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Abstract

This paper is devoted to study the rate of convergence of the weak solutions uα of
α-regularization models to the weak solution u of the Navier-Stokes equations in the
two-dimensional periodic case, as the regularization parameter α goes to zero. More
specifically, we will consider the Leray-α, the simplified Bardina, and the modified
Leray-α models. Our aim is to improve known results in terms of convergence rates
and also to show estimates valid over long time intervals.

Key words : Rate of convergence, α-turbulence models, Navier-Stokes Equations.

2010 MSC: 76D05, 35Q30, 76F65, 76D03, 35Q30.

1 Introduction

In this work we study the rates of convergence of weak solutions of several two dimensional
α-models of turbulence to the weak solution of the Navier-Stokes equations (NSE), with
periodic boundary conditions. We work mainly in two space dimensions, even if some
remarks concerning the three dimensional case are given in Section 6. The turbulence
models we study belong to the class of Large Eddy Simulation models (LES), used to
carry out numerical simulations of turbulence flows, that cannot be performed by the NSE
because. In fact, according to Kolmogorov laws, it would require O(Red

2/4) degrees of
freedom where d = 2, 3, which is still inaccessible to modern computers, for higher (real-
life) Reynolds numbers [2, 8]. The motivation to consider the 2D case is because this
setting is appropriate to analyse models that simulate layers of shallow water in stratified
flows, such as those occurring in the ocean or in the atmosphere [7, 29].
Let L > 0 denote a given length scale, u(t,x) and p(t,x) for t > 0 and x ∈ IR2/[0, L]2 = T2,
denote the velocity and the pressure of and incompressible fluid, which satisfies the NSE,

∂tu + (u · ∇)u− ν∆u +∇p = f in (0, T )× T2,(1.1)

∇ · u = 0 in (0, T )× T2,(1.2)

u|t=0 = u0 in T2,(1.3)
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where the constant ν > 0 denotes the kinematic viscosity, u0 and f are given as the initial
velocity and the external force. The α-models aim at regularizing the nonlinear term
(u · ∇)u, and are are given by the following general abstract form

∂tuα +N(uα)− ν∆uα +∇pα = f , in (0, T )× T2,(1.4)

∇ · uα = 0, in (0, T )× T2,(1.5)

uα|t=0 = u0 in T2,(1.6)

where, for α > 0 the fields uα and pα are the filtered velocity and pressure, respectively, at
frequencies of order 1/α. The α-models under study herein are: the Leray-α, the simplified
Bardina, and the modified Leray-α models, given by

(1.7) N(uα) =


(uα · ∇)uα Leray-α (L-α),

(uα · ∇)uα Bardina model (SB),

(uα · ∇)uα Modified Leray-α (ML-α),

and the bar operator is given by solving the Helmholtz equation

(1.8) v − α2∆v = v in T2,

in the setting of periodic functions with zero mean value.
The first model Nα(v) = (v · ∇)v is due to J. Leray [27], who considered the problem in
the whole space IR3, and where v = v ∗ ρα, for a standard mollifier ρα. Note that in the
whole space it is also possible to explicitly write a Kernel Gα such that v = v ∗Gα for the
Helmholtz filter [30]. The class of α-models has been the subject of many investigations in
the last two decades, see for instance [5, 11, 12, 10, 13, 16, 17, 21, 22, 24, 25]. It is known
that the Cauchy problem has global, unique, and regular solutions, with uα at least in
L∞t H

1
x ∩ L2

tH
2
x. These solutions converge to solutions of the NSE as α→ 0. which means

that uα → u, pα → p, where (u, p) is the corresponding weak solution of the NSE, under
suitable assumptions about the data,
In this paper we will study the rate of convergence as α→ 0, namely the norm of

(1.9) e := u− uα,

in various space such as L∞t L
2
x, L2

tH
1
x, L∞t H

1
x and L2

tH
2
x.

This study is motivated by the results in Cao and Titi [6], in which the authors proved
that for all 2D α-models (1.4)-(1.7), the following L∞t L

2
x estimate holds true on a given

time interval [0, T ]

(1.10) sup
t∈[0,T ]

‖uα(t)− u(t)‖2 ≤ Cα2

(
CT

(
1 + log

(
L

2πα

))
+ C

)
∀α ≤ L

2π
,

where C is a constant and when no risk of confusion occurs, ‖ · ‖ stands for the L2-norm.
To prove the convergence rate (1.10) it is assumed that

u0 ∈ D(−Pσ∆) and f ∈ L2([0, T ],PσL2(T2)
2),

Pσ being the Leray projector. The logarithmic factor that appears in (1.10) comes from
the application of an inequality initially proved by Brézis and Gallouët in [4].
Cao-Titi’s result raises two questions:
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i) Is it possible to improve the O(α2 log(1/α)) rate, and what about the convergence
rate in stronger norms?

ii) Is it possible to prove an estimate global in time?

In this paper we positively answer to both these questions by showing that when

u0 ∈ PσH1(T2)
2 and f ∈ L2(IR+;PσL2(T2)

2),

we get an estimate uniform in time of order O(α3) in the L∞t L
2
x ∩ L2

tH
1
x norms. More

specifically we prove that for all α-models (1.4)-(1.7), it holds

(1.11) ‖e(s)‖2 + ν

∫ s

0
‖∇e‖2 dt ≤ Cα3 ∀ s ≥ 0,

where C is a time-independent constant, see Theorem 4.1 below. We also get a uniform
in time estimate in the L∞t H

1
x ∩ L2

tH
2
x norm of order O(α2) for the L-α model, and in

O(α2 log(1/α)) for SB and ML-α model, namely for all s ≥ 0, we will prove

(1.12) ‖∇e(s)‖2 + ν

∫ s

0
‖∆e‖2 dt ≤

 Cα2 for L-α,

Cα2

(
C log

(
L

2πα

)
+ C

)
for SB and ML-α.

see Theorem 4.2 below. Estimates (1.11) and (1.12) are the main results in the present
work.
Thanks to (1.11)-(1.12), we are also able to study the rates of convergence of the pressures,
by showing (see Theorem 5.1 below) that

∫ s

0
‖∇q‖2 dt ≤

Cα
5/2 for L-α ,

Cα2

(
C log

(
L

2πα

)
+ C

)
for SB and ML-α,

where C is independent of the time and q = pα − p.

Plan of the paper: The paper is organized as follows. In Section 2 we set the mathemat-
ical framework. In Section 3 we derive from energy balances uniform-in-time energy(type)
estimates for weak solutions of the NSE and for all α-models as well. This is the main
step, before investigating the rates of convergence in Section 4, where we prove the esti-
mates (1.11)-(1.12). Section 5 is devoted to study of the convergence rate for the pressure.
In Section 6, we make some additional remarks about the 3D case for which the situation
is quite different and not in the focus of the present paper.

2 Mathematical framework

In this section we set the functional spaces we are working with. We show basic properties
of the Helmholtz filter, then we carry out the Leray projection of the NSE and Leray-α on
divergence-free fields spaces. The section ends with a brief state of the art about α-models.

2.1 Function spaces

Let T2 := IR2/[0, L]2 be a 2D torus; for 1 ≤ p ≤ ∞ and m ∈ N, let Lp(T2) and Hm(T2)
denote the standard Lebesgue and Sobolev spaces on T2, respectively. The Lp(T2)-norm
is denoted by ‖ · ‖p for all 1 ≤ p ≤ ∞, except for the case p = 2 where ‖ · ‖ ≡ ‖ · ‖2.
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Boldface symbols are used for vectors, matrices, or space of vectors. We denote by Π the
set of all trigonometric polynomials on T2 with spatial zero mean, i.e.,∫

T2

φ(x) dx = 0, ∀φ ∈ Π.

Let us define
Λ :=

{
ϕ ∈ Π2 : ∇ ·ϕ = 0

}
.

As usual when studying the NSE we define the following standard Hilbert functional spaces

H := the closure of Λ in L2(T2)
2,

V := the closure of Λ in H1(T2)
2.

Let (·, ·) and ‖ · ‖ be the standard inner product and norm on H, that are

(u,v) :=

∫
T2

u · v dx and ‖u‖2 :=

∫
T2

|u|2 dx.

The inner product (u,v)V and the corresponding norm ‖u‖V on V are defined as follows

(u,v)V := (∇u,∇v) and ‖u‖V := ‖∇u‖.

In the sequel, we use the symbol Pσ to denote the Helmholtz-Leray orthogonal projec-
tion operator of L2(T2) onto H. We next consider an orthonormal basis {ϕj}j∈IN, of H
consisting of eigenfunctions of the Laplace operator

−∆ : H2(T2) ∩V −→ H,

and for m ≥ 1, Hm := span{ϕ1,ϕ2, . . . ,ϕm}.

Let A = −Pσ∆ be the Stokes operator, with domain D(A) := H2(T2) ∩ V. Then, it is
well-known (cf. [6, 17]) that:

Au = −Pσ∆u = −∆u ∀u ∈ D(A).

Let λ1 > 0 be the first eigenvalue of A, i.e., Aϕ1 = λ1ϕ1, and the above setting leads to
λ1 = (2π/L)2. By virtue of the Poincaré inequality we have

λ1‖u‖2 ≤ ‖∇u‖2 ∀u ∈ V,(2.1)

λ1‖∇u‖2 ≤ ‖Au‖2 = ‖∆u‖2 ∀u ∈ D(A).(2.2)

Then, it follows by (2.1)-(2.2) that there exist positive dimensionless constants c1, c2 such
that

c1‖Au‖ ≤ ‖u‖H2(T2) ≤ c2‖Au‖ ∀u ∈ D(A).

In the following, we will make an intensive use of the 2D-Ladyžhenskaya inequality [23]:

(2.3) ‖u‖4 ≤ C‖u‖1/2‖∇u‖1/2 ∀u ∈ V,

where C is a non-negative dimensionless constant.
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2.2 On the Helmholtz filter

The filter operator used to construct the turbulence models is the differential filter associ-
ated with the Helmholtz filter, see Germano [19], or [3, 15, 26]. Given a cut length α > 0
(which will be called the filter radius), for each u ∈ H, then u ∈ H2(T2)∩V is the unique
solution of the following Helmholtz equation (1.8). By a direct calculation, from (1.8) we
deduce

‖u− u‖ = α2‖∆u‖ ∀u ∈ H.

Moreover, we already know that the filter satisfies the following inequality, see [14]:

(2.4) ‖u‖+ α‖∇u‖+ α2‖∆u‖ ≤ C‖u‖ ∀u ∈ H,

where C is a Sobolev constant. It follows that

(2.5) ‖∇u−∇u‖ = α2‖∇∆u‖ ≤ Cα‖∆u‖ ∀u ∈ D(A).

2.3 On the Leray projection operator

Throughout the rest of the paper we assume

(2.6) u0 ∈ V and f ∈ L2(IR+; H).

In order to eliminate the pressure from the equations, we apply the Helmholtz-Leray
orthogonal projection Pσ : L2(T2)

2 → H on divergence-free fields to both the NSE and
α-models. We get the following functional equations:

(2.7)
du

dt
+ Pσ[(u · ∇)u]− ν∆u = f ,

u|t=0 = u0,

as well as

(2.8)
duα
dt

+ Pσ[N(uα)]− ν∆uα = f ,

uα|t=0 = u0,

where we used the facts that Pσf ≡ f since f ∈ H, Pσ∆u = ∆u due to the periodic setting,
and Pσ(∇p) = Pσ(∇pα) = 0. Once the velocity is calculated, the pressures p and pα are
solutions of the following Poisson equations

−∆p = ∇ · ((u · ∇)u) and −∆pα = ∇ · (N(uα)).

From now when speaking of solutions to the NSE and to α-models will only consider the
velocities, and the pressure can be associated by solving the above equations.

Remark 2.1. Thanks to the Leray-Helmholtz decomposition and for simplicity we assume
that f is divergence free. If not the case, the gradient part of f can be added to the pressure
(to obtain a modified pressure) and Pσf will replace f .

Remark 2.2. A common property of all α-models considered in the present paper is that
these models “formally” reduce to the NSE when α = 0. It can be seen directly from the
equality (1.8).
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2.4 Brief State of the art

It is well-known that in the 2D case, there exists a unique solution of the NSE, global in
time, without formation of singularities, see Temam [34, 35]. Nevertheless, this does not
resolve the computational issues of the shallow waters or of stratified flows.
The proof of the existence and uniqueness of solution of the α-models given by (1.7) can
be established by using the standard Galerkin method. The L-α model was implemented
computationally by Cheskidov-Holm-Olson-Titi [13]. Ilyin-Lunasin-Titi introduced and
studied the ML-α model in the 3D periodic case, see [22] and it was tested numerically
in [20]. However, the global existence and uniqueness for 2D can be proved in a similar
way.
The Bardina closure model of turbulence was first introduced by Bardina-Ferziger-Reynolds
in [1] to perform simulations of the atmosphere. A simplified version of the Bardina’s
model, was modeled and studied in [24, 25], then in [30] the whole space case was studied.
This model is designed by N(uα) = ∇ · (uα ⊗ uα). Cao-Lunasin-Titi proposed a variant of
this model [5], which is the one we consider in this paper and that we still call “Simplified
Bardina model” (SB).

3 A priori estimates

3.1 General Orientation

As the data are as in (2.6) it is well-known that both the NSE (1.1)-(1.3) and the α-
model (1.5)-(1.6) (for any nonlinearity N(uα) as those given in (1.7)) admit a unique
solution u such that

u ∈ L∞(IR+; V) ∩ L2(IR+; H2(T2) ∩V).

To shorten the notation in the following we set

F := ‖f‖2L2(R+;H).

In this section, we detail the L2(IR+; H2(T2)∩V) estimates to get precise constants, for the
various models. The analysis is based on 2D energy inequalities, using the Ladyžhenskaya
inequality (2.3). About the α-models, we start by estimating uα. This analysis is based
on the following identities.

(3.1) (Pσ((u · ∇)u),u) = (Pσ((u · ∇)u),∆u) = 0 ∀u ∈ D(A),

which are well-known [34] and on the extension to the L-α and the SB,

(PσN(uα),uα) = (PσN(uα),∆uα) = 0 ∀uα ∈ V.

However, the nonlinearity in the ML-α model is less favorable, since we only have

(PσN(uα),uα) = 0.

3.2 Estimates for the NSE

We recall the basic estimate for weak solutions to the two dimensional NSE.
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Lemma 3.1 (NSE). Let u0 ∈ V and f ∈ L2(R+; H). Then, the unique weak solution u
of the NSE satisfies

(3.2) ‖u(s)‖2 + ν

∫ s

0
‖∇u‖2 dt ≤ ‖u0‖2 +

F
νλ1

=: CNSE1 ∀ s ≥ 0,

and

(3.3) ‖∇u(s)‖2 + ν

∫ s

0
‖∆u‖2 dt ≤ ‖∇u0‖2 +

F
ν

=: CNSE2 ∀ s ≥ 0.

Remark 3.1. Estimate (3.2) in the previous theorem can be obtained more generally when
f ∈ L2(R+; V′). We use the condition f ∈ L2(R+; H) for both estimates (3.2) and (3.3)
for shortness.

Proof. Proofs are well-known but we reproduce them to keep precise track of the constants
and to see differences with the other models. We argue step by step, first proving (3.2).
Step 1. L2H1

x ∩L∞t L2
x estimate. Take the scalar product of the NSE (2.7) with u and use

the identity (Pσ[(u · ∇)u],u) = 0, which lead to the following estimate

(3.4)
1

2

d

dt
‖u‖2 + ν‖∇u‖2 ≤ ‖f‖‖u‖.

Using Poincaré and Young inequalities on the r.h.s (right-hand side) of (3.4) yields:

(3.5)
d

dt
‖u‖2 + ν‖∇u‖2 ≤ 1

νλ1
‖f‖2.

Integrating (3.5) on [0, s] for s ≥ 0, one has

(3.6) ‖u(s)‖2 + ν

∫ s

0
‖∇u‖2 dt ≤ ‖u0‖2 +

1

νλ1

∫ s

0
‖f‖2 dt.

Finally, the estimate (3.2) follows by (3.6) since s ≥ 0 can be chosen arbitrary.

Step 2. L2H2
x ∩ L∞t H1

x estimate. In order to prove the estimate (3.3), we take −∆u as
a test function for the NSE (2.7). As we already have said, in the 2D case periodic the
nonlinear term vanishes, cf. (3.1). By the Young inequality the term corresponding to the
body force can be estimated by

(f ,−∆u) ≤ 1

2ν
‖f‖2 +

ν

2
‖∆u‖2,

and the rest of the proof follows as for the first estimate. Thus, the proof is complete.

3.3 Estimates for the Leray-α model

We now prove a uniform estimate for weak solutions to the Leray-α model.

Lemma 3.2 (L-α). Let u0 ∈ V and f ∈ L2(R+; H). Then, the unique weak solution uα
of the L-α satisfies the following energy-type estimate.

(3.7) ‖∇uα(s)‖2 + ν

∫ s

0
‖∆uα‖2 dt ≤

CC2
L1

ν4

(
‖u0‖2 +

F
νλ1

)
+

2F
ν

=: CL ∀ s ≥ 0,

where CL1 is given in (3.11).
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Proof. For the L-α model, we recall the nonlinear term is given by

N(uα) = (uα · ∇)uα where uα − α2∆uα = uα.

We argue in 3 steps, with an intermediate step to estimate uα uniformly in time.

Step 1. L2H1
x ∩L∞t L2

x estimate of uα. Taking uα as a test function in the L-α model (2.8)
gives

d

dt
‖uα‖2 + ν‖∇uα‖2 ≤

1

νλ1
‖f‖2.

Since (Pσ[(uα · ∇)uα],uα) = 0, see [6], this leads to

(3.8) ‖uα(s)‖2 + ν

∫ s

0
‖∇uα‖2 dt ≤ ‖u0‖2 +

F
νλ1

∀ s ≥ 0.

Step 2. L2H2
x ∩ L∞t H1

x estimate of uα. Testing (2.8) by −∆uα and replacing uα by
uα − α2∆uα yield

(3.9)
d

dt

(
‖∇uα‖2 + α2‖∆uα‖2

)
+ ν‖∆uα‖2 + 2να2‖∇∆uα‖2 ≤

‖f‖2

ν
.

Here, the vanishing of the nonlinear term has been used, i.e.,

(Pσ[(uα · ∇)uα],−∆uα) = ((uα · ∇)(uα − α2∆uα),−∆uα) = 0,

which is a consequence of (3.1). Therefore, by (3.9) for all s ≥ 0

(3.10) ‖∇uα(s)‖2 + α2‖∆uα(s)‖2 + ν

∫ s

0

(
‖∆uα‖2 + 2α2‖∇∆uα‖2

)
dt ≤ CL1,

where CL1 is given by

(3.11) ‖∇u0‖2 + α2‖∆u0‖2 +
F
ν
≤ (1 + λ1)‖∇u0‖2 +

F
ν

=: CL1,

here the inequalities

‖∇u0‖ ≤ ‖∇u0‖ and α2‖∆u0‖2 ≤ ‖u0‖2,
given by (2.4) and the Poincaré inequality have been applied.

Step 3. L2H2
x ∩ L∞t H1

x estimate of uα. We test (2.8) by −∆uα which leads now to the
following equality

(3.12)
1

2

d

dt
‖∇uα‖2 + ν‖∆uα‖2 = (Pσ[(uα · ∇)uα],∆uα) + (f ,−∆uα).

The first term on the r.h.s of (3.12) can be estimated by:

(Pσ[(uα · ∇)uα],∆uα) ≤ C‖uα‖4‖∇uα‖4‖∆uα‖
≤ C‖∇uα‖‖∇uα‖1/2‖∆uα‖3/2

≤ C

ν3
‖∇uα‖4‖∇uα‖2 +

ν

4
‖∆uα‖2.(3.13)

Here we used the Hölder, 2D-Ladyžhenskaya (2.3), Sobolev, and Young inequalities, re-
spectively. From (3.12)-(3.13) one obtains

d

dt
‖∇uα‖2 + ν‖∆uα‖2 ≤

2

ν
‖f‖2 +

C

ν3
‖∇uα‖4‖∇uα‖2,

which yields

‖∇uα(s)‖2 + ν

∫ s

0
‖∆uα‖2 dt ≤

2F
ν

+
C

ν3

∫ s

0
‖∇uα‖4‖∇uα‖2 dt ∀ s ≥ 0.(3.14)

Finally, both estimates (3.8) and (3.10) are applied in (3.14) to get (3.7), which ends the
proof.
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3.4 Estimates for the simplified Bardina model

In this section we prove a uniform estimate for weak solutions to the simplified Bardina
model.

Lemma 3.3 (SB). Let u0 ∈ V and let f ∈ L2(R+; H). Then, the unique weak solution
uα of the SB model satisfies

‖∇uα(s)‖2 + ν

∫ s

0
‖∆uα‖2 dt ≤

CC2
S

ν2λ1
+

2F
ν

=: CSB ∀ s ≥ 0,

where C is a positive constant and CS is given by (3.15).

Proof. We recall that for this model, the nonlinear term is given by

N(uα) = (uα · ∇)uα,

and we will prove the global-in-time estimate in two steps, starting with bounds on uα.

Step 3. L2H2
x ∩L∞t H1

x estimate of uα. Taking −∆uα as a test function in (2.8) and using
the fact uα = uα − α2∆uα give us

d

dt

(
‖∇uα‖2 + α2‖∆uα‖2

)
+ ν‖∆uα‖2 + 2να2‖∇∆uα‖2 ≤

1

ν
‖f‖2,

where the identity (Pσ[(uα · ∇)uα],−∆uα) = 0, has been used. Thus, we get

(3.15) ‖∇uα(s)‖2 +α2‖∆uα(s)‖2 +ν

∫ s

0

(
‖∆uα‖2 + 2α2‖∇∆uα‖2

)
dt ≤ CS ∀ s ≥ 0,

where CS := CL1 as given in (3.11).

Step 2. L2H2
x ∩ L∞t H1

x estimate of uα. Taking −∆uα as test function in (2.8) we obtain

(3.16)
1

2

d

dt
‖∇uα‖2 + ν‖∆uα‖2 = (Pσ[(uα · ∇)uα],∆uα)− (f ,∆uα).

The nonlinear term on the r.h.s of (3.16) is estimated by:

(Pσ[(uα · ∇)uα],∆uα) ≤ C‖uα‖4‖∇uα‖4‖∆uα‖
≤ C‖uα‖1/2‖∇uα‖‖∆uα‖1/2‖∆uα‖

≤ C

ν
‖uα‖‖∇uα‖2‖∆uα‖+

ν

4
‖∆uα‖2.(3.17)

In the above inequalities the Hölder, 2D-Ladyžhenskaya, and Young inequalities have been
applied, respectively. The estimates (3.16)-(3.17) lead to

d

dt
‖∇uα‖2 + ν‖∆uα‖2 ≤

2

ν
‖f‖2 +

C

ν
‖uα‖‖∇uα‖2‖∆uα‖.

and by using (3.15) we get

‖∇uα(s)‖2 + ν

∫ s

0
‖∆uα‖2 dt ≤

2F
ν

+
C

ν

∫ s

0
‖uα‖‖∇uα‖2‖∆uα‖ dt

≤ 2F
ν

+
CCSB
νλ1

∫ s

0
‖∆uα‖2 dt

≤ 2F
ν

+
CC2

SB

ν2λ1
∀ s ≥ 0.

Therefore, the proof is complete.
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3.5 Estimates for the Modified Leray-α model

In this section we prove a uniform estimate for weak solutions to the modified Leray-α
model

Lemma 3.4 (ML-α). Let u0 ∈ V and let f ∈ L2(R+; H). Then, the unique weak solution
uα of the ML-α model satisfies

(3.18) ‖∇uα(t)‖2 + ν

∫ s

0
‖∆uα‖2 dt ≤

CML4

ν4
+

2F
ν

=: CMLa ∀ s ≥ 0,

where CML4 = C CML1CML2CML3 with C is a positive constant, while for i = 1, 2, 3, the
constants CMLi are given by (3.21), (3.25) and (3.30), respectively.

Proof. The nonlinear term of this model is given by

N(uα) = (uα · ∇)uα.

This case requires more care than the previous ones, since the cancellations are less fa-
vorable. We prove it into 3 steps, starting with a L2H1

x ∩ L∞t L2
x estimate of uα, then a

L2H1
x ∩ L∞t L2

x estimate of uα, to finally get the conclusion.

Step 1. L2H1
x ∩ L∞t L2

x estimate of uα. Taking uα as test function in (2.8) and replacing
uα by uα − α2∆uα we obtain

(3.19)
d

dt

(
‖uα‖2 + α2‖∇uα‖2

)
+ ν‖∇uα‖2 + 2να2‖∆uα‖2 ≤

1

νλ1
‖f‖2.

Here the fact (Pσ[(uα · ∇)uα],uα) = 0 and the Poincaré inequality have been used on the
r.h.s. Then one gets from (3.19)

(3.20) ‖uα(s)‖2 + α2‖∇uα(s)‖2 + ν

∫ s

0

(
‖∇uα‖2 + 2α2‖∆uα‖2

)
ds ≤ CML1 ∀s ≥ 0,

where as in (3.11) above CML1 is given by

(3.21) ‖u0‖2 + α2‖∇u0‖2 +
F2

νλ1
≤ (1 + λ1)‖u0‖2 +

F2

νλ1
=: CML1.

Step 2. L2H1
x ∩ L∞t L2

x estimate of uα. Taking uα as test function in (2.8) yields

(3.22)
1

2

d

dt
‖uα‖2 + ν‖∇uα‖2 = −((uα · ∇)uα,uα) + (f ,uα).

The nonlinear term on the r.h.s of (3.22) can be now estimated by

((uα · ∇)uα,uα) ≤ C‖uα‖24‖∇uα‖
≤ C‖uα‖‖∇uα‖‖∇uα‖

≤ C

ν
‖uα‖2‖∇uα‖2 +

ν

4
‖∇uα‖2.

Here we used the Hölder, 2D-Ladyžhenskaya, and Young inequalities, respectively. Using
the Young inequality for the other term on the r.h.s of (3.22) gives

(3.23)
d

dt
‖uα‖2 + ν‖∇uα‖2 ≤

2

λ1ν
‖f‖2 +

C

ν
‖uα‖2‖∇uα‖2.
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Using the estimate (3.20) leads to∫ s

0
‖uα‖2‖∇uα‖2 dt =

∫ s

0

(
‖uα‖2 + 2α2‖∇uα‖2 + α4‖∆uα‖2

)
‖∇uα‖2 dt

≤
4C2

ML1

ν
∀ s ≥ 0.(3.24)

Here, we also used the following identity

‖uα‖2 = ‖uα‖2 + 2α2‖∇uα‖2 + α4‖∆uα‖2.

Therefore, by (3.23)-(3.24) we get

(3.25) ‖uα(s)‖2 + ν

∫ s

0
‖∇uα‖2 dt ≤

2F
νλ1

+
4CC2

ML1

ν2
=: CML2 ∀ s ≥ 0.

Step 3. L2H2
x ∩ L∞t H1

x estimate of uα. We take −∆uα as test function in (2.8) to obtain

(3.26)
1

2

d

dt
‖∇uα‖2 + ν‖∆uα‖2 = (Pσ[(uα · ∇)uα],∆uα)− (f ,∆uα).

The nonlinear term can be estimated as follows

(Pσ[(uα · ∇)uα],∆uα) ≤ C‖uα‖4‖∇uα‖4‖∆uα‖2
≤ C‖uα‖1/2‖∇uα‖1/2‖∇uα‖1/2‖∆uα‖3/2

≤ C

ν3
‖uα‖2‖∇uα‖2‖∇uα‖2 +

ν

4
‖∆uα‖2,(3.27)

by using the Hölder, 2D-Ladyžhenskaya, Sobolev, and Young inequalities, respectively.
From (3.26)-(3.27) we obtain:

(3.28)
d

dt
‖∇uα‖2 + ν‖∆uα‖2 ≤

C

ν3
‖uα‖2‖∇uα‖2‖∇uα‖2 +

2

ν
‖f‖2,

and in particular

(3.29)
d

dt
‖∇uα‖2 ≤

CCML2

ν3
‖∇uα‖2‖∇uα‖2 +

2

ν
‖f‖2.

Hence, by (3.29) we obtain

(3.30) ‖∇uα(s)‖2 ≤
(
‖∇u0‖2 +

2F
ν

)
exp

{
CC2

ML2

ν4

}
=: CML3 ∀ s ≥ 0.

Together with (3.28) and (3.30) one obtains (3.18). Thus, the proof is complete also for
this model.

4 The rate of convergence of uα to u

In this section, we study the rate of convergence –in terms of α– of the weak solutions uα
of the three α-models to the weak solution u of the NSE (in some suitable norms) as α
tends to zero. We recall that, throughout this section the vector e, defined as in (1.9),
denotes the error between u and uα which are the weak solutions of the NSE (2.7) and of
one of the α-models (2.8), respectively.
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4.1 Error estimate in L2H1
x ∩ L∞t L2

x

The first main result in this section is given by the following theorem:

Theorem 4.1. Let u0 ∈ V and f ∈ L2(R+; H). Then

(4.1) ‖e(s)‖2 + ν

∫ s

0
‖∇e‖2 dt ≤ Crα3 ∀ s ≥ 0,

where Cr is given explicitly in:
(4.9) for the L-α model,

(4.11) for the SB model,

(4.12) for the ML-α model,

Proof. As the three models share some common features, in a first step we consider these
common ones, and in a second step we treat them separately to prove some specific esti-
mates.

Step 1. Common features. We subtract (2.8) from (2.7) and by multiplying e and inte-
grating by parts we get

(4.2)
1

2

d

dt
‖e‖2 + ν‖∇e‖2 = (−Pσ[(u · ∇)u] + Pσ[N(uα)], e).

We add and subtract on the r.h.s of (4.2) the term ((uα · ∇)uα, e) and then rewrite it in
the following form:

RHS = (−Pσ[(u · ∇)u] + Pσ[N(uα)], e)

= (−(u · ∇)u +N(uα), Pσ e)

= (−(u · ∇)u +N(uα), e)

= (−(u · ∇)u + (uα · ∇)uα, e) + (−(uα · ∇)uα +N(uα), e) =: I1 + I2,(4.3)

We will deal with the two terms (a common one and a residual term) on the r.h.s of (4.3)
separately. Replacing uα by u− e, the first term in (4.3) is rewritten as follows:

I1 = (−(u · ∇)u + (uα · ∇)uα, e) = (−(u · ∇)u + (uα · ∇)(u− e), e)

= (−(u · ∇)u + (uα · ∇)u, e)

= ((−e · ∇)u, e)

= ((e · ∇)e,u),

where (uα · ∇)e, e) = 0 has been used and the result is then estimated by

I1 = ((e · ∇)e,u) ≤ C‖e‖4‖∇e‖‖u‖4
≤ C‖e‖1/2‖∇e‖3/2‖u‖1/2‖∇u‖1/2

≤ C

ν3
‖u‖2‖∇u‖2‖e‖2 +

ν

4
‖∇e‖2.(4.4)

The first inequality from above is due to the Hölder inequality with the pairing (1/4, 1/2,
1/4), the second one is obtained by applying the 2D-Ladyžhenskaya inequality and the
last one comes from using the Young inequality with the pairing (1/4, 3/4).
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The residual term I2 = (−(uα · ∇)uα +N(uα), e) will be estimated for each model sepa-
rately.

Step 2. Analysis specific for the various models

L-α model. For this model the nonlinear term is given by N(uα) = (uα · ∇)uα. The
residual term is written as follows

I2 = (−(uα · ∇)uα + (uα · ∇)uα, e) = −(((uα − uα) · ∇)uα, e).

The Hölder, 2D-Ladyžhenskaya, (1.8), (2.5), Sobolev, Poincaré, and Young inequalities
are then used to get the following estimates:

I2 ≤ C‖uα − uα‖4‖∇uα‖‖e‖4
≤ C‖uα − uα‖1/2‖∇uα −∇uα‖1/2‖∇uα‖ ‖e‖1/2‖∇e‖1/2

≤
CC

1/2
L

λ
1/2
1

α3/2‖∆uα‖1/2 ‖∆uα‖1/2 ‖∇e‖

≤
CC

1/2
L

λ
1/2
1

α3/2‖∆uα‖ ‖∇e‖

≤ CCLα
3

νλ1
‖∆uα‖2 +

ν

4
‖∇e‖2.(4.5)

Notice that ‖∇uα(t)‖ in the above estimate is uniformly bounded by C
1/2
L where CL given

by Lemma 3.2. Collecting estimates (4.4) and (4.5) we obtain

(4.6)
d

dt
‖e‖2 + ν‖∇e‖2 ≤ CCLα

3

νλ1
‖∆uα‖2 +

C

ν3
‖u‖2‖∇u‖2‖e‖2.

We are now going to apply the Gronwall’s lemma for (4.6). Although the argument is
standard we still provide the details for this model, while for the other ones the details
will be skipped. Let us define

A(s) := −C
ν3

∫ s

0
‖u‖2‖∇u‖2 dt ∀ s ≥ 0,

where C is given in (4.6). Multiplying both sides of (4.6) by A(t) yields

(4.7) ‖e(s)‖2 ≤ CCLα
3

νλ1
exp{−A(s)}

∫ s

0
‖∆uα‖2 dt ∀ s ≥ 0,

where we has used the facts that A(s) ≤ 0 and e0 = 0. Thus, let us combine (4.7) with
Lemmas 3.1 and 3.2 to prove uniform bounds for the modulus of A(s) and for the integral
from the r.h.s. to obtain

(4.8) ‖e(s)‖2 ≤
CC2

Lα
3

ν2λ1
exp

{
C2
NSE1

ν4

}
=: ELα

3 ∀ s ≥ 0,

where CL and CNSE1 are given by Lemmas 3.2 and 3.1, respectively. Finally, we com-
bine (4.6) and (4.8) to get (4.1), with Cr given by

(4.9) CrL = C

(
CL
ν2

+
C2
NSE1EL
ν4

)
.
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SB model. In this case the residual term is given by

I2 = (−(uα · ∇)uα + (uα · ∇)uα, e)

= (−(uα · ∇)uα + (uα · ∇)uα − (uα · ∇)uα + (uα · ∇)uα, e)

= −(((uα − uα) · ∇)uα, e)− ((uα · ∇)(uα − uα), e)

= R1 +R2.(4.10)

The term R1 on the r.h.s of (4.10) can be handled as (4.5) in the L-α model. The second
term R2 can be estimated as in the ML-α below, observing that ‖u‖ ≤ ‖u‖. Therefore,
the constant Cr in this case has the following form

(4.11) CrSB = CrL + CrML .

ML-α model. In this case the residual term is rewritten as

R = (−(uα · ∇)uα + (uα · ∇)uα, e)

= ((uα · ∇)e,uα − uα),

and is handled precisely as in the L-α case. Then, the proof for this case follows by that
of the L-α model, with Cr given by

(4.12) CrMLa
:= C

(
CMLa

ν2
+
C2
NSE1EMLa

ν4

)
,

where CMLa is given by Lemma 3.4 and

EMLa :=
CC2

MLa

ν2λ1
exp

{
C2
NSE1

ν4

}
.

From Theorem 4.1 we have immediately the following results:

Corollary 4.1. Let u0 ∈ V and let f ∈ L2(R+; H). Then, it follows

‖e(s)‖2 + ν

∫ s

0
‖∇e‖2 dt ≤ 3Crα

3 ∀ s ≥ 0,

where e = u− uα and Cr is given by Theorem 4.1 for each α-model.

Corollary 4.2. Let u0 ∈ V and let f ∈ L2(R+; H). Then, it follows

(4.13) ‖(u− uα)(s)‖2 + ν

∫ s

0
‖∇(u− uα)‖2 dt ≤ Ccor(α2 + α3) ∀ s ≥ 0,

where Ccor is given by (4.16).
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Proof. The triangle inequality, Theorem 4.1, Lemma 3.1, relation (2.4), and Poincaré
inequality yield for all s ≥ 0

‖u− uα(s)‖2 ≤ 2
(
‖(u− uα)(s)‖2 + ‖(uα − uα)(s)‖2

)
≤ 2Crα

3 + 2α4‖∆uα(s)‖2

≤ 2Crα
3 + 2Cα2‖uα(s)‖2

≤ 2Crα
3 + 2C

CE
λ1

α2.(4.14)

Here, for each α-model CE is given by CL, CSB or CMLa in Lemmas 3.2, 3.3 and 3.4,
respectively. Moreover, Cr is given by Theorem 4.1. Similarly, we have

ν

∫ s

0
‖∇(u− uα)‖2 dt ≤ 2ν

(∫ s

0
‖∇(u− uα)‖2 dt+

∫ s

0
‖∇(uα − uα)‖2 dt

)
≤ 2Crα

3 + 2Cα2ν

∫ s

0
‖∆uα‖2 dt

≤ 2Crα
3 + 2CCEα

2 ∀ s ≥ 0.(4.15)

Thus, (4.13) follows by (4.14) and (4.15) with the constant C given by

(4.16) Ccor = 2 max{Cr, CCE , CCE/λ1}.

4.2 Error estimate in L2H2
x ∩ L∞t H1

x

We now prove convergence rates in stronger norms, at the price of weaker rates. Through-
out the rest of the paper, we assume α < L/2π. Before going on to state the results, we
start with a technical result, see [6, Prop. 4.2], that follows form a well-known result due
to Brézis and Gallouët [4].

Lemma 4.1. Let 0 ≤ α < λ
−1/2
1 = L/2π, and let uα be the weak solutions of any of

α-models considered here. Then, there exist K1 and K2 such that

(4.17) ‖uα(t)‖2∞ ≤ K1 log

(
L

2πα

)
+K2 ∀ t ≥ 0.

Proof. For the proof apply the same argument as in [6, Prop. 4.2], with the only difference
that here due to the global estimates (we derived previously) we can work on arbitrary
time intervals.

We are now in order to state the next main result in this section.

Theorem 4.2. Let α < L/2π, u0 ∈ V, f ∈ L2(R+; H), and let us define

D(s) := ‖∇e(s)‖2 + ν

∫ s

0
‖∆e‖2 dt ∀ s ≥ 0.

Then, the following estimates hold true:
1. For the L-α model

D(s) ≤ CR α2,
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where CR is given by (4.27).
2. For the SB model

D(s) ≤ CR α2 (K1 log(L/2πα) +K2 + CSB) ,

where CR given by (4.29).
3. For the ML-α model

D(s) ≤ CR α2 (K1 log(L/2πα) +K2 + CMLa) ,

where CR given by (4.34).
Here, the constants CMLa, CSB, K1, and K2 are given by Lemmas 3.4, 3.3 and 4.1,
respectively.

Proof. As before we first prove estimates valid for all models and then we pass to consider
the specific ones. Subtracting (2.8) from (2.7) and taking −∆e as a test function yields:

(4.18)
1

2

d

dt
‖∇e‖2 + ν‖∆e‖2 = (−Pσ[(u · ∇)u] + Pσ[N(uα)],−∆e).

Adding and subtracting the term ((uα · ∇)uα,−∆e) to the r.h.s of (4.18):

(4.19) RHS = (−(u · ∇)u + (uα · ∇)uα,−∆e) + (−(uα · ∇)uα +N(uα),−∆e).

By recalling the definition e = u− uα, the first term on the r.h.s of (4.19) can be split as
follows:

I1 = (−(u · ∇)u + (uα · ∇)uα,−∆e)

= (−(u · ∇)u + ((u− e) · ∇)(u− e),−∆e)

= (−(u · ∇)u + (u · ∇)u− (u · ∇)e− (e · ∇)u + (e · ∇)e,−∆e)

= ((u · ∇)e,∆e) + (e · ∇)u,∆e) =: I11 + I12,(4.20)

where the vanishing of the term ((e ·∇)e,−∆e) has been used. The first term on the r.h.s
of (4.20) is bounded by

I11 = ((u · ∇)e,∆e) ≤ C‖u‖4‖∇e‖4‖∆e‖
≤ C‖u‖1/2‖∇u‖1/2‖∇e‖1/2‖∆e‖3/2

≤ C

ν3
‖u‖2‖∇u‖2‖∇e‖2 +

ν

6
‖∆e‖2.(4.21)

In (4.21), the Hölder, 2D-Ladyžhenskaya, and Young inequalities have been applied. Sim-
ilarly, the other term on the r.h.s of (4.20) can be handled as follows:

I12 = ((e · ∇)u,∆e) ≤ C‖e‖4‖∇u‖4‖∆e‖
≤ C‖e‖1/2‖∇e‖1/2‖∇u‖1/2‖∆u‖1/2‖∆e‖

≤ C

λ
1/2
1

‖∇e‖‖∇u‖1/2‖∆u‖1/2‖∆e‖

≤ C

νλ1
‖∇e‖2‖∇u‖‖∆u‖+

ν

6
‖∆e‖2.(4.22)

Using (4.21)-(4.22) the quantity I1 in (4.20) can be bounded by

I1 ≤
(
C

ν3
‖u‖2‖∇u‖2 +

C

νλ1
‖∇u‖‖∆u‖

)
‖∇e‖2 +

ν

3
‖∆e‖2.(4.23)
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In the following, we will estimate the second term I2 from the r.h.s of (4.19), separately
for each α-model.

L-α model. The nonlinear term is given in this case by N(uα) = (uα ·∇)uα. Therefore,
the residual term I2 can be estimated as follows

I2 = (−(uα · ∇)uα + (uα · ∇)uα,−∆e)

= ((uα − uα) · ∇)uα,−∆e)

≤ C‖uα − uα‖4‖∇uα‖4‖∆e‖
≤ C‖uα − uα‖1/2‖∇uα −∇uα‖1/2‖∇uα‖1/2‖∆uα‖1/2‖∆e‖
≤ Cα‖∇uα‖‖∆uα‖‖∆e‖

≤ C

ν
α2‖∇uα‖2‖∆uα‖2 +

ν

6
‖∆e‖2

≤ CCLα
2

ν
‖∆uα‖2 +

ν

6
‖∆e‖2,(4.24)

where the Hölder, 2D-Ladyžhenskaya, (1.8)-(2.4), and Young inequalities have been ap-
plied. Moreover, CL is given by Lemma 3.2. Using estimates (4.18)-(4.24) leads to

d

dt
‖∇e‖2 + ν‖∆e‖2 ≤

(
C

ν3
‖u‖2‖∇u‖2 +

C

νλ1
‖∇u‖‖∆u‖

)
‖∇e‖2

+
CCLα

2

ν
‖∆uα‖2,(4.25)

and we can rewrite it as follows

y′(t)− g(t)y(t) ≤ h(t) ∀ t ≥ 0,

where for all t ≥ 0
y(t) := ‖∇e(t)‖2,

g(t) :=
C

ν3
‖u(t)‖2‖∇u(t)‖2 +

C

νλ1
‖∇u(t)‖‖∆u(t)‖,

h(t) :=
CCLα

2

ν
‖∆uα(t)‖2.

Therefore, since ∇e(0) = 0, an application of the Gronwall’s lemma gives

(4.26) ‖∇e(s)‖2 ≤ CCL
ν2

exp

{
C2
NSE1

ν4
+
C

1/2
NSE1C

1/2
NSE2

ν2λ1

}
α2 =: RLα

2 ∀ s ≥ 0.

Finally, combining (4.25) and (4.26) yields

‖∇e(s)‖2 + ν

∫ s

0
‖∆e‖2 dt ≤ CR α2 ∀ s ≥ 0,

where

(4.27) CR =

(
C2
NSE1

ν4
+
C

1/2
NSE1C

1/2
NSE2

ν2λ1

)
RL +

CC2
L

ν2
.
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SB model. In this case the nonlinear term is given by N(uα) = (uα · ∇)uα and adding
and subtracting the term (uα · ∇)uα lead us to

I2 = (−(uα · ∇)uα + (uα · ∇)uα,−∆e)

= (−(uα · ∇)uα + (uα · ∇)uα − (uα · ∇)uα + (uα · ∇)uα,−∆e)

=: I21 + I22.(4.28)

Here, the first term on the r.h.s of (4.28) can be handled as follows

I21 = (−(uα · ∇)uα + (uα · ∇)uα,−∆e)

= ((uα − uα) · ∇)uα,∆e),

which is similar to (4.24) in the L-α model. The other term can be rewritten as follows

I22 = (−(uα · ∇)uα + (uα · ∇)uα,−∆e)

= ((uα · ∇)(uα − uα),−∆e),

which turns out to be similar to (4.32) in the ML-α model. Therefore, the constant CR in
this case is similar as in the ML-α model and has the form

(4.29) CR =

(
C2
NSE1

ν4
+
C

1/2
NSE1C

1/2
NSE2

ν2λ1

)
RSB +

CCSB
ν2

.

Here CSB is given by Lemma 3.3 and

RSB :=
CCSB
ν2

exp

{
C2
NSE1

ν4
+
C

1/2
NSE1C

1/2
NSE2

ν2λ1

}
.

Thus, the proof is complete.

ML-α model. The nonlinear term is given now by N(uα) = (uα · ∇)uα and the residual
term can be rewritten as follows

I2 = (−(uα · ∇)uα + (uα · ∇)uα,−∆e)

= ((uα · ∇)(uα − uα),−∆e)

= (((uα − uα) · ∇)(uα − uα),−∆e) + ((uα · ∇)(uα − uα),−∆e)

=: I21 + I22.(4.30)

The first term from the r.h.s of (4.30) can be estimated by

I21 = (((uα − uα) · ∇)(uα − uα),−∆e)

≤ C‖uα − uα‖4‖∇uα −∇uα‖4‖∆e‖2
≤ C‖uα − uα‖1/2‖∇uα −∇uα‖ ‖∆uα −∆uα‖1/2‖∆e‖
≤ Cα‖∆uα‖‖∇uα‖‖∆e‖

≤ C

ν
α2‖∇uα‖2‖∆uα‖2 +

ν

12
‖∆e‖2

≤ CCMLa

ν
α2‖∆uα‖2 +

ν

12
‖∆e‖2,(4.31)
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where CMLa is given by Lemma 3.4. Next, we bound the second term on the r.h.s of (4.30)
as follows (recall in the all section we are in the case α < L/2π):

I22 = ((uα · ∇)(uα − uα),−∆e)

≤ C‖uα‖∞‖∇uα −∇uα‖‖∆e‖
≤ Cα‖uα‖∞‖∆uα‖‖∆e‖

≤ Cα2

ν
‖uα‖2∞‖∆uα‖2 +

ν

12
‖∆e‖2

≤ Cα2

ν

(
K1 log

(
L

2πα

)
+K2

)
‖∆uα‖2 +

ν

12
‖∆e‖2,(4.32)

Here, K1 and K2 are given in Lemma 4.1. Therefore,

I22 ≤
CK2α

2

ν
‖∆uα‖2 +

ν

12
‖∆e‖2 for α <

L

2π
.

Here in (4.31)-(4.32), we have used the inequalities Hölder, 2D-Ladyzhenshaya, Young and
formula (4.17) in Lemma 4.1. Putting (4.23) and (4.31)-(4.32) into the r.h.s of (4.18), we
obtain

d

dt
‖∇e‖2 + ν‖∆e‖2 ≤

(
C

ν3
‖u‖2‖∇u‖2 +

C

νλ1
‖∇u‖‖∆u‖

)
‖∇e‖2

+
Cα2

ν

(
K1 log

(
L

2πα

)
+K2 + CMLa

)
‖∆uα‖2,(4.33)

Since inequality (4.33) shares a similar structure with (4.25) then the rest of the proof
follows by that of the L-α model. The constant CR in this case is given by

(4.34) CR =

(
C2
NSE1

ν4
+
C

1/2
NSE1C

1/2
NSE2

ν2λ1

)
RMLa +

CCMLa

ν2
.

Here

RMLa :=
CCMLa

ν2
exp

{
C2
NSE1

ν4
+
C

1/2
NSE1C

1/2
NSE2

ν2λ1

}
.

Thus, the proof is complete.

From the Theorem 4.2 we can easily deduce the following corollaries for related errors.

Corollary 4.3. Let u0 ∈ V, f ∈ L2(R+; H), and let us define

E(s) := ‖∇(u− uα)(s)‖2 + ν

∫ s

0
‖∆(u− uα)‖2 dt ∀ s ≥ 0.

Then, it follows

(4.35) E(s) ≤ 2CR h(α) + 2CCEα
2 ∀ s ≥ 0,

where

h(α) =


α2 for the L-α model,

α2 (K1 log(L/2πα) +K2 + CSB) for the SB model,

α2 (K1 log(L/2πα) +K2 + CMLa) for the ML-α model.

19



Proof. The proof shares the same idea with Corollary 4.2. We start with

‖∇(u− uα)(s)‖2 ≤ 2(‖∇(u− uα)(s)‖2 + ‖∇(uα − uα)(s)‖2)
≤ 2CR h(α) + 2α4‖∇∆uα(s)‖2

≤ 2CR h(α) + 2Cα2‖∇uα(s)‖2

≤ 2CR h(α) + 2CCEα
2 ∀ s ≥ 0,(4.36)

where (2.4) has been used in the third inequality. The constant CE is defined as in
Corollary 4.2. Similarly, for all s ≥ 0

I = ν

∫ s

0
‖∆u−∆uα‖2 dt

≤ 2ν

∫ s

0
‖∆u−∆uα‖2 dt+ 2ν

∫ s

0
‖∆uα −∆uα‖2 dt

≤ 2CRh(α) + 2να4

∫ s

0
‖∆∆uα‖2 dt

≤ 2CRh(α) + 2α2ν

∫ s

0
‖∆uα‖2 dt

≤ 2CRh(α) + 2CCEα
2.(4.37)

Therefore, (4.35) follows by combining (4.36) and (4.37).

5 The rate of convergence of pα to p

In this section we focus on the order of the error of the pressure, by using the results from
the previous sections. Let p and pα be the pressures associated to the weak solutions u
and uα of the NSE (1.1)-(1.3) and all α-models (1.4)-(1.6), respectively. It will be shown
that the difference

q := p− pα
is bounded in terms of the parameter α, uniformly in time, in a suitable norm.

Theorem 5.1. Let u0 ∈ V, let f ∈ L2(R+; H), and let us define

I(s) :=

∫ s

0
‖∇q‖2 dt ∀ s ≥ 0.

Then, the following estimates hold true:
1. For for the L-α model

I(s) ≤ Cα5/2 + Cα3 ∀ s ≥ 0,

where C given by (5.5).

2. For for the SB model

I(s) ≤ Cα3 + Cα5/2(log(L/2πα) + 1)1/2 + Cα2(log(L/2πα) + 1) ∀ s ≥ 0,

where C is given by (5.9).

3. For for the ML-α model

I(s) ≤ Cα4 + Cα3 + C(α5/2 + α2)(log(L/2πα) + 1) ∀ s ≥ 0,

where C given by (5.14).
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Proof. It follows subtracting from the NSE (1.1)-(1.3) the α-model (1.4)-(1.6) that

(5.1) −∆q = ∇ · [(u · ∇)u−N(uα)] =: ∇ · g.

We are assuming that p and pα are periodic and with zero average. The vanishing of the
mean values of p and pα ensure their uniqueness (up to an arbitrary function of time).
Multiplying (5.1) by q and integrating on T2 the Cauchy-Schwarz inequality yields

(5.2) ‖∇q‖2 ≤ ‖g‖2 =

∫
T2

|(u · ∇)u−N(uα)|2 dx.

In order to estimate the error of the pressure we are led to bound the r.h.s of (5.2).
Replacing e by u− uα, adding and subtracting the term (uα · ∇)uα gives

‖g‖2 =

∫
T2

|(u · ∇)u−N(uα)|2 dx

=

∫
T2

|(u · ∇)u− (uα · ∇)uα + (uα · ∇)uα −N(uα)|2 dx

=

∫
T2

| − (e · ∇)u + (uα · ∇)e + (uα · ∇)uα −N(uα)|2 dx

≤ C
∫
T2

(
|(e · ∇)u|2 + |(uα · ∇)e|2 + |(uα · ∇)uα −N(uα)|2

)
dx.(5.3)

By (5.3) one has for all s ≥ 0:

(5.4) I(s) =

∫ s

0
‖g‖2 dt ≤ C(I1 + I2 + I3).

The estimate is given for each α-model separately.

L-α model. In this case we have N(uα) = (uα · ∇)uα. Each term on the r.h.s of (5.4)
will be estimated below. First,

I1 =

∫ s

0

∫
T2

|(e · ∇)u|2 dx dt

≤
∫ s

0
‖e‖24‖∇u‖24 dt

≤
∫ s

0
‖e‖ ‖∇e‖ ‖∇u‖ ‖∆u‖ dt

≤ C1/2
r C

1/2
NSE2 α

3/2

(∫ s

0
‖∇e‖2 dt

)1/2(∫ s

0
‖∆u‖2 dt

)1/2

≤ CrCNSE
ν

α3 ∀ s ≥ 0,

where we have used the Hölder and 2D-Ladyžhenskaya inequalities, Lemma 3.1, 4.1,
and 4.2. Next, we have

I2 =

∫ s

0

∫
T2

|(uα · ∇)e|2 dx dt

≤
∫ s

0
‖uα‖ ‖∇uα‖ ‖∇e‖ ‖∆e‖ dt

≤ CL
λ1/2

(∫ s

0
‖∇e‖2 dt

)1/2(∫ s

0
‖∆e‖2 dt

)1/2

≤
CLC

1/2
r C

1/2
R

ν
α5/2 ∀ s ≥ 0,
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here we have used the Hölder and 2D-Ladyžhenskaya inequalities, Lemma 3.2, Theo-
rems 4.1 and 4.2, respectively. Finally

I3 =

∫ s

0

∫
T2

|((uα − uα) · ∇)uα|2 dx dt

≤
∫ s

0
‖uα − uα‖ ‖∇(uα − uα)‖ ‖∇uα‖ ‖∆uα‖ dt

≤ 2CCLα
3

∫ s

0
‖∆uα‖‖∆uα‖ dt

≤
2CC

3/2
L

ν
α3 ∀ s ≥ 0,

here in addition we have used (1.8), (4.36), and Lemma 3.2. Thus the proof of the con-
vergence rate for this model follows by collecting the previous estimates

(5.5) I(s) ≤
CLC

1/2
r C

1/2
R

ν
α5/2 +

(
CrCNSE

ν
+

2CC
3/2
L

ν

)
α3 ∀ s ≥ 0.

SB model. For this model we have for all s ≥ 0

I(t) =

∫ s

0

∫
T2

|(u · ∇)u− (uα · ∇)uα + (uα · ∇)uα − (uα · ∇)uα|2 dxdt

≤ 4(I1 + I2 + I3).(5.6)

One has used the fact that uα = u − e in the second term inside the integral. Similarly,
by using Corollary 4.1 and Lemma 3.3 we get

I1 =

∫ s

0

∫
T2

|((u− uα) · ∇)u|2 dxdt

≤
∫ s

0
‖u− uα‖ ‖∇(u− uα)‖ ‖∇u‖ ‖∆u‖

≤
C

1/2
NSE2

ν
C1/2
cor (α2 + α3)1/2

(
ν

∫ s

0
‖∇(u− uα)‖2 dt

)1/2(
ν

∫ s

0
‖∆u‖2 dt

)1/2

≤ CNSE2

ν
Ccor(α

2 + α3) ∀ s ≥ 0.(5.7)

We deal with the second integral by using Lemma 3.3 and Theorem 4.1-4.2 to show

I2 =

∫ s

0

∫
T2

|(uα · ∇)e|2 dxdt

≤
∫ s

0
‖uα‖‖∇uα‖‖∇e‖‖∆e‖ dxdt

≤ CCSB

νλ
1/2
1

(
ν

∫ s

0
‖∇e‖2 dt

)1/2(
ν

∫ s

0
‖∆e‖2 dt

)1/2

≤ CCSB

νλ
1/2
1

C1/2
r C

1/2
R α5/2

(
K1 log

(
L

2πα

)
+K2 + CSB

)1/2

since α <
L

2π
,(5.8)
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Similarly, the last term can be estimated for all s ≥ 0 by

I3 =

∫ s

0

∫
T2

|(uα · ∇)(u− uα)|2 dxdt

≤
∫ s

0
‖uα‖‖∇uα‖‖∇(u− uα)‖‖∆(u− uα)‖ dt

≤
C

1/2
SB

νλ
1/2
1

(2CR h(α) + 2CCSBα
2)1/2

(
ν

∫ s

0
‖∇uα‖2 dt

)1/2(
ν

∫ s

0
‖∆(u− uα)‖2 dt

)1/2

≤ CSB

νλ
1/2
1

(2CR h(α) + 2CCSBα
2)

=
CCSB

νλ
1/2
1

[
CR α

2

(
K1 log

(
L

2πα

)
+K2 + CSB

)
+ CSBα

2

]
since α <

L

2π
.

Therefore, by the above estimates we get

(5.9)

I(s) ≤

≤ CNSE2

ν
Ccor(α

2 + α3) +
CCSB

νλ
1/2
1

C1/2
r C

1/2
R α5/2

(
K1 log

(
L

2πα

)
+K2 + CSB

)1/2

+
CCSB

νλ
1/2
1

[
CR

(
K1 log

(
L

2πα

)
+K2 + CSB

)
+ CSB

]
α2.

Thus the proof for this model is completed.

ML-α model. For this model I1 is estimated as above. We start with I2 by

I2 ≤
∫ s

0
‖uα‖ ‖∇uα‖ ‖∇e‖ ‖∆e‖ dt

≤ CMLa

λ
1/2
1

(∫ s

0
‖∇e‖2 dt

)1/2(∫ s

0
‖∆e‖2 dt

)1/2

≤
CMLaC

1/2
r C

1/2
R

ν
α5/2

(
K1 log

(
L

2πα

)
+K2 + CMLa

)1/2

,(5.10)

for all s ≥ 0. One has used the results Lemma 3.4, Theorems 4.1 and 4.2. The term I3 is
bounded by

(5.11) I3 =

∫ s

0

∫
T2

|(uα · ∇)(uα − uα)|2 dx dt ≤ 2(I31 + I32).

By (4.36) and Lemma 3.4 yield

I31 =

∫ s

0

∫
T2

|((uα − uα) · ∇)(uα − uα)|2 dx dt

≤
∫ t

0
‖uα − uα‖24 ‖∇(uα − uα)‖24 dt

≤
∫ t

0
‖uα − uα‖ ‖∇(uα − uα)‖2‖∆(uα − uα)‖ dt

≤
CC2

MLa

ν
α4 ∀ s ≥ 0.(5.12)
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The other term can be estimated for all s ≥ 0 by

I32 =

∫ s

0

∫
T2

|(uα · ∇)(uα − uα)|2 dx dt

≤
∫ s

0
‖uα‖2∞‖∇(uα − uα)‖2 dt

≤
(
K1 log

(
L

2πα

)
+K2

)
α2

∫ s

0
‖∆uα‖2 dt

≤ CMLa

ν

(
K1 log

(
L

2πα

)
+K2

)
α2,(5.13)

here Lemma 4.1 and (2.5) have been applied. There for the proof for this model is finished
by (5.10)-(5.13)

I(s) ≤ CrCNSE
ν

α3 +
CMLaC

1/2
r C

1/2
R

ν
α5/2

(
K1 log

(
L

2πα

)
+K2 + CMLa

)1/2

+
CC2

MLa

ν
α4 +

CMLa

ν

(
K1 log

(
L

2πα

)
+K2

)
α2,(5.14)

which concludes the proof.

6 The 3D case: a few additional remarks

The problem in IR3 is rather different since the solution of the NSE are not known to be
globally smooth and the available estimates for the convective term are different from those
employed in the previous sections. More specifically to the problems studied here, the rate
of convergence has been estimated in the 3D case by Chen, Guenther, Kim, Thomann,
and Waymire [9]. They proved the following estimate.∫ T

0
‖e‖ dt ≤ C(T )α.

Their analysis is carried out in the 3D periodic setting and assumes a small data condition
(such that existence and uniqueness of weak solutions u of the 3D NSE is ensured). Here u
and uα are the weak solutions of the NSE and Navier-Stokes-α, respectively, with periodic
boundary conditions.

Another result concerning the convergence rate for the same α-models of turbulence con-
sidered in the previous sections has been obtained in [14]. For both for 2D and 3D it is
proved that

sup
t∈[0,T ]

‖e(t)‖2 +

∫ T

0
‖∇e‖2 dt ≤ C(T )α2.

The result is obtained with uα(0, ·) = u0 ∈ V, f ∈ L2(0, T ; H), and under an extra
assumption that the weak solution of the 3D NSE is such that u ∈ L4(0, T ; H1(T3)). The
latter condition ensures existence and uniqueness of weak solutions. The logarithmic term
in (1.10) is removed in the results for both 2D and 3D periodic cases in [14].

This section is devoted to find out the convergence rate of weak solutions of the α-models to
that of the NSE in the 3D case. If u ∈ L4([0, T ]; H1(T3)), the standard Sobolev embedding
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implies that u ∈ L4([0, T ]; L6(T2)) which is a special case of the well-known Leray-Serrin-
Prodi (LSP) 3D uniqueness assumption, where r = 4 and s = 6, see formula (6.1) below,
see Leray [28], Prodi [31] and Serrin [33]. More specifically, that is

(6.1) u ∈ Lr([0, T ]; Ls(T2)) where
3

s
+

2

r
= 1, s ≥ 3.

It is also known, see for example Galdi [18, Definition 2.1, Theorem 4.2], that weak solu-
tions which satisfy the LSP condition are unique and regular in the set of all Leray-Hopf
weak solutions. Recently, under the conditions f ∈ L2([0, T ]; H), u0 ∈ H1(T2) and an
extra condition u ∈ L4([0, T ]; H1(T3)), the author of [14] showed that the rate of conver-
gence of weak solutions uα of the three α-models to u is O(α) for some suitable norms.
More precisely, that is

sup
t∈[0,T ]

‖e(t)‖2 + ν

∫ T

0
‖∇e‖2 dt ≤ C(T )α2,

where C is the Sobolev constant and CT is given by

(6.2) C(T ) = C1 exp

{
C

ν3

∫ T

0
‖∇u‖4 ds

}
.

here C1 = C1(u0, f , ν). On one hand, it follows that in the case u ∈ L4(R+; H1(T2)),
which satisfies (6.1), we get the error is uniformly bounded in time, i.e.,

sup
t≥0
‖e(t)‖2 + ν

∫ ∞
0
‖∇e‖2 dt ≤ C∞α2,

where

C∞ = C1 exp

{
C

ν3

∫ ∞
0
‖∇u‖4 ds

}
.

On the other hand, if a weak solution u of the NSE regular up to a time T∗ < ∞ and
cannot be smoothly extended, we say that u becomes irregular at the time T∗ (or that T∗
is an epoch of irregularity). Assume that T∗ is the first time that u becomes irregular,
see Galdi [18, Def. 6.1], then it is well-known that the H1(T3)-norm of u, ‖∇u(t)‖2 will
blow-up as t approaches T∗ from below, see for instance [18, Theorem 6.4], Leray [28] and
Scheffer [32]. More specifically, there exists ε = εT∗ > 0 small enough such that

(6.3) ‖∇u(t)‖ ≥ Cν3/4

(T∗ − t)1/4
∀ t ∈ (T∗ − ε, T∗),

where C > 0 is only depending on T2. In that case, by (6.3), we consider C(T ) in (6.2)
with T∗ − ε < T < T∗, which will also blow-up as in the following way

C(T ) = C1 exp

{
C

ν3

∫ T

0
‖∇u‖4 ds

}
≥ C1 exp

{
C

ν3

∫ T

T∗−ε
‖∇u‖4 ds

}
≥ C1 exp

{
C

∫ T

T∗−ε

1

T∗ − s
ds

}
= C1

εC

(T∗ − T )C
,

showing the effect of being T∗ an epoch of irregularity on the convergence rate.
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7 Conclusions

In this work, after assuming the not so restrictive assumptions on the data u0 ∈ V
and f ∈ L2(R+; H), we provided the rate of convergence, as α → 0+, of uα to u as
well as of pα to p. In addition our argument is tied up to the periodic case mostly
because of special properties of the Stokes operator A and of the convective term in this
setting. The extension of the results to other boundary conditions such as the Dirichlet
boundary conditions or to the Euler equations are left as future works. In the 3D case
extra-assumptions for the uniqueness of solution of the NSE are probably necessary to be
assumed, to obtain rates of convergence.

Remark 7.1. It seems to be the case that all results herein can be established when the
periodic domain T2 = IR2/[0, L]2 is replaced by the whole space R2, following the approach
developed in [30]. However, the existence and uniqueness of weak solutions of all α-models
herein needs to be studied carefully. Also this issue will be investigated in a forthcoming
work.
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