.(18).239

From the physical point of view, a dynamic instability takes place if the slip weak-240

ening is higher than the negative slope of the effective elastic response of the surround-241

ing to the fault rocks or, in other words, when the elastic unloading of the surrounding242

rocks cannot be counterbalanced by fault friction. The same happens also when the fric-243

tion shows velocity weakening that cannot be counterbalanced by the viscosity of the sur-244

rounding rock mass. However, the situation changes when the fluid pressure is not con-245

stant with time Pf = Pf (t). The question addressed in the next section is exactly how246

one should control Pf (t) in order to assure stable slip.247

3 Controling instabilities248

3.1 Control system configuration249

We assume a general negative-feedback control system as depicted in Figure 3. Σ(P )250

is the system to be controlled, the spring-slider in our case, Σ(C) the controller we need251

to design, y(t), the output of the controlled system Σ(P,C), i.e. the displacement of the252

block δ(t), u(t) the input of Σ(P ), uc(t) the input of the controller Σ(C) and yc(t) its253

output. u1(t) and u2(t) are inputs to the system (e.g fluid pressure, long and short range254

perturbations, applied slip velocity etc.). We seek the controller Σ(C) that can stabi-255

lize the spring-slider model by modifying (controlling) the applied fluid pressure Pf (t)256

(input). The problem is challenging due to friction and the consequent non-linearities257

it introduces. Additionally, the pore pressure multiplies the friction coefficient and does258

not allow us to write the mathematical system in canonical forms frequently used in the259

mathematical theory of control (Vardulakis, 1991, 2012). However, the target of the present260

work is to stabilize the system and stay in the vicinity of an evolving steady-state. This261

justifies the linearization of the equations in terms of slip, slip-rate and fluid pressure.262
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Σ(P)

Σ(C)

+

+

+

-

Figure 3. Negative feedback control system Σ(P,C). Σ(P ) is the system to be controlled with

the controller Σ(C).

3.2 Linearization263

We want to stabilize the fast dynamics of the system described by Eq.(2). There-

fore, we need to assure that the system is stable in the fast time scale described by the

order ε0 in the cascade system of equations (8). Setting y0 = ỹ + y∗0 in Eq.(8).1 and

the same equation expressed at the reference state y∗0 , we obtain:

¨̃y = −a(ỹ + y∗0 , ˙̃y, φ) + a(y∗0 , 0, φ
∗
0)− cỹ − d ˙̃y, (20)

where ỹ represents a perturbation of the reference steady-state solution, φ = φ(t) the

dependence of the a(y, ẏ, φ) function in terms of an input (here the fluid pressure), φ(t),

which takes the reference value φ∗0 at steady state. Expanding a(ỹ+y∗0 , ˙̃y, φ) in power

series around ỹ = 0, ˙̃y = 0 and φ = φ∗0 (steady-state) we obtain:

¨̃y + a1
˙̃y + a0ỹ = b0u, (21)

where u(t) = φ(t) − φ∗0, a0 = α = ∂a
∂y

∣∣∣∣
(y∗0 ,0,φ

∗
0)

+ c, a1 = β = ∂a
∂ẏ

∣∣∣∣
(y∗0 ,0,φ

∗
0)

+ d and b0 =264

−∂α∂φ

∣∣∣∣
(y∗0 ,0,φ

∗
0)

. In the following, the tilde over y is dropped for simplicity in notation.265

3.3 Stabilizability266

The above equation describes the behavior of the system for small perturbations

from its steady-state. It is linear both in terms of y and the input u and its character-

istic polynomial is:

D(s) = s2 + a1s+ a0, (22)

while for the input (right-hand-side) is:

N(s) = b0. (23)
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The transfer function of the system is:

P (s) =
N(s)

D(s)
=

b0
s2 + a1s+ a0

. (24)

The poles of the system are at s0 satisfying D(s0) = 0. As expected, the poles have non-267

negative real part when α or β are negative (instability). Since the system has no de-268

coupling zeros in the closed right half complex plane, i.e. in C+
= {s ∈ C, Re(s) ≥269

0}, the system is stabilizable. Decoupling zeros are called the common roots of N(s) and270

D(s) that are not roots of its transfer function P (s). Consequently, a stabilizing com-271

pensator (stabilizing controller) can be designed. This is a major result for the appli-272

cation at hand as it shows that earthquakes can be controlled, at least from the math-273

ematical point of view.274

3.4 Proper stabilizing controller275

According to Vardulakis (1991) the system Σ(C), with transfer function C(s) =

Y (s)
X(s) ∈ Rpr(s), is a stabilizing compensator, if and only if, the characteristic polyno-

mial of the closed system Σ(P,C):

Dc(s) = X(s)D(s) + Y (s)N(s), (25)

has all its roots in C− = {s ∈ C, Re(s) < 0}. Following the procedure described in

Vardulakis (1991, 2012) it is possible to determine Y (s) and X(s) and, therefore, design

the desired stabilizing controller. Let Λ5 = {λ1, λ2, λ3, λ4, λ5} the set of roots of Dc(s)

such that λi = λ ∈ C−. The polynomials X(s) and Y (s) are determined by solving

the following linear system:

¯
ωT

¯̄
M4 =

¯
dT , (26)

where
¯̄
M4 is the Wolovich resultant of rank 6 (Antoniou & Vardulakis, 2005):

M4 =



a0 a1 1 0 0 0

b0 0 0 0 0 0

0 a0 a1 1 0 0

0 b0 0 0 0 0

0 0 a0 a1 1 0

0 0 b0 0 0 0

0 0 0 a0 a1 1

0 0 0 b0 0 0



(27)
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and

¯
dT =

[
−λ5 5λ4 −10λ3 10λ2 −5λ 1

]
(28)

¯
ωT contains the coefficients of X(s) and Y (s):

¯
ωT =

[[
χ0 ψ0

] [
χ1 ψ1

] [
χ2 ψ2

] [
χ3 ψ3

]]
(29)

such that:

X(s) = χ3s
3 + χ2s

2 + χ1s+ χ0 and Y (s) = ψ3s
3 + ψ2s

2 + ψ1s+ ψ0. (30)

The transfer function of the closed system Σ(P,C) is then:

Hcl(s) =

 P (s)
1+C(s)P (s)

P (s)C(s)
1+C(s)P (s)

− C(s)P (s)
1+C(s)P (s)

C(s)
1+C(s)P (s)

 (31)

and therefore the Laplace transform of the output of the closed system is:Y (s)

Yc(s)

 = Hcl(s)

U1(s)

U2(s)

 , (32)

where U1(s) and U2(s) are the Laplace transforms of the inputs u1(t) and u2(t), respec-276

tively (see Figure 3).277

3.5 Asymptotic tracking278

We want to control the response of the system y(t) in order to asymptotically track

a reference input u2(t) as t → ∞. In other words, we want the error function uc(t) =

u2(t)− y(t) tend to zero for t→∞. Consider the transfer function between the error

function uc(t) and the reference input u2(t):

S(s) =
Uc(s)

U2(s)
=

1

1 + C(s)P (s)
=

X(s)D(s)

X(s)D(s) + Y (s)N(s)
, (33)

where Uc(s) and U2(s) are respectively the Laplace transforms of uc(t) and u2(t). Let

u2(t) be the step function, such that u2(t) = K for t ≥ 0 and zero for t < 0 or u2(t) =

Kt for t ≥ 0 and zero for t < 0. Then according to Vardulakis (2012), if Σ(P,C) is

asymptotically stable, then limt→∞ uc(t) = 0, if and only if, C(s) has a double pole at

s = 0 or equivalently if and only if χ0 = 0 and χ1 = 0. Solving the linear system (26)

under these constraints we determine the stabilizing controller, which has the following

coefficients:

χ0 = 0, χ1 = 0, χ2 = −(a1 + 5λ), χ3 = 1

ψ0 = −λ
5

b0
, ψ1 =

5λ4

b0
, ψ2 =

5a0λ+ a0a1 − 10λ3

b0
, ψ3 =

5a1λ+ a2
1 − a0 + 10λ2

b0

(34)
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and therefore:

C(s) =
Y (s)

X(s)
=
ψ3s

3 + ψ2s
2 + ψ1s+ ψ0

(χ3s+ χ2)s2
. (35)

3.6 Approximate frictional parameters279

Knowing a priori the frictional parameters of a fault system is practically impos-

sible. Various geophysical methods can give only approximate estimations. Given a con-

troller designed as described in the previous paragraphs, we will investigate here the tol-

erance in the frictional parameters that guarantee stabilization. Let Σ(P ) be the sys-

tem for which a stabilizing controller, Σ(C), was designed and Σ(P ′) the real system that

having different frictional parameters than Σ(P ). The characteristic polynomial of the

closed system Σ(P ′, C) is:

D′c(s) = X(s)D′(s) + Y (s)N ′(s), (36)

Let also the frictional parameters of Σ(P ′) be a′0 = a0 + ∆a0 = ∂a′

∂y

∣∣∣∣
(y∗0 ,0,φ

∗
0)

+ c, a′1 =

a1+∆a1 = ∂a′

∂ẏ

∣∣∣∣
(y∗0 ,0,φ

∗
0)

+d and b′0 = b0−∆b0 = −∂α
′

∂φ

∣∣∣∣
(y∗0 ,0,φ

∗
0)

. Then Eq.(36) becomes:

D′c(s) = Dc(s) +X(s)∆D(s) + Y (s)∆N(s), (37)

where ∆D(s) = ∆a1s + ∆a0 and ∆N(s) = ∆b0. This system is stable when D′c is a280

stable polynomial, i.e. when it has all its roots in C−. The stability of the polynomial281

can be explored using the Hurwitz matrix or approximately using asymptotic methods,282

which gives the required tolerances for ∆a1, ∆a0 and ∆b0in function of λ or numerically283

for a given system.284

4 Numerical examples285

4.1 Geological setting and scaling laws286

We consider a fault system at 5km depth. This is a common depth for many energy-287

related human activities in the earth’s crust and in the range of modern drilling tech-288

nology. At 5km the normal to the fault stress is about σn = 100MPa (σn = W
A ) and289

the fluid pressure pf = 50MPa (pf =
Pf
A ), leading to an effective normal stress of σ′n =290

σn − pf = 50MPa. Notice that these values vary considerably with the tectonic con-291

figuration, i.e. they depend on whether the fault system is in extensional, compressional292

or strike-slip setting. The density of the rock is taken equal to ρ = 2500kg/m
3
, its ap-293

parent shear modulus equal to G = 30GPa and its apparent viscosity C = 105MPa s.294
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Viscosity is not a well constrained quantity. The chosen value is several orders of mag-295

nitude lower than the viscosity of rocks at ambient temperature, in order to account for296

the earth’s crust temperature gradient and the high deviatoric stresses during (pre-)seismic297

slip. We refer to Vutukuri and Katsuyama (1994) for experimental results on viscosity298

and its dependence on temperature and high stresses.299

The shear stress drop caused by an earthquake varies considerably over the rup-

ture area. This is due to material heterogeneities, fault roughness, geometrical factors,

multiphysical couplings, locking etc.. Nevertheless, interesting conclusions can be drawn

if one considers the average shear stress drop over the whole rupture area, ∆τ . Accord-

ing to seismological inversions of actual earthquakes, ∆τ varies between 0.1 and 10 MPa.

Here, we take ∆τ = 5MPa. It is worth emphasizing that this is a spatial average of the

shear stress drop over the whole area of the fault and that stress drop can be much higher

locally. According to Kanamori and Brodsky (2004) the expected (average) slip is:

D = θ−1G−1L∆τ, (38)

where θ is a geometric constant of order unity. The seismic moment is defined as M0 =

GDA, where A is the rupture area, which here is assumed circular, A ≈ L2. Consequently:

M0 = θ−1L3∆τ. (39)

The seismic magnitude Mw is defined as follows:

Mw =
2

3
log10M0 − 6.07 (M0 in Nm) (40)

From the above scaling equations it is clear that the magnitude of an earthquake is log-300

arithmically related to the length of the fault L, or in other words to the size of the fault’s301

rupture area.302

Assuming µmax = 0.6 and µres = 0.5 such that ∆τ = σ′n∆µ = 5MPa the spring-

slider model provides useful insights regarding earthquake instability. It models earth-

quake nucleation and seismic slip in terms of average quantities. However, it ignores the

spatial rupture process and propagation, which will be studied in details in a future work.

Based on field measurements, we take Dc = 10mm. Notice that this value is much higher

than the Dc measured in the laboratory (Kanamori & Brodsky, 2004). Expressing Eq.(1)

in the form of Eq.(3) we obtain:

a =
σ′n
ρL

µ(δ)
T 2

D
, c =

G

ρL2
T 2, d =

C

ρL2
T, (41)
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where T and D are, respectively, any reference/characteristic time and length scales lead-303

ing to Eq.(2) such that ε = v∞
vref
� 1, with vref = D

T , and y = δ
D . The denominators304

ρL and ρL2 are derived by considering that the mobilized mass, m, is equal to ρL3. Re-305

garding friction evolution with slip, i.e. µ(δ), two cases are explored here. The first one306

is a piece-wise linear function of δ and the second the exponential expression µ(δ) = µres

(
1− ∆µ

µres
e−

δ
Dc

)
307

(Figure 2). We neglect velocity weakening as at low slip velocities it is several orders of308

magnitude lower (Reches & Lockner, 2010) than the apparent viscosity of the surround-309

ing rock and, therefore, it does not influence instability (Eq.(12)). Finally, we assume310

a far field tectonic movement of vinf = 1cm/year.311

In Figure 4 we present the response of the spring-slider for L = 5km. The equa-312

tions of the system were integrated using Wolfram Mathematica 11.2. According to Eq.(38)313

the seismic slip is 0.83m and, as expected, it coincides with the final displacement ob-314

tained from the spring-slider model. The seismic moment is M0 = 6.25×1017Nm, which315

corresponds to an earthquake of magnitude Mw = 5.8.

10 20 30 40 50
t [sec]

0.05

0.10

0.15

0.20
v [m/sec]

Figure 4. Evolution of slip and slip velocity in function of time for a fault length equal to

5km.

316

For smaller fault length L=500m, the seismic moment is M0 = 6.25 × 1014Nm317

and the magnitude Mw = 3.8. Figure 5 shows the evolution of slip and slip-rate for this318

fault length as obtained by the spring-slider model. Piece-wise linear or exponential evo-319

lution of µ has minor influence on the response of the system.320

4.2 Scenario #1: Controlling induced seismicity321

This scenario concerns a fluid injection project in the earth’s crust. Examples of322

this scenario are deep geothermal projects, deep wasterwater disposal, CO2 sequestra-323
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Figure 5. Evolution of slip and slip velocity in function of time for a fault length equal to

500m.

tion, unconventional oil and gas production etc. (see Rubinstein and Mahani (2015)).324

Of course, in all these projects, avoiding seismic events is of paramount importance. We325

assume that the system is not on the verge of instability and that the actual shear stress326

due to the far field tectonic movement is lower than the critical one. Critical we call the327

average shear stress required to render the system unstable and provoke the earthquake328

event of Mw = 3.8 described in the previous paragraph (Figure 5). Knowing the ex-329

act state of stress in a fault system is not trivial. In this scenario we assume that the real330

(average) shear stress state along the fault system of L=500m is at 90% of the critical331

shear stress, i.e. τreal = 0.9τcrit. At this stress state the system becomes unstable when332

the fluid pressure increases for ∆pf,crit = 5 MPa. However, due to inaccurate measure-333

ments and other uncertainties, the project coordinators have considered an average shear334

stress level lower than the real one. Based on this wrong estimation, they have decided335

to inject fluid leading to a maximum fluid pressure increase of ∆pf,applied = 10 MPa,336

which is double than ∆pf,crit and will cause a considerable seismic event without any337

control system. The injection program will last one week.338

To mitigate this risk the fluid pressure increase is continuously regulated by the339

stabilizing compensator designed in section 3. We choose λ = −0.1. The connectivity340

of the controller assures negative-feedback to the fault system as shown in Figure 3. We341

use the friction parameters at δ = 0 for setting the controller (Eq.(29)). More specif-342

ically, µ = 0.6, dµ
dδ = −0.01 and a0 = −3.5 × 10−4, a1 = 1.6 × 10−1, b0 = 4.8 × 10−4

343

for L = 500 m (see Eq.(41)).344

Before the reactivation of the fault no slip is observed (locked). Nevertheless, when345

the critical fluid pressure is reached the system becomes unstable. The controller suc-346
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ceeds in stabilizing the system assuring zero slip. No seismicity is observed and the Mw =347

3.8 earthquake is prevented.348

Figure 6 depicts the total pressure change, which is automatically adjusted by the349

controller. Immediately after fault reactivation, the controller inhibits any further in-350

crease of the applied pressure, which according to the injection program should reach351

10 MPa. Then it slowly reduces the pressure in order to keep the system stable. This352

reduction is barely perceptible, but it is necessary for the stabilization of the system. No-353

tice that the far field tectonic velocity is always acting and it has a destabilizing effect354

as we are at the verge of instability. If the controller is deactivated the system will loose355

stability and an earthquake of Mw ≈ 3.8 will take place. In this case we would like to356

drive safely the system from its unstable state to a stable one. This the objective of the357

next paragraph.

2 4 6 8 10
t/toperation
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2

3

4

5
Δp f [MPa]

2 4 6 8 10
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-0.02
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0.04

0.06

0.08

0.10

Δp f
σn


Figure 6. Evolution of fluid pressure change. The total injection operation time was set to 1

week. On the left we present the fluid pressure change and on the right the fluid pressure change

normalized by the effective stress at that depth. Immediately after the fault reactivation at

∆pf = 5MPa, the controller cancels out the applied pressure and progressively reduces the fluid

pressure (suction/pumping) in order to stabilize the system, which is now unstable.

358

4.3 Scenario #2: Controlling earthquakes359

In this paragraph we present an example of active fluid pressure control for avoid-360

ing earthquakes, like the ones presented in the previous paragraphs. In particular we fo-361

cus on avoiding the Mw = 5.8 earthquake described in paragraph 4.1 (Figure 4).362

Contrary to the previous scenario, in this scenario we don’t want to avoid slip, but363

to induce it in a controllable way. Our target is to assure slow, aseismic slip such as to364
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move the system from its initial unstable state to a stable one. In this way we will dis-365

sipate in a controllable manner the energy surplus and we will avoid the sudden energy366

release that leads to earthquakes.367

The earthquake control operation is performed in a time window of ten minutes.368

The technological feasibility of such an intervention is not discussed herein. We assume369

the worst case scenario, i.e. the system is on the verge of instability. However, it is con-370

stantly controlled by the stabilizing compensator we designed in Section 3. In this sce-371

nario, we choose to make the system slip for 0.83 m, which coincides with the seismic372

slip distance of the uncontrolled system (see Figure 4). Consequently, the target veloc-373

ity that we want to apply is vc ' 8.3cm/min.374

As far it concerns the controller, we choose λ = −0.1 and we calculate its param-375

eters using the friction parameters at δ = 0 (Eq.(29)). More specifically, µ = 0.6, dµ
dδ =376

−0.01 and a0 = −4.0 × 10−5, a1 = 1.6 × 10−3, b0 = 4.8 × 10−5 for L=5km (see377

Eq.(41)).378

In Figure 7 we show the response of the controlled system by integrating the dif-379

ferential equations and connecting the controller as shown in Figure 3. We observe that380

no abrupt sliding takes place and that the system is successfully controlled (cf. Figure381

4). The seismic event is avoided.382

Figure 8 shows how the controller alters the fluid pressure from its initial hydro-383

static value in order to drive the system from its initial unstable state to a stable one384

in an aseismic way. We observe that the controller reduces the pressure (pumping, suc-385

tion), but in a non-monotonous way. In the beginning of sliding, the fluid pressure is de-386

creased rapidly reaching a minimum value of approximately ∆pf = −9 MPa. This phase387

corresponds to the unstable phase of the system (critical distance, Dc). Then the fluid388

pressure is progressively increased and when we reach the target distance of the oper-389

ation it recovers its initial hydrostatic value, i.e. ∆pf = 0 MPa. Notice that at this stage,390

the fault system is stable even in the absence of the controller (dµdδ = 0, see Eq.(19)).391

In Figure 9 we compare the kinetic energy of the controlled system with the un-392

controlled one. The kinetic energy in the controlled system is four orders of magnitude393

lower than the one developed during the seismic event. Moreover, it is practically con-394

stant during the earthquake control operation.395
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Figure 10 shows the energy dissipation at the fault. The controlled system dissi-396

pates energy under almost constant rate, which depends on the chosen operation time.397

Of course, this is not the case for the uncontrolled system where high dissipation rates398

are reported due to fast, seismic slip.399

Finally, Figure 11 illustrates the drop of the elastic energy of the system. Again,400

the controlled system manages to reduce its potential energy smoothly (linearly in this401

example) and avoid its sudden release as in the case of the uncontrolled system.402
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Figure 7. Evolution of slip (left) and slip velocity (right) in function of time normalized with

the control operation time (here 10 minutes). The earthquake event is avoided and the system is

successfully controlled.
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Figure 8. Fluid pressure change, automatically adjusted by the stabilizing controller. On the

left we present the fluid pressure change and the on the right the fluid pressure change normal-

ized by the effective stress at that depth. The fluid pressure change is not monotonous and it is

calculated in real time by the stabilizing controller.

The above simulations were performed with a predetermined friction law that fol-403

lows the exponential relation that was given in paragraph 4.1. However, it has to be em-404

phasized that the parameters of the controller were kept constant during the simulation405

and they were not updated by taking into account the exact evolution of the frictional406
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Figure 9. Comparison of the kinetic energy of the controlled system (left) with the uncon-

trolled one (right). The designed controller manages to reduce four orders of magnitude the

kinetic energy and keep it practically constant during the earthquake control operation.
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Figure 10. Comparison of energy dissipation due to friction between the controlled system

(left) and the uncontrolled one (right). In the controlled system the energy is dissipated progres-

sively, while in the uncontrolled system the energy is dissipated abruptly (earthquake).

properties. This shows that the system is controlled even if the frictional properties of407

the system are not exactly known (see paragraph 3.6). In order to explore further the408

robustness of our approach we keep the same parameters as before for the controller and409

we add a sinusoidal perturbation to the friction coefficient as shown in Figure 12. Our410

stabilizing controller manages to control the system and avoid the earthquake instabil-411

ity despite the fluctuations of the frictional properties. In Figure 13 we show the fluid412

pressure change that the controller automatically adjusts to assure stability. The sys-413

tem is driven again from its unstable state to a stable one. The perturbation in the fric-414

tion coefficient is reflected in the fluctuations of the fluid pressure.415

5 Conclusions416

The current paper presents a theoretical work focusing on exploring the possibil-417

ity of preventing earthquakes by controlling fluid injection pressure. Our analysis is based418

on the classical spring-slider model (frictional slider), which we actively stabilize. We adopt419
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Figure 11. Comparison of the elastic energy drop between the controlled (left) and uncon-

trolled (right) systems. The designed controller avoids the sudden energy release that happens

during an earthquake.
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Figure 12. Sinusoidal perturbation of the frictional coefficient.

0.2 0.4 0.6 0.8 1.0
t/toperation

-0.20

-0.15

-0.10

-0.05

Δp f
σn


0.02 0.04 0.06 0.08
t/toperation

-0.20

-0.15

-0.10

-0.05

0.00

Δp f
σn


Figure 13. Fluid pressure evolution as calculated by the stabilizing controller for the per-

turbed friction coefficient (Figure 12). The controller stabilizes the system by automatically

adjusting fluid pressure (fluctuations).

a general frictional law that accounts for slip and slip rate for the fault behavior. The420

fault is considered fully saturated and ideally oriented for slip in the ambient stress-field.421

The rocks that surround the fault are considered as a Kelvin-Voigt material.422

We describe the dynamics of the system using two time scales, i.e. a slow and a423

fast one. This scale separation technique allows to asymptotically approximate the so-424

lutions of the system as power series of a small parameter, ε, that expresses the ratio be-425

tween the fast and the slow time scales. We define as steady-state, the motion that does426
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not involve inertia effects related to the fast time scale at dominant order, ε0 (Eqs. (8)).427

This state represents the slow, creep-like, aseismic motion of the system and has a sim-428

ple mathematical expression. More precisely, it is proportional to the far field tectonic429

velocity and inversely proportional to a term that involves the first derivative of the ap-430

parent friction with respect to slip and the apparent elastic stiffness of the surrounding431

the fault rocks (see Eqs.(17) and (18)). The stability of this slow-slip motion is then in-432

vestigated using Lyapunov’s first method of stability and the conditions for which steady-433

state motion is stable are determined. Notice, that due to the far field tectonic veloc-434

ity and the general rheology considered for friction, the system is non-autonomous. With435

this double-scale methodology, we manage to alleviate the explicit dependence of the sys-436

tem on the fast time scale, rendering it time-invariant at the dominant order.437

Based on these results and the abovementioned time-invariance, the application of438

well established tools of the classical mathematical theory of control is possible. More439

specifically, control theory is used for stabilizing the system and make it remain in the440

vicinity of an evolving steady-state. This justifies the linearization of the equations in441

terms of slip, slip-rate and fluid pressure.442

We show mathematically that the system is stabilizable by controlling fluid pres-443

sure. In other words, it is possible to stabilize and control the system when it is unsta-444

ble, by appropriately adjusting the fluid pressure. This is a major result. The contrary445

would mean that earthquake control is impossible. Moreover, the opposite conclusion446

would imply that ongoing, large-scale industrial applications, involving injection of large447

quantities of fluids in the earth’s crust, have high degree of risk, which cannot be mit-448

igated.449

Assuming a general negative-feedback control system, we designed a proper sta-450

bilizing controller. By monitoring slip, the designed controller succeeds in adjusting the451

fluid pressure and assures stable, aseismic slip, even in the absence of complete knowl-452

edge of the exact frictional properties of the system (robustness). Moreover, it succeeds453

in automatically controlling the pore fluid pressure and impose a prescribed slip or slip454

velocity (asymptotic tracking). These features of the controller allow a) to mitigate the455

seismic risk related to induced seismicity and b) to drive the system from an unstable456

state of high energy to a stable one of lower energy with constant slip velocity.457
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These features are illustrated through two scenarios of earthquake control. In these458

scenarios, fluids are injected under controlled pressure at 5km depth. More specifically,459

the first scenario refers to a fictitious injection project, where injection under constant460

pressure rate was planned. It is shown that the controller automatically stabilizes the461

system and avoids the anticipated earthquake event of Mw = 3.8. In particular, the con-462

troller inhibits any further fluid pressure increase when the system enters to the unsta-463

ble regime. This is done automatically by the controller by simply monitoring slip evo-464

lution. In this way the earthquake event is avoided. As the time increases, the controller465

progressively reduces the fluid pressure by pumping, in order to prevent seismic slip. Fluid466

removal reminds us the hypothetical scheme for EQ control proposed by Raleigh et al.467

(1976) and the related experiment at Rangely, Colorado in USA. However, with our ap-468

proach, fluid pressure is automatically regulated in real-time, based on a designed negative-469

feedback control system. Consequently, more complex situations can be treated and sta-470

bility can be actively assured without prescribing the fluid pressure history in advance.471

The next scenario concerns the mitigation of a Mw = 5.8 event by imposing con-472

stant slip velocity. For simplicity we assume that we are at the verge of unstable, seis-473

mic slip. The controller reduces the fluid pressure by pumping, but this is done in a non-474

monotonous way. In the beginning of (imposed, desired) sliding, the fluid pressure is de-475

creased rapidly reaching a minimum value of approximately ∆pf = −9 MPa. This phase476

corresponds to the unstable phase of the system (slip smaller that the critical distance,477

Dc). Then, the fluid pressure is progressively increased by the controller and, finally, it478

recovers its initial hydrostatic value. At this stage, the fault system is stable. During the479

controlled injection, the kinetic energy is kept constant and it is four orders of magni-480

tude lower than the one that would develop abruptly, if the system was not controlled481

(seismic event). Regarding energy dissipation, the controller assures an almost constant482

dissipation rate, which depends on the chosen operation time. The same happens with483

the elastic energy, which is decreased smoothly over the duration of the EQ control op-484

eration. Of course, this is not the case for the uncontrolled system, where high dissipa-485

tion rates and fast elastic energy drop are observed due to fast, sudden, seismic slip. No-486

tice, that in the case of faults that are not at the verge of instability, the controller would487

increase the pore fluid pressure to enhance slip and then, once the system enters to the488

unstable regime, it would automatically reduce the pore-fluid pressure in order to sta-489

bilize the system and drive it to a stable state of lower energy, as mentioned above.490
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The above two scenarios show the ability of the designed controller to prevent earth-491

quake events. Of course, these are academic examples and intensive research is needed492

before eventual real-scale applications. Notice that both physics and geometry of the fault493

system are kept as simple as possible. The role of heterogeneities, of pore fluid diffusiv-494

ity and special hydrological conditions are not considered as well. Moreover, fault rup-495

ture and slip propagation is considered only on average over the whole fault’s length. The496

investigation of the above mentioned limitations, as well as the observability of the real497

system and other techno-economical aspects of EQ control, exceed the scope of the present498

article and they are explored in the frame of the ongoing ERC project ”Controlling earth-499

Quakes - CoQuake” (http://coquake.com).500
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