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HYDRODYNAMICS FOR SSEP WITH NON-REVERSIBLE
SLOW BOUNDARY DYNAMICS: PART I, THE CRITICAL REGIME AND BEYOND

C. ERIGNOUX, P. GONÇALVES, AND G. NAHUM

ABSTRACT. The purpose of this article is to provide a simple proof of the hydrodynamic and hydrostatic
behavior of the SSEP in contact with slowed reservoirs which inject and remove particles in a finite size
windows at the extremities of the bulk. More precisely, the reservoirs inject/remove particles at/from any
point of a window of size K placed at each extremity of the bulk and particles are injected/removed to
the first open/occupied position in that window. The hydrodynamic limit is given by the heat equation
with non-linear Robin boundary conditions or Neumann boundary conditions, the latter being in the case
when the reservoirs are too slow. The proof goes through the entropy method of [16]. We also derive
the hydrostatic limit for this model, whose proof is based on the method developed in [18] and [20]. We
observe that we do not make use of correlation estimates in none of our results.

1. INTRODUCTION

One of the intriguing questions in Statistical Physics is related to the understanding of how local
microscopic perturbations of the dynamics of a particle system, carries through its macroscopic descrip-
tion. In recent years, several articles have been dedicated to the understanding of adding a slow bond,
a slow site or a slow boundary to the most classical interacting particle system, namely, the exclusion
process. For references on this topic, we refer the reader to [13, 14, 1] and references therein, where
the hydrodynamic limit for the symmetric simple exclusion process (SSEP) with, respectively, a slow
bond, a slow site and a slow boundary was analyzed. Recently, the case of the non-simple symmet-
ric exclusion process with slow boundary has been analyzed in [15, 3, 4] and the asymmetric case in
[19]. In the studied cases mentioned above with a slow boundary, the macroscopic PDE, ends up with
boundary conditions of the type: Dirichlet, (linear) Robin, or Neumann.

In this article, motivated by deriving other types of boundary conditions, we consider the SSEP in
the discrete box {1,.. . ,N−1} coupled with slow reservoirs, placed at x =0 and x =N , whose role is to
inject and and remove particles in a window of a fixed size K ¾ 1. A particle may enter to the first free
site and leave from the first occupied site in its respective window (i.e., {1,.. .K},{N −K , . . . ,N −1}).
We control the action of the reservoirs by fixing the rates of injection/removal as proportional to N−θ .
In this article, we address here the characterization of the hydrodynamic and hydrostatic behavior for
the slowed regime θ ¾ 1, and we will consider in the second part of this article [9] the case where
θ ∈ (0,1), which requires a different set of tools. More precisely, we show that the spatial density of
particles is given by a weak solution of the heat equation with non-linear (resp. linear) Robin boundary
conditions, if θ = 1 and K ¾ 2 (resp. K = 1, in which we recover the results of [1]), and Neumann
boundary conditions, if θ > 1 for any K ¾ 1. For the case θ = 1, the irreversibility of the boundary
dynamics reflects on a non-linear macroscopic boundary evolution for K ¾ 2 and a simplified version
of this model was studied in [6]. The model where particles may enter only through the right and
leave only through the left with rates 1

2 was first introduced by De Masi et al in [6], and the reservoirs
were termed "current reservoirs", since they do not fix the value of the density at the boundary, but
its gradient. The dynamics we consider here is a generalization of the dynamics of [6] since we allow
injection and removal from both reservoirs and moreover, the rate is slowed with respect to the bulk
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dynamics. In [6], the dynamics was shown to have the Propagation of Chaos property, and that result
was obtained by providing sharp estimates on the L∞ norm of v−functions. As a consequence, the
Fick’s Law was shown to hold and the hydrostatic limit was proved in [8] and [7], respectively.

When K = 1, we are reduced to the SSEP with classical slowed reservoirs, where the hydrodynamic
and hydrostatic scenario were both investigated in [1] for θ ¾ 0 and for θ < 0, the hydrodynamic be-
havior was studied in [15]. For θ ¾ 0, in [1], Baldasso et al showed the hydrodynamic limit by the
application of the Entropy method, first presented in [16]. In their case, which corresponds here to the
case when K = 1, they were able to use an auxiliary measure which is product and given by a suitable
profile and for that reason, the entropy production at the boundaries is small enough to enable them
to show a replacement lemma at the boundaries. In the present paper, we apply a similar strategy for
θ ¾ 1, but with an extra difficulty due to the explicit correlation terms at the boundaries, which makes
us use another replacement lemma. Unfortunately, that same procedure is not possible for θ < 1 since
the comparison measure, namely, a measure close to the stationary state of the system, is quite far
from being of product type. Due to the boundary terms of the dynamics, we are not able to control the
entropy of the initial measure w.r.t. any product measure and therefore we cannot apply the entropy
method except in the case where the boundary is quite slow, that is, when θ ¾ 1. For this reason, in
the second part of this article [9], we make use of duality estimates already exploited in [10, 11] to
derive both the hydrostatic and hydrodynamic limit in the case θ ∈ (0,1).

As a consequence of the hydrodynamic limit we derive Fick’s Law. More precisely, we consider two
currents related to the system, the conservative and the non-conservative. The former counts the net
number of particles going through a bond, while the later counts the number of particles injected minus
the number of particles removed from the system through a site. Then, we associate the correspond-
ing fields and we show their convergence. This is the content of Theorem 2.8 whose proof is given in
Section 4.

Having the hydrodynamic limit proved, it is simple to obtain the hydrostatic limit, by showing that
the stationary correlations of the system vanish as the system size grows to infinity. When K = 1 that
is exactly the strategy pursued in [1]. In our case, when K ¾ 2 we do not have any information about
the stationary correlations of the system and for that reason we have to do it in a different way. There-
fore, here the hydrostatic behavior is investigated through the methods developed in [20] and [18]. In
particular, we will follow essentially [20], where the hydrostatic limit was shown for K = 1. The proof
presented in [18] is robust enough for the hydrostatic limit to follow directly from the hydrodynamic
limit when θ = 1, thus we will focus on the case θ > 1 and refer the interested reader to [18] and
references therein. Our main interest is when θ > 1, where the macroscopic evolution is governed by
a Neumann Laplacian on [0,1]. In contrast to the arguments in [1], where the hydrostatic limit was
shown through estimates on the density and correlation fields, the method in [20] is based on the study
of the system’s evolution at a subdiffusive time scale. This allows us to show replacement lemmas that,
under a different time scale, do not hold. In this sense, our results regarding the hydrostatic limit also
extend the ones obtained in [1] for θ ¾ 1 by the application of a simpler method and when correlation
estimates are not easy to obtain.

Regarding the results of the present paper, as already mentioned, the model expresses a macroscopic
phase transition from non-linear Robin to Neumann boundary conditions. In particular, we derive the
following hydrodynamic equation when θ = 1















∂tρt(u) = ∂ 2
u ρt(u), (t,u)∈ [0, T]×(0,1),

∂uρt(0) =−Dα,γρt(0), t ∈ (0, T],
∂uρt(1) = Dβ ,δρt(1), t ∈ (0, T],
ρ(0, ·) = f0(·),

(1)

whereα=(α1, . . . ,αK),β =(β1, . . . ,βK),δ=(δ1, . . . ,δK),γ=(γ1, . . . ,γK) are parameters of the boundary
dynamics and the operator Dλ,σ is defined for any vectors λ= (λ1, . . . ,λK),σ = (σ1, . . . ,σK) and f :
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[0,1]→R as

(Dλ,σ f )(u) =
K
∑

x=1

{λx (1− f (u)) f x−1(u)−σx f (u)(1− f (u))x−1}. (2)

In the case θ > 1, the non linear Robin boundary conditions are replaced with Neumann boundary
conditions







∂tρt(u) = ∂ 2
u ρt(u), (t,u)∈ [0, T]×(0,1),

∂uρt(0) = ∂uρt(1) = 0, t ∈ (0, T],
ρ(0, ·) = f0(·)

(3)

We also prove uniqueness of the weak solution of (1) in the case where the parameters satisfy suitable
conditions (cf. (H0) below).

Our results generalize those of [6] and our proof is much simpler and does not require any knowl-
edge on the decay of v-functions. Our proof relies on good estimates between the Dirichlet form and
the carré du champ operator and a few replacement lemmas which allow to control the boundary
terms. Throughout the paper we will state the results for K ¾ 2, but in some cases present the proofs
in detail for K = 2 only, since for K > 2 the techniques are exactly the same and the biggest change is
in the notation. Nevertheless, whenever required, we will state some appropriate remarks regarding
the general case K > 2. For βx = γx = 1 and δx =αx = 0 for all x ∈ {1, · · · ,K}, the uniqueness for the
Cauchy problem (1) was shown in [8]. For K = 2 with α2 = γ2 and β2 = δ2 the proof reduces to the
case of linear Robin boundary conditions, whose uniqueness problem was studied in [1].

Since we treat in [9] the case θ ∈ (0,1), the main issue left open is related to the fluctuations around
the hydrodynamic limit, for which we need to obtain very sharp estimates on the space-time correla-
tions of the system. Large deviations from the stationary state is also another challenge to look at in
the near future. Note that in order to get exact information about the stationary state of the system,
we cannot make use of the preliminary work on the matrix product ansatz of Derrida [5], since it does
not straightforwardly apply to this dynamics in general, and encompasses the case K = 1 only.

The article is divided as follows. In section 2 we present the model, the notation, the weak formu-
lation for the solution of the Cauchy problem and the main results, namely, the hydrodynamic limit
(Theorem 2.7), a law of large numbers for the current (Theorem 2.8), and the hydrostatic limit (The-
orem 2.9). In section 3 we show the hydrodynamic limit: we start presenting an heuristic proof for
finding the notion of weak solution of the PDEs, we identify the main difficulties in the proof and
we present the tools to solve them. Then we proceed with the entropy method: in Proposition 3.2
we show tightness of the sequence of empirical measures, which shows that there exists convergent
subsequences. With the assumption on the uniqueness of the solution of (1), we proceed with the
characterization of limit points. In particular, in Proposition 3.3 we show that the spatial density of
particles converges to the solution of (1). Section 4 is devoted to the proof of the law of large numbers
for the current fields associated to the system. Section 5 is devoted to the proof of the hydrostatic limit.
In the Robin case (θ = 1), we require the existence of a unique stationary solution, to which the hy-
drodynamic solution converges. These two elements are obtained in Sections 5.2 and 5.3, respectively.
In the Neumann case (θ > 1), however, any constant profile is stationary, so that we need one further
argument. We therefore show in Section 5.1 that the total mass of the system evolves in the subdiffu-
sive time scale N1+θ , and on this time scale it converges to a unique constant which determines the
stationary profile. In the appendix, we prove some technical results required throughout the proofs,
namely the replacement lemmas (Appendix A), an energy estimate (Appendix B), and the uniqueness
of the weak solution to (1) (Appendix C).

2. MODEL AND RESULTS

2.1. The microscopic model. Denote by N a scaling parameter, which will be taken to infinity later
on. For N ¾ 2 we call bulk the discrete set of points ΛN := {1,.. . ,N −1}. The exclusion process in
contact with stochastic reservoirs is a Markov process, that we denote by {ηt : t ¾ 0}, whose state
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space is ΩN := {0,1}ΛN . The configurations of the state space ΩN are denoted by η, so that for x ∈ΛN ,
η(x)=0 means that the site x is vacant while η(x)=1 means that the site x is occupied. For any fixed
K ∈N+, we define IK

− := {1,.. . ,K}, IK
+ := {N −K , . . . ,N −1}. We introduce the infinitesimal generator

LN =LN ,0+
1

NθLN ,b (4)

acting on functions f :ΩN →R by

(LN ,0 f )(η) =
N−2
∑

x=1

�

f (ηx ,x+1)− f (η)
�

and (LN ,b f )(η) = (LN ,− f )(η)+(LN ,+ f )(η)

where

(LN ,± f )(η) =
∑

x∈IK
±

c±x (η)
�

f (ηx )− f (η)
�

(5)

and for x ∈ IK
± \{1,N −1}

c−x (η) =αxη(1) · · ·η(x−1)(1−η(x))+γx (1−η(1)) · · ·(1−η(x−1))η(x),

c+x (η) = βN−x (1−η(x))η(x+1) · · ·η(N −1)+δN−xη(x)(1−η(x+1)) · · ·(1−η(N −1))
(6)

and c−1 (η) = α1(1−η(1))+γ1η(1) and c+N−1(η) = βN−1(1−η(N −1))+δN−1η(N −1). To simplify
notation, we will identify βx ≡ βN−x ,δx ≡δN−x . In the formulae above, we shortened

ηx ,y(z) =







η(z), z 6= x , y
η(y), z= x
η(x), z= y

, ηx (z) =

¨

η(z), z 6= x ,

1−η(x), z= x
, (7)

and the αi , γi , βi , δi , for i = 1,.. . ,K are fixed non-negative constants. The size K of the boundary
is considered to be a fixed constant as well. In other words, as illustrated in Figure 1, we consider a
stirring dynamics in the bulk, and at the two boundary sets IK

± , particles get created (resp. removed) at
the empty (resp. occupied) site closest to the boundary. The role of the parameter θ appearing in (4)
is to slow down (θ ¾ 0) or speed up (θ ¶ 0) the boundary dynamics relatively to the bulk dynamics. In
this article we restrict ourselves to the case θ ¾ 1 and in a companion article [9], we look at the case
0< θ < 1. Throughout the article, we therefore fix θ ¾ 1 and consider the Markov process (ηt)t¾0
with infinitesimal generator given by LN .

α3

γ1

· · ·

K1

1

· · ·

FIGURE 1. Left boundary dynamics.

2.2. Hydrodynamic equation and uniqueness. We now define the macroscopic limit of our model
and its topological setup. We denote by 〈·, ·〉µ the inner product in L2([0,1]) with respect to a measure
µ defined in [0,1] and ‖·‖L2(µ) is the corresponding norm. When µ is the Lebesgue measure we write
〈·, ·〉 and ‖·‖L2 for the corresponding norm.

Fix once and for all a finite time horizon T >0. We denote by Cm,n([0, T]×[0,1]) the set of functions
defined on [0, T]×[0,1] that are m times differentiable on the first variable and n times differentiable
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on the second variable, with continuous derivatives. For a function G := G(s,u)∈ Cm,n([0, T]×[0,1])
we denote by ∂sG its derivative with respect to the time variable s.

Now we want to define the space where the solutions of the hydrodynamic equations will live on,
namely the Sobolev space H 1 on [0,1]. For that purpose, we define the semi inner-product 〈·, ·〉1 on
the set C∞([0,1]) by 〈G,H〉1 = 〈∂uG ,∂uH〉 and the corresponding semi-norm is denoted by ‖·‖1.

Definition 2.1. The Sobolev spaceH 1 on [0,1] is the Hilbert space defined as the completion of C∞([0,1])
for the norm ‖ ·‖2H 1 := ‖ ·‖2

L2 +‖ ·‖21. Its elements elements coincide a.e. with continuous functions. The

space L2(0, T ;H 1) is the set of measurable functions f : [0, T]→H 1 such that
∫ T

0 ‖ fs‖2H 1 ds<∞.

We can now give the definition of the weak solution of the hydrodynamic equation that will be
derived for the process described above when θ ¾ 1.

Definition 2.2. Let f0 : [0,1]→ [0,1] be a measurable function, and recall from (2) the definition of the
operator Dλ,σ. We say that ρ : [0, T]×[0,1]→ [0,1] is a weak solution of the heat equation with Robin
boundary conditions (this will be obtained in the case θ = 1)















∂tρt(u) = ∂ 2
u ρt(u), (t,u)∈ [0, T]×(0,1),

∂uρt(0) =−Dα,γρt(0), t ∈ [0, T]
∂uρt(1) = Dβ ,δρt(1), t ∈ [0, T]
ρ(0, ·) = f0(·),

(8)

if the following two conditions hold:
1. ρ ∈ L2(0, T ;H 1),
2. ρ satisfies the weak formulation:

F(ρ,G, t) := 〈ρt ,Gt〉−〈 f0,G0〉−
∫ t

0
〈ρs,

�

∂ 2
u +∂s

�

Gs 〉ds

+

∫ t

0

¦

ρs(1)∂uGs(1)−ρs(0)∂uGs(0)
©

ds−
∫ t

0
Gs(1)(Dβ ,δρs)(1)ds−

∫ t

0
Gs(0)(Dα,γρs)(0)ds= 0,

(9)

for all t ∈ [0, T], any function G ∈ C1,2([0, T]×[0,1]).

We say that ρ : [0, T]×[0,1]→ [0,1] is a weak solution of the heat equation with Neumann boundary
conditions (this will be obtained in the case θ > 1)







∂tρt(u) = ∂ 2
u ρt(u), (t,u)∈ [0, T]×(0,1),

∂uρt(0) = ∂uρt(1) = 0, t ∈ [0, T]
ρ(0, ·) = f0(·),

(10)

if conditions 1. and 2. above hold, with (9) replaced by

F(ρ,G, t) := 〈ρt ,Gt〉−〈 f0,G0〉−
∫ t

0
〈ρs,

�

∂ 2
u +∂s

�

Gs ds〉+
∫ t

0

¦

ρs(1)∂uGs(1)−ρs(0)∂uGs(0)
©

ds= 0.

(11)

Throughout the present article we make the following assumption in the case θ =1 (Robin coundary
conditions),

The (finite) sequences α, γ, β and δ are non-increasing, (H0)
which ensures uniqueness of the weak solutions of equation (8):

Lemma 2.3. [Uniqueness of weak solutions] Consider the notion of weak solution introduced in Definition
2.2, and fix a measurable initial profile f0 : [0,1]→ [0,1]. Assuming (H0), the weak solution of (8) is
unique. Moreover, the weak solution of (10) is unique.

The proof of the first statement is postponed to Appendix C. The Neumann case is classical and for
that reason it is omitted, but the proof can be found in [13]. For the sake of concision, we do not recall
for each of our main results that assumption (H0) is made, however since it guarantees uniqueness of
weak solutions, this assumption is made throughout the article whenever θ = 1.
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Remark 2.4. For β = γ≡ j and δ=α≡ 0 we recover the boundary conditions of [6].

Remark 2.5. For K = 2, (8) rewrites as














∂tρt(u) = ∂ 2
u ρt(u), (t,u)∈ [0, T]×(0,1),

∂uρt(1) = β1−(β1+δ1)ρt(1)+(δ2−β2)(ρ2
t (1)−ρt(1)),

∂uρt(0) =ρt(0)(α1+γ1)−α1−(γ2−α2)(ρ2
t (0)−ρt(0)), t ∈ [0, T]

ρ(0, ·) = f0(·),

(12)

and for α2=γ2 and β2=δ2 we recover the linear Robin boundary conditions as in [1] and when α2=γ2=
β2=δ2= 0 and β1= 1−δ1=β and α1= 1−α1=α we deal with exactly the same model of [1] and we
recover their result. Further note that the weak solution of (12) when α2=γ2 and β2=δ2 (corresponding
to linear Robin boundary conditions) is shown in [1] to be unique.

2.3. Hydrodynamic limit. In this section we state the hydrodynamic limit of the process {ηtN2}t¾0.
Note the scaling factor N2 whose purpose is to accelerate the process to a diffusive time scale. Let
M+ be the space of positive measures on [0,1] with total mass bounded by 1 equipped with the weak
topology. For any configuration η∈ΩN we define the empirical measure πN (η, ·)∈M+ on [0,1] as

πN (η,du) =
1

N −1

∑

x∈ΛN

η(x)δ x
N
(du) , (13)

where δa is a Dirac mass on a ∈ [0,1]. Given the trajectory {ηtN2}t¾0 of the accelerated process, we
further introduce πN

t (du) := πN (ηtN2 ,du) the empirical measure at the macroscopic time t. Below,
and in what follows, we use the notation 〈πN

t ,G〉 to denote the integral of G w.r.t. the measure πN
t .

This notation should not be confused with the inner product in L2([0,1]). Fix T > 0 and θ ¾ 0. We
denote by PµN

the probability measure in the Skorohod space D([0, T],ΩN ) induced by the Markov
process {ηtN2}t¾0 and the initial probability measure µN and EµN

denotes the expectation w.r.t. PµN
.

Definition 2.6. We say that a sequence of probability measures {µN}N¾1 on ΩN is associated with a
profile ρ0 : [0,1]→ [0,1] if for any continuous function G : [0,1]→R and every δ> 0

lim
N→∞

µN

�

η∈ΩN :
�

�〈πN ,G〉−〈G,ρ0〉
�

�>δ
�

= 0. (14)

Our first result is the hydrodynamic limit for the process introduced above and it is stated as follows.

Theorem 2.7. Let f0 : [0,1]→ [0,1] be a measurable function and let {µN}N¾1 be a sequence of proba-
bility measures in ΩN associated with f0 in the sense of Definition 2.6. Then, for any t ∈ [0, T],

lim
N→∞
PµN

�
�

�〈πN
t ,G〉−〈G,ρt〉

�

�>δ
�

= 0,

where ρt(·) is the unique weak solution, in the sense of Definition 2.2, of (8) for θ = 1, resp. (10) for
θ > 1.

Let {QN }N¾1 be the sequence of probability measures on D([0, T],M+) induced by the Markov
process {πN

t }t¾0 and PµN
, namely QN = PµN

◦(πN )−1. To prove Theorem 2.7 we first show that the
sequence {QN}N¾1 is tight, and then prove that any of its limit points Q is concentrated on trajectories
of measures that are absolutely continuous with respect to the Lebesgue measure (this is a consequence
of the exclusion dynamics), whose density ρt(u) is the unique (cf. Lemma 2.3) weak solution of the
hydrodynamic equation. We prove Theorem 2.7 in Section 3.

2.4. Empirical currents. Our next result is a law of large numbers for the empirical currents of the
process. Let JN

t (x) denote the process that counts the flux of particles (in the accelerated process
(ηsN2)s¾0) through the bond {x , x+1} up to time t, i.e. the number of particles that jumped from the
site x to the site x+1 minus the number of particles that jumped from the site x+1 to the site x during
the time interval [0, t]. The empirical measure associated with this conservative current is defined as

JN
t :=

1
N2

N−2
∑

x=1

JN
t (x)δx/N .
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Notice the normalization factor N2 which is taking into account the diffusive time rescaling and the
space normalization. For x ∈ IK

± , we denote by KN
t (x) the non-conservative current at the site x up to

time t, that is, the number of particles that have been created minus the number of particles that have
been remove of the system at site x . The corresponding empirical measure is given by

KN
t :=

1
N

∑

x∈IK
+∪IK

−

KN
t (x)δx/N .

For a test function f we use the notation 〈JN
t , f 〉 and 〈KN

t , f 〉 to denote, respectively:

〈JN
t , f 〉 :=

1
N2

N−2
∑

x=1

JN
t (x) f (

x
N ) and 〈KN

t , f 〉 :=
1
N

∑

x∈IK
+∪IK

−

KN
t (x) f (

x
N ).

Our second main result is a law of large numbers for the current fields.

Theorem 2.8 (Law of large Numbers for the current). For any t ∈ [0, T] and f ∈ C1([0,1]),

lim
N→+∞

PµN

�

�

�

�〈JN
t , f 〉−

∫ t

0

∫ 1

0
f (u)∂uρs(u)duds

�

�

�>δ

�

= 0,

lim
N→+∞

PµN

�

�

�

�〈KN
t , f 〉−1{θ=1}

∫ t

0
f (0)(Dα,γρs)(0)+ f (1)(Dβ ,δρs)(1)ds

�

�

�>δ

�

= 0,

where ρt(·) is the unique weak solution of (8) if θ = 1 (resp. of (10) if θ > 1). In other words, writing
jN
t = JN

t +KN
t , we have that jN converges weakly to jdu, where j is a weak solution to j=−∇ρ.

This theorem is proved in Section 4.

2.5. Hydrostatic limit. For any fixed N and θ ¾ 1, the Markov process ηt is irreducible on its finite
state space ΩN , it has a unique stationary measure that we denote by µss

N . Our third main result
concerns the hydrostatic limit for the dynamics, which gives the macroscopic behavior of our model
starting from the stationary state µss

N . One important ingredient in our proof is the uniqueness of
the stationary solution of the hydrodynamic equation. In the regime θ = 1, on the other hand, to
establish the hydrostatic limit, it is sufficient to show that there is a unique stationary solution to the
hydrodynamic equation (8). In the regime θ > 1 any constant profile is a stationary solution to (10),
however under suitable assumptions, this constant can be uniquely determined as the mass m∗ to which
the microscopic system relaxes on subdiffusive timescales.

To establish the different uniqueness results above, we will need in the two cases (θ = 1 and θ > 1)
further assumptions. For this reason, we introduce

δ1 ¶α1 and β1 ¶ γ1, (H1)

and
α+β and γ+δ are non increasing. (H2)

We are now ready to state our third main result.

Theorem 2.9. For θ = 1, assuming (H1) there exists a unique stationary solution ρ∗ of (8), and µss
N is

associated with it in the sense of Definition 2.6, i.e.

lim
N→∞

µss
N

�
�

�〈πN ,G〉−〈G,ρ∗〉
�

�>δ
�

= 0.

For θ > 1, assuming (H2) there exists a unique constant m∗ ∈ [0,1], such that µss
N is associated with the

constant profile ρ∗ ≡m∗.

Remark 2.10 (On assumptions (H1) and (H2)). Assumption (H1) is used in the case θ =1 to guarantee
uniqueness of the stationary solution. Assumption (H2) is used for θ > 1 to prove convergence of the mass
of the system to a defined constant. As we will see through the article, one could weaken these assumptions,
yet we elected to settle for assumptions (H1) and (H2) to provide the reader with a working case, since
finding optimal bounds for both of the cases is a non-trivial algebraic problem that goes beyond the scope
of this article.
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The proof of Theorem 2.9 is the purpose of Section 5.

3. PROOF OF THEOREM 2.7

In this section we present the proof of the hydrodynamic limit and we start by giving an heuris-
tic argument in order to deduce the notion of weak solution given in Definition 2.2. To simplify the
exposition we present the proof for the case K =2 but emphasize that the general case follows straight-
forwardly.

3.1. Heuristic argument. We start by briefly outlining the argument before detailing the relevant
steps of the proof in Section 3.3. Let us fix a test function G ∈ C1,2([0, T]× [0,1]). Following from
Dynkin’s formula and simple computations,

M N
t (G) := 〈π

N
t ,Gt〉−〈πN

0 ,G0〉−
∫ t

0
〈πN

s ,(∂s+N2LN )Gs〉ds

= 〈πN
t ,Gt〉−〈πN

0 ,G0〉−
∫ t

0
〈πN

s ,(∂s+∆N )Gs〉ds

−
∫ t

0
∇+N Gs(0)ηsN2(1)−∇−N Gs(1)ηsN2(N −1)ds

− N2

Nθ

∫ t

0
Gs(

1
N ){α1−ηsN2(1)(α1+γ1)}+Gs(

N−1
N ){β1−ηsN2(N −1)(β1+δ1)}ds

− N2

Nθ

∫ t

0
Gs(

2
N ){α2ηsN2(1)−γ2ηsN2(2)−ηsN2(1)ηsN2(2)(α2−γ2)}ds

− N2

Nθ

∫ t

0
Gs(

N−2
N ){β2ηsN2(N −1)−δ2ηsN2(N −2)−ηsN2(N −1)ηsN2(N −2)(β2−δ2)}ds

(15)

is a martingale with respect to the natural filtration {Ft}t¾0, where for each t¾0,Ft :=σ(ηsN2 : s¶ t).
Above, for x ∈ΛN , the discrete derivatives of G are defined by

∇+N Gs(
x
N ) = N

�

G( x+1
N )−G( x

N )
�

,

∇−N G( x
N ) =∇

+G( x−1
N ) and its discrete laplacian is defined by

∆N G( x
N ) = N2

�

G( x+1
N )−2G( x

N )+G( x+1
N )

�

.

Remark 3.1. For fixed K ¾ 2, the expression above can be compactly written by introducing the operators
DN ,±
·,· defined by

(DN ,−
λ,σ f )(x) =

¦

λx f (1) . . . f (x−1)(1− f (x))−σx (1− f (1)) . . .(1− f (x−1)) f (x)
©

1x∈IK
−

(DN ,+
λ,σ f )(x) =

¦

λx (1− f (x)) f (x+1) . . . f (N −1)−σx f (x)(1− f (x+1)) . . .(1− f (N −1))
©

1x∈IK
+

(16)

for f :Z→R and λ= (λ1, . . . ,λK),σ= (σ1 . . . ,σK). With this notation, Dynkin’s formula takes the form

M N
t (G) = 〈π

N
t ,Gt〉−〈πN

0 ,G0〉−
∫ t

0
〈πN

s ,(∂s+∆N )Gs〉ds

−
∫ t

0

¦

∇+N Gs(0)ηsN2(1)−∇−N Gs(1)ηsN2(N −1)
©

ds

−
N2

Nθ

∫ t

0

¦

〈πN (DN ,−
α,γ ηsN2 , ·),Gs〉+〈πN (DN ,+

β ,δ ηsN2 , ·),Gs〉
©

ds.

In fact, the largest technical issue with the proof of the hydrodynamic limit is, as we will also see ahead,

the proof of the replacement lemmas which roughly states N2

Nθ 〈π
N (DN ,−

α,γ ηsN2 , ·),Gs〉
PµN−−→ (Dα,γρs)(0)Gs(0)

for θ = 1, with ρ(·) being the unique weak solution to (8).
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As we will show, EµN

�

�

M N
t (G)

�2�
vanishes as N→∞. We now focus on the integral terms above.

Let us start with the boundary term coming from the bulk dynamics, that is, the term on the second
line of the previous display. By Theorem A.3, with the choiceψ≡1, we are able to replace ηs(1) (resp.
ηs(N −1)) by the average in a box of size bεNc to the right of site 1 (resp. to the left of site N −1):

−→η εNs (1) :=
1
εN

1+εN
∑

x=2

ηs(x),
←−η εNs (N −1) :=

1
εN

N−1−εN
∑

x=N−2

ηs(x), (17)

then, since, for N sufficiently big, −→η εNs (1)∼ρs(0) (resp.) −→η εNs (N −1)∼ρs(1)) in a sense which will
be explained later on, and by a Taylor expansion on the text function G, we arrive at

∫ t

0
∂uGs(0)ρs(0)−∂uGs(1)ρs(1)ds.

which is exactly the fourth term at the right hand side of (9). By abuse of notation, above and below
εN denotes bεNc. Now we analyse the terms coming from the boundary dynamics. We start with
the terms on the fourth line on the right hand-side of (15). Note that when θ > 1, since G and η
are bounded, these terms are of order O(N1−θ ) and so they vanish as N → +∞. When θ = 1 and
using again Theorem A.3, with the choice ψ≡ 1, those terms are going to contribute to the integral
formulation with

∫ t

0
Gs(0)(α1−(α1+γ1)ρs(0))+Gs(1)(β1−(β1+δ1)ρs(1))ds.

Now we look at the fifth and sixth terms at the right hand-side of (15). We focus on the terms on
the fifth line, but we note that the analysis is completely analogous for the terms in the sixth line. As
before, for θ > 1 those terms are of order O(N1−θ ) and so they vanish as N→+∞. When θ = 1, from
Theorem A.2, with the choice ϕ ≡ 1, we can replace, for any term that does not involve the product
of η(1) and η(2), η(2) by η(1) and from Theorem A.3 (with ψ≡ 1), replace η(1) by ηεN (1). For
the quadratic terms in η(1)η(2) we first apply Theorem A.3 (with ψ(η) = η(1)), to replace η(2) by
ηεN (1). In the resulting term η(1)ηεN (1), we then replace η(1) by ηεN (1) by applying Theorem A.3
(with ψ(η) =ηεN (1)). From this we conclude that the terms on the fifth line of (15) contribute to the
integral formulation with

∫ t

0
Gs(0)(α2−γ2)(ρ

2
s (0)−ρs(0))ds.

Recall that we defined after Theorem 2.7 the distribution QN of the trajectory of the empirical mea-
sure πN . Assuming that one proves that the sequence {QN }N¾1 is tight (which is done in Section 3.2),
the arguments above prove that any of its limit points is a Dirac measure supported on the trajectory
πt(du) =ρt(u)du where ρt(·) is the unique weak solution of (8). These arguments are carried out in
further detail in the next subsections.

3.2. Tightness.

Proposition 3.2. The sequence {QN }N¾1 is tight under the Skorohod topology of D([0, T],M+).

Proof. From Chapter 4 of [17], in order to prove tightness it is enough to show that

lim
γ→0

limsup
N→+∞

sup
τ∈TN ,λ¶γ

PN
µN

�

η· ∈D([0, T],ΩN ) :
�

�〈πN
τ+λ,G〉−〈πN

τ ,G〉
�

�>ε
�

= 0,

for any continuous function G : [0,1]→R. Above TN is the set of stopping times bounded by T . In
fact, we are going to prove the result for functions in C2([0,1]), but then, by an L1 approximation it
is simple to extend the result to continous functions. By Proposition 4.1.7 in [17] it is enough to show
the result for every function G in a dense subset of C([0; 1]), with respect to the uniform topology.
From now on we assume that G ∈ C2([0,1]). From Dynkin’s formula, plus Chebyshev’s and Markov’s
inequality, we can bound the previous probability by

2
ε
EµN

�

�

�

�

�

�

∫ τ+λ

τ

N2LN 〈πN
s ,G〉ds

�

�

�

�

�

�

+
4
ε2
EµN

�

�

M N
τ (G)−M N

τ+λ(G)
�2�

.
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Observe that since G ∈ C2([0,1]) we have that
�

�4N G( x
N )
�

�¶ 2


G′′




∞ and
�

�∇±N G( x
N )
�

�¶


G′




∞. In
particular, since there is at most one particle per site, and recovering from (15) the expression for
Ln〈πN

s ,G〉, we obtain straightforwardly

|N2Ln〈πN
s ,G〉|® 1

Nθ−1



G′




∞+
1

Nθ−1



G′′




∞,

where the notation ® means "less than a constant times". As a consequence, for θ ¾ 1

lim
γ→∞

limsup
N→∞

sup
τ∈TT ,λ¶γ

EµN

�

�

�

�

�

�

∫ τ+λ

τ

N2LN 〈πN
s ,G〉ds

�

�

�

�

�

�

= 0.

Now we treat the remaining term. From Dynkin’s formula, (M N
t (G))

2−〈M N (G)〉t is a (mean zero)
martingale with respect to the natural filtration Ft . From [17] (Appendix 1.6) one obtains that its
quadratic variation is 〈M N (G)〉t :=

∫ t
0 BN

s (G)ds , where

BN
s (G) := N2

�

LN 〈πN (ηs),G〉2−2〈πN (ηs),G〉LN 〈πN (ηs),G〉
�

.

This yields

EµN

�

�

M N ,H
τ −M N ,G

τ+λ

�2�
=EµN

�

∫ τ+λ

τ

BN
s (G)ds

�

.

We can split BN
s (G) := BN

s,−(G)+BN
s,0(G)+BN

s,+(G), where each term corresponds to the contribution
of LN ,−,LN ,0,LN ,+, respectively. Now note that

BN
s,0(G) = N2

∑

x∈ΛN

�

〈πN (ηx ,x+1
s ),H〉−〈πN (ηs),H〉

�2

=
∑

x∈ΛN

(ηs(x)−ηs(x+1))2(G( x+1
N )−G( x

N ))
2 ¶ N−1

N2



(G′)2




∞.

For the boundary dynamics, we bound the rates in the generator by a constant, which yields

BN
s,−(G)®

1
Nθ−1

‖G‖2∞and BN
s,+(G)®

1
Nθ−1 ‖G‖

2
∞

and concludes the proof. �

3.3. Characterization of the limit point. We now characterize the limit points of {QN }N¾1 and show
that they concentrate on trajectories satisfying the weak form of the hydrodynamic equation.

Proposition 3.3. For any limit point Q of {QN}N¾1, it holds

Q
�

π· ∈D([0, T],M ) : F(ρ,G, t) = 0
�

= 1

where F is given in (9) for θ = 1 and (11) for θ > 1.

Proof. We present the proof for the case θ = 1 and K = 2, since for θ > 1 it is analogous. We present a
remark at the end regarding the extension to other values of K . Fix a limit point Q of {QN}N¾1. As a
consequence of Corollary B.2, we have that Q(RT )= 1 where RT is the event on which π· is absolutely
continuous w.r.t the Lebesgue measure and with density in H 1. To present the argument as simply
and concisely as possible, assume that G is time independent, but the same arguments apply when this
is not the case. To prove the Proposition, we show that for any δ> 0 and any G ∈ C2([0,1]):

Q
�

RT and sup
0¶t¶T

|F(ρ,G, t)|>δ
�

= 0, (18)
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that is

Q
�

RT and | sup
0¶t¶T

| 〈ρt ,G〉−〈 f0,G〉+
∫ t

0
〈ρs,4G〉ds +

∫ t

0

¦

ρs(1)∂uG(1)−ρs(0)∂uG(0)
©

ds

−
∫ t

0

¦

G(1)(β1−(β1+δ1)ρs(1)+(δ2−β2)(ρ
2
s (1)−ρs(1)))

©

ds

−
∫ t

0

¦

G(0)(α1−(α1+γ1)ρs(0)+(γ2−α2)(ρ
2
t (0)−ρt(0)))

©

ds |>δ
�

= 0.

(19)

Due to the boundary terms, the set inside the probability above is not an open set in the Skorohod space.
As a consequence, at this point, we cannot apply Portmanteau’s theorem. To solve this problem, we
take the following functions: ←−ι u

ε(v)=
1
ε1(u−ε,u](v) and −→ι u

ε(v)=
1
ε1[u,u+ε)(v), and we use the notation

〈πs,
←−ι u
ε〉=

1
ε

∫ u
u−ερs(v)dv and 〈πs,

−→ι u
ε〉=

1
ε

∫ u+ε
u ρs(v)dv. Now observe that since ρ ∈ L2(0, T ;H 1), it

is easy to prove for all ε > 0 that
�

�ρs(u)−〈πs,
←−ι u
ε〉
�

�¶ 1
2ε‖∂uρ‖

2
2. As a consequence of the last result,

we can bound the probability on the left-hand side of (19) by

Q
�

RT and sup
0¶t¶T

�

�

�〈ρt ,G〉−〈 f0,G〉−
∫ t

0
〈ρs,∂

2
u G〉ds+

∫ t

0

¦

〈πs,
←−ι 1
ε〉∂uG(1)−〈πs,

−→ι 0
ε〉∂uG(0)}ds

−
∫ t

0

¦

G(1)(β1−(β1+δ1)〈πs,
←−ι 1
ε〉+(δ2−β2)〈πs,

←−ι 1
ε〉(〈πs,

←−ι 1−ε
ε 〉−1)

©

ds

−
∫ t

0

¦

G(0)(α1−(α1+γ1)〈πs,
−→ι 0
ε〉+(γ2−α2)〈πs,

−→ι 0
ε〉(〈πs,

−→ι εε〉−1)
©

ds
�

�

�>δ/2
�

+oε(1).

(20)

To finally apply Portmanteau’s theorem, we argue that we can approximate←−ι u
ε,
−→ι u
ε by continuous

functions in such a way that the error vanishes as ε→ 0. Then, we apply Portmanteau’s theorem
and bound the first term in (20) from above by liminfN→∞QN (A(T,G,δ,ε)), where we shortened
A(T,G,δ,ε) for the event in (20). Summing and subtracting

∫ t
0LN 〈πN

s ,G〉ds inside the absolute value
in A(T,G,δ,ε), recalling (15), we obtain that QN (A(T,G,δ,ε)) is less than the sum of the following
contributions

P1 := PµN

�

sup
0¶t¶T

�

�M N
t

�

�¾
δ

14

�

,

P2 := PµN

�

sup
0¶t¶T

�

�

�

�

�

∫ t

0
〈πN

s ,4N G〉−〈πN
s ,∂ 2

u G〉ds

�

�

�

�

�

>
δ

14

�

P3 := PµN

�

sup
0¶t¶T

�

�

�

�

�

∫ t

0
ηsN2(N −1)∇−N G(1)−〈πN

s ,←−ι 1
ε〉∂uG(1)ds

�

�

�

�

�

>
δ

14

�

,

P4 := PµN

�

sup
0¶t¶T

�

�

�

�

�

∫ t

0
G(N−1

N )(β1−(β1+δ1)ηsN2(N −1))−G(1)(β1−(β1+δ1)〈πN
s ,←−ι 1

ε〉)ds

�

�

�

�

�

>
δ

14

�

,

P5 :=PµN

�

sup
0¶t¶T

�

�

�

�

∫ t

0
G(N−2

N )(δ2ηsN2(N −2)−β2ηsN2(N −1)−G(1)(δ2−β2)〈πN
s ,←−ι 1

ε〉ds

�

�

�

�

>
δ

14

�

,

P6 := PµN

�

sup
0¶t¶T

�

�

�

�

�

∫ t

0
G(N−2

N )(δ2−β2)ηsN2(N −1)ηsN2(N −2)−

G(1)(δ2−β2)〈πN
s ,←−ι 1

ε〉(〈π
N
s ,←−ι 1−ε

ε 〉−1)ds

�

�

�

�

>
δ

14

�

,
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and finally P7, P8, P9 and P10, which are the counterparts of P3, P4, P5 and P6 for the left boundary,
which we do not explicitly write. The first term P1 can be estimated with Doob’s inequality,

PµN

�

sup
0¶t¶T

�

�M N
t

�

�>
δ

14

�

¶
C
δ
EµN

�
�

�M N
T

�

�

2�
1
2 =

C
δ
EµN

�

∫ T

0
BN ,H

s ds

�
1
2

,

where C is a constant and BN ,H
s was introduced in Section 3.2. We can now proceed as in the proof of

Proposition 3.2 to show that P1 vanishes, as N →∞. The second term P2 vanishes, for any N large
enough, because G is smooth.

To estimate the remaining probabilities we apply the replacement lemmas that are stated and proved
in Appendix A. To properly explain the procedure, recall from (17) the definition of ←−η εN

sN2(N −1)
and −→η εN

sN2(1), since ←−η εN
sN2(N −1) = 〈πN

s ,←−ι 1
ε〉 (resp. −→η εN

sN2(1) = 〈πN
s ,−→ι 0

ε〉) we have ←−−ηsN2
εN (N −1)∼

ρs(1) (resp −−→ηsN2
εN (1) ∼ ρs(0)), we show in Appendix A that we can exchange ηsN2(N −1) (resp.

ηsN2(1)) by the averages above, and ηsN2(N −2) (resp. ηsN2(2)) by ηsN2(N −1) (resp. ηsN2(1)).
In particular, to estimate P3, note that the difference between ∇−N G(1) and ∂uG(1) is of order N−1.
Furthermore, applying Lemma A.3 toψ(η)=1, and using Markov’s inequality, we can replaceηs(N−1)
by←−η εN

s (N −1) at the cost of an error of order N−1. This proves that P3 vanishes in the limit N→∞
and then ε→ 0. P4 and P5 are estimated in the exact same way as P3.

We now turn to P6: in it, we first replace ηsN2(N −2) by −→η εN
sN2(N −1) by applying Lemma A.3 and

Markov’s inequality to ψ(η) =ηsN2(N −1). Now that we have the term ηsN2(N −1)−→η εN
sN2(N −1), We

apply Lemma A.3 and Markov’s inequality a second time to ψ(η) =−→η εN
sN2(N −1) which allows us to

replace ηsN2(N −1) by −→η εN
sN2(N −1) up to a vanishing error term. Noting that 〈πN

s ,−→ι 0
ε〉=

−→η εN
sN2(1) ,

and 〈πN
s ,←−ι 1

ε〉=
−→η εN

sN2(N −1) and

〈πN
s ,−→ι 0

ε〉〈π
N
s ,−→ι εε〉=

−→η εN
sN2(1)

←−η εN
sN2(εN +1)+O((εN)−1),

proves as wanted that P6 vanishes, in the limit N→∞ and then ε→ 0.
The bounds for P7, P8, P9 and P10, are analogous to those on P3, P4, P5 and P6. Together, all

those bounds prove that limsupε→0 limsupN→∞QN (A(T,G,δ,ε))=0, so that (20) vanishes in the limit
limsupN→∞ and then ε→ 0. This proves Proposition 3.3. �

Remark 3.4 (Case K¾2). For the general case K¾2, the main problem are the terms of the formρK−1
s (0)

and (1−ρs(0))K−1 (and similarly for the right boundary). A simple way to solve this is to proceed by
induction. Since a2 = (a+ b1− b1)(a+ b2− b2) = (a− b1)(a− b2)+ b1(a− b1)+ b2(a− b2)+ b1 b2 and
we have that b1 b2a= b1 b2(a+ b3− b3)= b1 b2(a− b3)+ b1 b2 b3, taking a≡ρs(0) and b j ≡〈πs,

−→ι ( j−1)ε
ε 〉

for j ¾ 0, we can replace ρK−1
s (0) by

∏K−2
j=0 〈πs,

−→ι jε
ε 〉 plus a sum of terms that vanish when ε→ 0. For

the right boundary the argument is analogous.

4. FICK’S LAW

In this section, we prove Theorem 2.8. Recall the notations set in Section 2.4. Fix x ∈ΛN . In order
to apply Dynkin’s formula to the current JN

t (x) and KN
t (x), we denote by L̃ the joint generator of η,

JN
t (x) and KN

t (x), given by

L̃ x = L̃ x
N ,0+

1
Nθ
L̃ x

N ,b (21)

where

L̃ x
N ,0 f (η,J) =

∑

z∈ΛN \{x}

(η(z)−η(z+1))( f (ηz,z+1,J)− f (η,J))

+η(x)(1−η(x+1))( f (ηx ,x+1,J+1)− f (η,J))+η(x+1)(1−η(x))( f (ηx ,x+1,J−1)− f (η,J)).
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and L̃ x
N ,b = L̃

x
N ,++L̃

x
N ,−, with

L̃ x
N ,± f (η,K) =

∑

z∈IK
±\{x}

c±z (η)( f (η
z ,K)− f (η,K))

+1{x∈IK
± }

�

(1−η(x))c±x (η)( f (η
x ,K+1)− f (η,K))+η(x)c±x (η)( f (η

x ,K−1)− f (η,K))
�

.

Recalling the definition of the operators DN ,±
α,γ and DN ,±

β ,δ in (16),

L̃ x
N ,0JN

s (x) =ηs(x)−ηs(x+1), L̃ x
N ,±KN

s (x) = (D
N ,−
α,γ ηs)(x) and L̃ x

N ,bKN
s (x) = (D

N ,+
β ,δ ηs)(x),

for x ∈ΛN , IK
− , IK

+ , respectively.
By Dynkin’s formula,

ÒM N
t (x) := JN

t (x)− JN
0 (x)−

∫ tN2

0
(ηs(x)−ηs(x+1))ds,

is a martingale w.r.t. Ft , so that for any test function f ∈ C1(0,1)

eM N
t ( f ) := JN

t ( f )− JN
0 ( f )−

∫ tN2

0

N−2
∑

x=1

f ( x
N )(ηs(x)−ηs(x+1))ds,

is a martingale as well. By summation by parts, the time integral above rewrites

∫ tN2

0

1
N

N−1
∑

x=1

∇−N f ( x
N )ηs(x)+ f ( 0

N )ηs(1)− f (N−1
N )ηs(N −1)ds

=

∫ t

0
〈πN

t ,∇−N f 〉ds+

∫ tN2

0
f ( 0

N )ηs(1)− f (N−1
N )ηs(N −1)ds.

(22)

A simple computation also based on Dynkin’s formula, shows that its quadratic variation is given by
〈M̃ N ( f )〉t =

∫ t
0

1
N2

∑

x∈ΛN
f 2( x

N )(ηs(x)−ηs(x+1))2ds,

so that the martingale eM N
t ( f ) vanishes in L2(PµN

), as N→∞.
Now we analyze the time integral above. From Theorem 2.7 and the Replacement Lemma A.3 the

expression (22) converges, as N→∞, in PµN
to

∫ t

0

∫ 1

0
∂u f (u)ρs(u)duds+

∫ t

0
f (0)ρs(0)− f (1)ρs(1)ds=−

∫ t

0

∫ 1

0
f (u)∂uρs(u)ds. (23)

Now we look at the non-conservative current. Using the same argument as above, we have that

KN
t ( f )−KN

0 ( f )−N1−θ
∫ tN2

0

∑

x∈IK
−

f ( x
N )(D

N ,−
α,γ ηs)(x)ds−N1−θ

∫ tN2

0

∑

x∈IK
+

f ( x
N )(D

N ,+
β ,δ ηs)(x)ds

is a martingale. As above it can be shown that this martingale vanishes in L2(PµN
), as N →∞.

When θ > 1 it is easy to see that the integral term above vanishes as N → +∞. In the case θ = 1,
from repeatedly applications of the replacement lemmas stated in Appendix A.2 the last expression
converges, w.r.t. PµN

, as N→∞, to

∫ t

0
f (0)(Dα,γρs)(0)+ f (1)(Dβ ,δρs)(1)ds,

which finishes the proof.
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5. HYDROSTATIC LIMIT

5.1. Proof of Theorem 2.9. Given an integer N , and θ ¾1, define the distributionPN of the stationary
empirical measure, onM+, asPN :=µss

N ◦(πN )−1, where bothM+ and the empirical measureπN were
introduced at the beginning of Section 2.3. Recall from Definition 2.2 the definition of the functional
F(ρ,G, t) (depending on θ). Define

E :=
�

π∈M+ :π(du) =ρ∗(u)du , F(ρ∗,G, t) = 0, ∀t ∈ [0, T], ∀G ∈ C1,2([0, T]×[0,1])
	

,

which is the set of weak stationary solutions to the hydrodynamic equation. Now let d be the distance
defined on the Skorohod space D([0,∞),M+) under which this space is a Polish space (see [17],
Chapter 4 for an example). The following result, which is analogous to e.g. Theorem 2.2 in [18], is
the main ingredient to prove Theorem 2.9.

Proposition 5.1. {PN }N∈N is concentrated in E , i.e., ∀δ> 0,

lim
N→∞

PN

�

π∈M+ : inf
π̃∈E

d(π,π̃)¾δ
�

= 0.

To prove Proposition 5.1, one needs two ingredients:

i) The empirical measure been macroscopically governed by a hydrodynamic equation (i.e. the hy-
drodynamic limit, Theorem 2.7, proved in Section 3).

ii) The existence of a unique solution of (8) (cf. Lemma 2.3) and its convergence, w.r.t. the L2

norm, as time goes to infinity, to a stationary solution, which is a consequence of Proposition 5.10
below for θ = 1. In the case θ > 1 this convergence is classical, but the interested reader can
straightforwardly adapt the argument we present below for the Robin case , derived when θ = 1,
to the Neumann case, derived when θ > 1.

We will not prove this proposition, because once those two ingredients are obtained, it is a straightfor-
ward adaptation of Theorem 2.2 in [18].

We now use Proposition 5.1 to prove Theorem 2.9. In the case θ = 1, under assumptions (H0) and
(H1), we check in Section 5.2 that the set E above is a singleton (more precisely, E = {ρ∗(u)du} where
ρ∗(u)= (1−u)ρ∗(0)+uρ∗(1) with its value at the boundary determined by the unique solution of the
nonlinear system of equations ρ∗(1)−ρ∗(0) =−Dα,γρ

∗(0) = Dγ,αρ
∗(1)), so that the first assertion of

Theorem 2.9 follows immediately from Proposition 5.1. For details we refer the reader to [20].

We now turn to the second assertion of Theorem 2.9, i.e. the case θ > 1. In this case, any constant
solution is a stationary solution to the hydrodynamic equation, so that

E :=
�

π∈M+ :π(du) =mdu, m∈ [0,1]
	

.

We therefore further need to prove that PN only charges, in the limit N→∞, a single value m∗ from
all the possible constant values. For that purpose we use the method developed in [20], which consists
in studying the evolution of the process started from its stationary state in a subdiffusive time scale
N1+θ . In this subdiffusive time scale, the total mass of the system evolves via the boundary dynamics,
and converges in time to a uniquely defined constant which is exactly the constant m∗ we are looking
for. The non-linear boundary terms pose some extra technical difficulties w.r.t. [20], which are solved
in Corollary A.4.

To simplify the exposition we consider the case K = 2, and we make the appropriate remarks in the
general case of K .

We now consider the process on the subdiffusive time-scale {ηN
t :=ηtN1+θ }t¾0, with initial distribu-

tion µss
N . For each t ¾ 0 and θ > 1 fixed, we define the mass of the system as

mN
t =

1
N −1

∑

x∈ΛN

ηN
tN1+θ (x), (24)

and for each T > 0 we let D([0, T],R) be the set of cádlág trajectories m· : [0, T]→R with respect to
the Skorohod topology. For each N ∈N, denote by QN the distribution of the trajectory (mN

t )t∈[0,T]
on D([0, T],R), with η started from the stationary distribution µss

N . A straightforward adaptation (to
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the subdiffusive timescale) of Proposition 3.2 shows that the sequence {QN }N¾1 is tight. From the
stationarity of µss

N , for any t ¾ 0, and any I = (a, b)⊂ [0,1]

PN (π
N
· : 〈πN ,1〉 ∈ I) =QN (m

N
· : mt ∈ I),

One may then bound, for any limit points P ∗, Q∗ of the sequences {PN}N¾1, {QN }N¾1 (for more
details, cf. [20], p.11) and for any fixed time t ¾ 0,

P ∗(π(du) =mdu, m∈ I)¶Q∗(m· : mt ∈ I). (25)

To conclude, we now only need to prove the following result

Lemma 5.2. There exists m∗ ∈ [0,1] such that , for any ε > 0

Q∗(m· : |mt −m∗|¾ ε) −→
t→∞

0 (26)

This Lemma, together with (25), proves as wanted that P ∗(π(du) =m∗du) = 1, and concludes the
proof of Theorem 2.9.

Proof of Lemma 5.2. We start by characterizing the typical trajectories of Q∗. We apply Dynkin’s for-
mula as in (15) and we take G≡ 1 to obtain that

mN
t =mN

0 +M N
t (1)+

∫ t

0
α1+β1+η

N
s (1)(α2−(α1+γ1))+η

N
s (N −1)(β2−(β1+δ1))ds

−
∫ t

0
γ2η

N
s (2)+δ2η

N
s (N −2)+ηN

s (1)η
N
s (2)(α2−γ2)+η

N
s (N −1)ηN

s (N −2)(β2−δ2)ds. (27)

Simple computations similar to the ones used in the proof of Proposition 3.2 also show that the qua-
dratic variation of M N

t (1) is of order O(N−1) so that M N
t (1) vanishes as N →∞, with respect to the

L2(Pµss
N
)-norm. Moreover, from Corollary A.4 we are able to replace ηN

s (1) and ηN
s (2) (resp. ηN

s (N−1)
and ηN

s (N −2)) by mN
s . From this we get that

mN
t =mN

0 +M N
t (1)+

∫ tN1+θ

0
α1+β1+mN

s (α2−(α1+γ1))+mN
s (β2−(β1+δ1))ds

−
∫ tN1+θ

0
γ2mN

s +δ2mN
s +(m

N
s )

2(α2−γ2)+(m
N
s )

2(β2−δ2)ds. (28)

To simplify notation let ix = αx +βx and ox = γx +δx , for x = {1,.. . ,K}. By taking the limit, when
N →+∞, in the previous identity, we obtain that any limit point Q∗ is concentrated on solutions of
the Ricatti Equation

Q∗
�

m· : mt =m0+

∫ t

0
i1+(i2−o2−(i1+o1))ms−(i2−o2)m

2(s)ds

�

= 1. (29)

Remark 5.3. Observe that the equation above is equivalent to mt =m0+
∫ t

0 Di,omsds. In fact, as for the
hydrodynamic limit, the same arguments show that for general values of K > 2 we have an analogous
integral equation, where now Di,o induces a K−degree polynomial. For the case K > 2, the proof above is
indeed identical in this case as long as we assume (H2). The only extra technical difficulty is that in (27)
we shall have higher order polynomials in η, so that we have to apply Corollary A.4 a certain number of
times to get closed equations in mN

s .

To conclude the proof of Lemma 5.2, we need to show the uniqueness of solutions for the Ricatti
equation and that all solutions uniformly converge to the same constant. We first state the following
technical lemma.

Lemma 5.4. Let λ=(λ1, . . . ,λK) and σ=(σ1, . . . ,σK) and Dλ,σ be the operator defined in (2) for K ¾ 1
fixed. Then for fi :R→R with i= 1,2, we have

Dλ,σ f1−Dλ,σ f2 =−( f1− f2)Vλ,σ( f1, f2), (30)
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where Vλ,σ( f1, f2)= Vλ( f1, f2)+Vσ(1− f1,1− f2) with the operator Vφ , for any sequence φ=(φx )1¶x¶K ,
is acting on functions ( f1, f2) :R2→R2, as

Vφ( f1, f2)(u1,u2) =
K
∑

x=1
φK+1:=0

(φx −φx+1)
x−1
∑

i=0

( f1(u1))
x−1−i( f2(u2))

i , with u= (u1,u2).

In particular, if λ and σ are non-negative, non-increasing and fi ¾0 for i=1,2 then there is a constant
vK(λ,σ)> 0, such that

Vλ,σ f ¾ vK(λ,σ). (31)

We can now conclude the proof of Lemma 5.2. From Lemma 5.4 it is simple to see that m is locally
Lipschitz. By iteration we can extend to all times up to time t>0, thus showing uniqueness. To see that
there exists a unique solution m≡m∗ ∈ [0,1] to the equation defined by the mass, Di,om, observe that
an immediate consequence of Lemma 5.4 is that Di,o f is both continuous and monotone decreasing
on f ∈ [0,1]. In particular, letting 0 (resp. 1 ) be the constant 0 (resp. constant 1) function on [0,1],
we have that

−o1 = Di,o1¶ Di,o f ¶ Di,o0= i1,

thus, by the intermediate value theorem there exists a (unique) f ≡m∈ [0,1] such that Di,om= 0.
Now fix a solution m to

mt =m0+

∫ t

0
Di,omsds,

and define Òm=m−m∗, (30) yields

Òmt = Òm0−
∫ t

0
ÒmsVi,o(ms,m

∗)ds,

so that Òmt = Òm0e−
∫ t

0 Vi,o(ms ,m
∗)ds. Using (31) then yields |Òmt |¶ e−vK (i,o)t which proves (26). �

We now prove the technical Lemma.

Proof of Lemma 5.4. For u1,u2 ∈R, let y := f1(u1) and z := f2(u2). Then

Dλ,σ y−Dλ,σz=
K
∑

x=1

λx

�

(1− y)y x−1−(1−z)zx−1
�

−σx

�

y(1− y)x−1−z(1−z)x−1
�

.

Observing that

(1− y)y x−1−(1−z)zx−1 = (y x−1−zx−1)−(y x −zx ),

y(1− y)x−1−z(1−z)x−1 =−
¦

((1− y)x −(1−z)x )−((1− y)x−1−(1−z)x−1)
©

,

we let h0(x) = y x −zx and h1(x) = (1− y)x −(1−z)x . Performing a summation by parts, we have

Dλ,σ y−Dλ,σz=
K−1
∑

x=0

σx+1(h1(x+1)−h1(x))−
K−1
∑

x=0

λx+1(h0(x+1)−h0(x))

=−(λKh0(K)−σKh1(K))−
K−1
∑

x=1

¦

(λx −λx+1)h0(x)−(σx −σx+1)h1(x)
©

.

(32)

Using the fact that for any integer x ¾ 1 holds

ax − bx = (a− b)
x−1
∑

i=0

biax−1−i , a¾ b¾ 0,

we have the following decomposition

h0(x) = (y−z)
x−1
∑

i=0

z i y x−1−i and h1(x) =−(y−z)
x−1
∑

i=0

(1−z)i(1− y)x−1−i .
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Replacing h0(x) and h1(x) in (32) and rearranging the terms, we end the proof of (30). To see (31),
note that

∑x−1
i=0 y x−1−iz i ¾ 1 for x = 1,.. . ,K . Thus, if the sequences λ,σ are decreasing we can bound

Vλ,σ(y,z) from below by λ1+σ1−(λK +σK). If the sequences are constant, i.e., λx =λ1,σx =σ1 for
x = 2,.. . ,K , then we can bound from below by λ1+σ1.

�

We end the present section with some observations.

Remark 5.5 (Case K = 2.). Fixing K = 2, the Ricatti equation (29) is explicitly solvable by separation of
variables. More precisely, we have two different scenarios: letting i2= o2, we recover both the results of [1]
and [20], where the mass stabilizes to i1(i1+o1)−1. Otherwise, the equation has an oscillating solution,
which we present below. Define 4=−{i21+2i1(i2+o1−o2)+(o1+(i2−o2))2}. Then, we get

mt = 1/2−
i1+o1

2(i2−o2)
+
41/2

2(i2−o2)
tan
�

1
2
41/2(m0− t)

�

.

In this way, imposing 4= 0 we have mt =m∗ = 1/2− i1+o1
2(i2−o2)

.

Remark 5.6 (Case K > 2). To finish, we observe that for the model introduced in [6], i.e., taking above
βx =γx = j and αx =δx =0 for x = {1,.. . ,K}, a simple computation shows that the solution of Di,im

∗=0
is, in fact, m∗ = 1/2. The model in [6] is a particular case of considering i= o. For the latter, Di,im

∗ = 0
can be solved for m≡m∗ by noticing that Di,im= Di,0m−Di,0(1−m) =−(m− (1−m))Vi,0(m,1−m) =
0⇔m∗ = 1/2. Perhaps more interesting is the case when ix = i , ox = o for x ∈ {1,.. . ,K} , i.e., the rates
are constant in x. Under these conditions, we have

1−(m∗)K

1−(1−m∗)K
=

o

i
.

If o= i then the mass stabilizes to the middle of point of [0,1], but for fixed i (resp. o), as the rate of
removal (resp. injection) of particles increases (resp. decreases) that is o↗ (resp. i↘), then the mass
decreases exponentially in K.

5.2. On the uniqueness of the stationary macroscopic profile for θ = 1. We now prove that, under
our assumptions, the hydrodynamic limit for θ = 1 admits a unique stationary solution.

The same idea used for θ >1 can be used now to guarantee uniqueness for the stationary solution of
the heat equation with Robin boundary conditions. We will start by observing that for everyρ∗(1) fixed,
there exists a unique solution for ρ∗(0) of the equation −Dα,γρ

∗(0) = Dβ ,δρ
∗(1), which is equivalent

to Dα,γρ
∗(0) = Dδ,β (1−ρ∗)(1). From the previous observations we know that ∀ f ∈ [0,1] we have

Dδ,β f ∈ [−β1,δ1], and also that∀u∈ [−γ1,α1] there is one f ∈ [0,1] : Dα,γ f =u. In this way, there exists
a unique ρ∗(0)∈ [0,1] such that, for any fixed ρ∗(1) with Dδ,β (1−ρ∗)(1) = u∈ [−(γ1∧β1),α1∧δ1],
we have Dα,γρ

∗(0) = u. More precisely, by monotonicity, we have that

ρ∗(0)∈ [D−1
α,γ(α1∧δ1), D−1

α,γ(−(γ1∧β1))]⊂ [0,1]

ρ∗(1)∈ [D−1
β ,δ(γ1∧β1), D−1

β ,δ(−(α1∧δ1))]⊂ [0,1]

To study ρ∗(1)−ρ∗(0) = Dβ ,δρ
∗(1), let us first define the (solution) map ρ∗(1) 7→ φα,γ,β ,δ(ρ∗(1))

where φα,γ,β ,δ(ρ∗(1)) :=ρ∗(0) is the (unique for fixed ρ∗(1)) solution (function of ρ∗(1)) to the equa-
tion −Dα,γρ

∗(0) = Dβ ,δρ
∗(1). Moreover, define the function T as

T : [D−1
β ,δ(γ1∧β1), D−1

β ,δ(−(α1∧δ1))]→R, u 7→ T (u) = u−φα,γ,β ,δ(u)−Dβ ,δu.

Recall from (H1) that α1∧δ1 = δ1 and γ1∧β1 = β1. We claim that T is (Lipschitz) continuous and
monotone increasing on [0,1]. Assuming this, we conclude that T has domain [0,1] and therefore

−(φα,γ,β ,δ(0)+β1) = T (0)¶ T (u)¶ T (1) = 1+δ1−φα,γ,β ,δ(1)

and thus there exists a unique ρ∗(1) such that T ◦ρ∗(1) = 0, and we are done. To prove the claim,
consider g,h∈ [0,1] and shorten g∗ :=φα,γ,β ,δ(g) and h∗ :=φα,γ,β ,δ(h). Then,

T (g)−T (h) = g−h−(g∗−h∗)+(g−h)Vβ ,δ(g,h). (33)
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We now relate (g∗−h∗) and (g−h). From the definition of φ we have that Dα,γg∗+Dβ ,δg = 0 and
Dα,γh

∗+Dβ ,δh= 0. Subtracting the two previous equations we observe that

(g∗−h∗)Vα,γ(g
∗,h∗) =−(g−h)Vβ ,δ(g,h).

In this way, replacing in (33) the expression for g∗−h∗ given in last display we arrive at

T (g)−T (h) = (g−h)

�

1+Vβ ,δ(g,h)+
Vβ ,δ(g,h)

Vα,γ(g∗,h∗)

�

and since from Lemma 5.4 there are universal constants such that the V·,· terms above are bounded
from below, and since g,h, g∗,h∗ ∈ [0,1] they are also bounded from above, the claim is shown.

5.3. Uniqueness and convergence of (8) to stationary solutions. In this section, we assume (H1),
and we show the convergence of the weak solution of (8) to the unique stationary solution, denoted
here by ρ∗, investigated in the previous section. Existence and uniqueness of such a stationary solution
is proved in Section 5.2. The main difficulty on showing this result lies on the fact that the weak solution
is not regular enough w.r.t. time in order to have an integration by parts formula as we do w.r.t. space.
To solve this issue, our approach is to relate the weak formulation and the mild formulation of (8). We
then show, following [18], that mild and weak solutions are equivalent in some sense, which indirectly
gives us a regular enough version of the weak solution to then proceed with energy estimates. With a
few adjustments from [8] (Section 2.3), we first define the notion of mild solutions of (8).

Definition 5.7 (Mild solution of (8)). We call mild solution of (8) any functionρ : [0, T]×[0,1]→ [0,1]
satisfying M(ρ, t) :=ρt −Sρt = 0, with

Sρt(u) =

∫ 1

0
Pt(u, v) f0(v)dv+

∫ t

0

¦

Pt−s(u,0)(Dα,γρs)(0)+ Pt−s(u,1)(Dβ ,δρs)(1)
©

ds= 0,

where Pt(u, v) =
∑

w∈Ψ−1(v)Φt(u,w) is the density kernel generated by the Laplacian ∂ 2
u on [0,1] with

reflecting Neumann boundary conditions, related to the heat kernel

Φt(u,w) =
1

(4πt)1/2
e−
(u−w)2

4t , (34)

by the reflection map ψ :R→ [0,1] defined as

ψ(u+k) =

¨

u, u∈ [0,1],k even,

1−u, u∈ [0,1],k odd,

extended to R by the symmetry ψ(v) =ψ(−v), for v ∈R.

Remark 5.8. Observe that fixed u ∈ [0,1], Sρt(u) is differentiable w.r.t. time, and given a smooth
initial data f0, we have that Sρt ∈ C∞(0,1). Moreover, there exists the limits limu→0

dn

dun Sρt(u) and
limu→1

dn

dun Sρt(u) for any n∈N, and for any t ∈ [0, T] we have Sρt ∈ C[0,1].

Following [18], with some adaptations to account for the fact that Pt involves here Neumann bound-
ary conditions, we show below that if ρ is a weak solution of (8), then ρt − Sρt = 0 a.e. From
the previous remark, Sρ is regular enough to satisfy F(ρ,Sρ, t) = 0. Moreover, letting ρ∗ be the
stationary solution, as mentioned in Theorem 2.9, from simple energy estimates we can see that
F(Sρ,Sρ, t)−F(ρ∗,Sρ, t)=0 =⇒ ‖Sρt −ρ∗‖L2 =O(e−C t) for positive constant C , which implies weak
convergence to the stationary profile. In this way, we have that πt →π∗ in M+ (endowed with the
weak topology), since πt(du)=ρt(u)du, with ρt

w
−→ρ∗ and ρ∗(u)du=:π∗(du), and thus we can apply

Proposition 5.1.

Proposition 5.9. If a function ρ : [0, T]→ [0,1] is a weak solution in the sense of Definition 2.2, where
it satisfies F(ρ,G, t) = 0 for any G ∈ C1,2([0, T]× [0,1]), then ρ also satisfies M(ρ, t) = 0 a.e. ∀t > 0.
Moreover, if ρ : [0, T]× [0,1] is a function satisfying 〈M(ρ, t),G〉= 0 for any G ∈ C1,2([0, T]× [0,1]),
then we have F(Sρ,G, t) = 0.
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Proof. Let us fix g ∈ C2([0,1]) and T ¾ t ¾ 0 and define Gε : [0, T]×[0,1]→ [0,1] as

Gεs (u) = (Pt−s g)(u)1{s∈[0,t]}+ g(u)
t+ε− s
ε

1{s∈[t,t+ε]}+(1−1{s∈[t+ε,T]}).

Above, for t¾0 and u∈ [0,1], (Pt f )(u)=
∫ 1

0 Pt(u, v) f (v)dv≡〈Pt(u, ·), f 〉. Assume now thatρ is a weak
solution in the sense of Definition 2.2. Recalling that for fixed v, Pt(u, v) satisfies the heat equation,
with Neumann boundary conditions, taking Gε ∈ C1,2([0, T]×[0,1]) as our test function we have

F(ρ,Gε, T ) =−〈 f0, Pt g〉−
∫ t

0

¦

(Dβ ,δρs)(1)(Pt−s g)(1)+(Dα,γρs)(0)(Pt−s g)(0)
©

ds+

∫ t+ε

t
〈ρs, g〉ε−1ds

−
∫ t+ε

t

¦

〈ρs,∂
2
u g〉+(Dβ ,δρs)(1)g+(Dα,γρs)(0)g+ρs(1)∂u g(1)+ρs(0)∂u g(0)

©

ε−1(t+ε− s)ds.

Letting ε→ 0, Gε converges in the sup norm to Gs(u) := Pt−s g(u). As a consequence, we have that
F(ρ,Gε, T ) converges to

〈ρt , g〉−〈Pt f0, g〉−
∫ t

0
〈(Dβ ,δρs)(1)Pt−s(·,1), g〉ds−

∫ t

0
〈(Dα,γρs)(0)Pt−s(·,0), g〉ds= 0.

Approximating Gε by a sequence (Gεk)k¾1 in C1,2([0, T]× [0,1]) w.r.t. the L1 norm, and since g ∈
C2([0,1]) is arbitrary, proves as wanted that M(ρ, t) = 0 a.e.

For the converse, as in [18] we shall consider a test function g independent of time for a better
exposition, since the extension to g time dependent is completely analogous. Let us assume that
ρ : [0, T]×[0,1]→ [0,1] satisfies ρ= Sρ a.e. ∀t. Then, for any g ∈ C2([0,1]) it must satisfy

〈ρt , g〉= 〈Pt f0, g〉+
∫ t

0
〈Pt−s(·,1)(Dβ ,δρs)(1)+ Pt−s(·,0)(Dα,γρs)(0), g〉ds.

In particular, differentiating the expression above with respect to time, we have

d
d t
〈ρt , g〉=〈(∂ 2

u Pt)g, f0〉+Dβ ,δρt(1)g(1)+Dα,γρt(0)g(0)

+

∫ t

0
〈∂t Pt−s(·,1)Dβ ,δρs(1)+∂t Pt−s(·,0)Dα,γρs(0), g〉ds.

(35)

We now integrate by parts (∂ 2
u Pt)g(u) twice, that is:

(∂ 2
u Pt)g(u) =

∫ 1

0
g(v)∂ 2

v Pt(u, v)dv=

∫ 1

0
Pt(u, v)∂ 2

v g(v)dv− Pt(u,1)∂u g(1)+ Pt(u,0)∂u g(0).

Above, we used the fact that Pt satisfies Neumann boundary conditions. Since by assumption M(ρ, t)=
0 a.e., we have a.e. Pt f0 = ρt −

∫ t
0

¦

Pt−s(·,0)(Dα,γρs)(0)+ Pt−s(·,1)(Dβ ,δρs)(1)
©

ds. In particular, re-
placing the expression above in (35), yields

d
d t
〈ρt , g〉= 〈ρt ,∂

2
u g〉+(Dβ ,δρt)(1)g(1)+(Dα,γρt)(0)g(0)+∂u g(0)ρt(0)−∂u g(1)ρt(1)

−
∫ t

0
〈Pt−s(·,0)Dα,γρs(0)+ Pt−s(·,1)Dβ ,δρs(1)g(1),∂

2
u g〉ds

−∂u g(0)

∫ t

0
Pt−s(0,0)Dα,γρs(0)+ Pt−s(0,1)Dβ ,δρs(1)ds

+∂u g(1)

∫ t

0
Pt−s(1,0)Dα,γρs(0)+ Pt−s(1,1)Dβ ,δρs(1)ds

+

∫ t

0
〈∂t Pt−s(·,1)Dβ ,δρs(1)+∂t Pt−s(·,0)Dα,γρs(0), g〉ds.
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Integrating by parts the fourth line on the previous display twice, using the fact that Pt satisfies the
heat equation with Neumann boundary conditions, yields

d
d t
〈ρt , g〉= 〈ρt ,∂

2
u g〉+(Dβ ,δρt)(1)g(1)+(Dα,γρt)(0)g(0)+∂u g(0)ρt(0)−∂u g(1)ρt(1).

Integrating in time this identity yields as wanted that F(ρ, g, t) = 0 for any g ∈ C2([0,1]). The case
when g is replaced by a time-dependent function G is similar, we omit it. �

We now show that any weak solution converges exponentially to the stationary solution ρ∗.

Proposition 5.10. There exists a constant C > 0 such that any weak solution ρ of (8) satisfies

‖ρ−ρ∗‖2L2 ¶ e−2C t ,

where ρ∗ is the unique stationary solution to (8).

Proof. From Lemma 5.4 we know that Dα,γρt(0)−Dα,γρ
∗(0) =−(ρt(0)−ρ∗(0))Vα,γ(ρt ,ρ

∗)(0,0). Let
us write V (0, t) := Vα,γ(ρt ,ρ

∗)(0,0) and V (1, t) = Vβ ,δ(ρt ,ρ
∗)(1,1). Both Sρ and ρ∗ satisfy the weak

formulation and from Remark 5.8 letting wt(u) := Sρt(u)−ρ∗(u) we have F(Sρ,w, t)−F(ρ∗,w, t)=0,
which rewrites

〈wt ,wt〉= 〈w0,w0〉+
∫ t

0
〈ws,

�

∂ 2
u +∂s

�

ws〉ds+

∫ t

0
ws(0)

�

∂uws(0)−ws(0)Vα,γ(0,s)
�

ds

−
∫ t

0
ws(1)

�

∂uws(1)+ws(1)Vβ ,δ(1,s)
�

ds.

Differentiating w.r.t. time we have

d
d t
〈wt ,wt〉= 〈wt ,(∂

2
u +∂t)wt〉+wt(0)(∂uwt(0)−wt(0)V (0, t))−wt(1)(∂uwt(1)+wt(1)V (1, t)) .

Integrating by parts the first term on the r.h.s. of the previous display once in space, we obtain

d
d t
〈wt ,wt〉= 〈wt ,∂t wt〉−〈∂uwt ,∂uwt〉−(wt(0))

2V (0, t)−(wt(1))
2V (1, t).

Now note that 〈wt ,∂t wt〉=
1
2

d
d t 〈wt ,wt〉. From Poincaré’s inequality, we know that there is a positive

constant C such that 〈∂uwt ,∂uwt〉¾ C〈wt ,wt〉 so that rearranging the terms yields

0=
1
2

d
d t
〈wt ,wt〉+〈∂uwt ,∂uwt〉+(wt(0))

2V (0, t)+(wt(1))
2V (1, t)

¾
1
2

d
d t
〈wt ,wt〉+C〈wt ,wt〉=

1
2

d
d t
‖wt‖

2
L2 +C‖wt‖

2
L2

where for the second inequality we used that from Lemma 5.4 we have V (k, t)> 0 for k = 0,1. In
particular, ‖wt‖

2
L2 ¶ ‖w0‖

2
L2 e−2C t , follows from Gronwall’s inequality, which concludes the proof since

‖w0‖
2
L2 ¶ 1. �

APPENDIX A. REPLACEMENT LEMMAS

In this section we prove the replacements lemmas that are needed along the arguments presented
above. We start by obtaining an estimate relating the Dirichlet form and the carré du champ operator
for this model. As above, for simplicity of the presentation, we state and prove the results for the case
K = 2, but the extension to the general case is completely analogous.
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A.1. Dirichlet forms. Let ρ : [0,1]→ [0,1] be a measurable profile and let νN
ρ(·) be the Bernoulli

product measure on ΩN defined by

νN
ρ(·)(η :η(x) = 1) =ρ( x

N ). (36)

For a probability measure µ on ΩN and a density f :ΩN →R with respect to µ, the Dirichlet form is
defined as

〈 f ,−LN f 〉µ = 〈 f ,−LN ,0 f 〉µ+
j

Nθ 〈 f ,−LN ,b f 〉µ, (37)

and the carré du champ is defined by:

DN (
p

f ,µ) := DN ,0(
p

f ,µ)+ j
Nθ DN ,b(

p

f ,µ), (38)

where

DN ,0(
p

f ,µ) :=
n−2
∑

x=1

∫

ΩN

�
Æ

f (ηx ,x+1)−
Æ

f (η)
�2

dµ,

DN ,±(
p

f ,µ) =
∑

x∈IK
±

∫

c±x (η)
�
Æ

f (ηx )−
Æ

f (η)
�2

dµ, (39)

where we recall the rates c±x defined in (6) , and DN ,b = DN ,−+DN ,+. We claim that for θ ¾ 1 and for
ρ : [0,1]→ [0,1] a constant profile equal to, for example, α, the following bound holds

〈LN

p

f ,
p

f 〉νN
α
®−DN (

p

f ,νN
α )+O( 1

N ). (40)

From Lemma 5.1 and Lemma 5.2 of [1] it is only necessary to control the contribution from the non-
linear part of the boundary dynamics. To do that, it is enough to apply Lemma 5.1 of [3] and the result
follows. We leave these computations to the reader.

A.2. Replacement Lemmas. We start this section by proving the next lemma which is the basis for
the replacement lemmas that are presented next.

Lemma A.1. Let x < y ∈ΛN and let ϕ :Ω→Ω be a positive and bounded function which satisfies ϕ(η)=
ϕ(ηz,z+1) for any z = x , · · · , y−1. For any density f with respect to να and any positive constant A, it
holds that

�

�

�〈ϕ(η)(η(x)−η(y)), f 〉νN
α

�

�

�® 1
A DN (

p

f ,νN
α )+A(y− x).

Proof. By summing and subtracting appropriate terms, we have that

|〈ϕ(η)(η(x)−η(y)), f 〉νN
α
|¶

1
2

y−1
∑

z=x

�

�

�

�

∫

ϕ(η)(η(z)−η(z+1))[ f (η)− f (ηz,z+1)] dνN
α

�

�

�

�

+
1
2

y−1
∑

z=x

�

�

�

�

∫

ϕ(η)(η(z)−η(z+1))[ f (η)+ f (ηz,z+1)] dνN
α

�

�

�

�

.

Note that since ϕ satisfies ϕ(η) = ϕ(ηz,z+1) for any z = x , · · · , y −1, by a change of variables, we
conclude that the last term in the previous display is equal to zero. Now, we treat the remaining term.
Using the equality (a− b)= (

p
a−
p

b)(
p

a+
p

b) and then Young’s inequality, the first term at the right
side of last display is bounded from above by a constant times

y−1
∑

z=x
A

∫

(ϕ(η)(η(z)−η(z+1)))2
�
Æ

f (ηz,z+1)+
Æ

f (η)
�2

dνN
α +

1
A

DN (
p

f ,νN
α ).

The fact thatϕ is bounded, |η(x)|¶1 and f is a density, the term on the left-hand side of last expression
is bounded from above by a constant. This ends the proof. �

We are now able to show the first Replacement Lemma.
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Lemma A.2. Fix x , y ∈ΛN such that |x− y|= o(N). Let ϕ :Ω→Ω be a positive and bounded function
which satisfies ϕ(η) =ϕ(ηz,z+1) for any z= x , · · · , y−1. For any t ∈ [0, T] we have that

limsup
N→+∞

EµN

�

�

�

�

�

�

∫ t

0
ϕ(ηsN2)(ηsN2(x)−ηsN2(y))ds

�

�

�

�

�

�

= 0. (41)

Proof. From entropy inequality, Jensen’s inequality and Feynman-Kac’s formula, for any positive con-
stant B, the expectation in the statement of the lemma is bounded from above by

H(µN |νN
α )

BN
+ t sup

f

¦

〈ϕ(η)(η(x)−η(y)), f 〉νN
α
+ N

B 〈LN

p

f ,
p

f 〉νN
α

©

. (42)

Now we observe that H(µN |νN
α )¶ NCα,β . The remark that the supremum above is over densities f

with respect to να. By Lemma A.1 with the choice A= B
N we have that

�

�

�〈ϕ(η)(η(x)−η(y)), f 〉νN
α

�

�

�® N
B DN (

p

f ,νN
α )+

B
N |y− x |

From (40) and the inequality above, the term on the right-hand side of (42), is bounded from above
by B

N |y− x |+ 1
N . Taking N→∞ and then B→+∞ we are done. �

Lemma A.3 (Replacement Lemma). Let ψ :Ω→Ω be a positive and bounded function which satisfies
ψ(η)=ψ(ηz,z+1) for any z= x+1, · · · , x+εN−1. For any t ∈ [0, T] and x ∈ΛN such that x ∈{1, · · · ,N−
εN −2} we have that

limsup
ε→0

limsup
N→+∞

EµN

�

�

�

�

�

�

∫ t

0
ψ(ηsN2)(ηsN2(x)−−→η εNsN2(x))ds

�

�

�

�

�

�

= 0. (43)

Note that for x ∈ΛN such that x ∈ {N −εN −1,N −1} the previous result is also true, but we replace in
the previous expectation −→η εN

sN2(x) by←−η εN
sN2(x), where both averages were defined in (17).

Proof. We present the proof for the case when x ∈ {1, · · · ,N −εN −2} but we note that the other case
is completely analogous. By applying the same arguments as in the proof of the previous lemma, we
can bound from above the previous expectation by

Cα,β
B + t sup

f

¦

〈ψ(η)(η(x)−−→η εN (x)), f 〉νN
α
+ N

B 〈LN

p

f ,
p

f 〉νN
α

©

. (44)

where B is a positive constant. The supremum above is over densities f with respect to να. The first
term in the supremum above can be written as

1
εN

x+εN
∑

y=x+1

〈ψ(η)(η(x)−η(y)), f 〉νN
α

By Lemma A.1 with the choice A= B
N and from (40), the term on the right-hand side of (44), is bounded

from above by Bε+ 1
N . Taking N→∞, ε→ 0 and then B→+∞ we are done. �

Now we state the replacement lemma that we need when the process is speeded up in the subdif-
fusive time scale.

Corollary A.4. Recall from (24) the definition of the mass of the system mN
t at the subdiffusive time scale

tN1+θ . For any θ > 1 and t ∈ [0, T] and x 6= z ∈ΛN we have that

limsup
N→+∞

EµN

�

�

�

�

�

�

∫ t

0
ηsN1+θ (z)(ηsN1+θ (x)−mN

s )ds

�

�

�

�

�

�

= 0. (45)

The proof follows exactly the same strategy as above, the only difference being that when we use
Lemma A.1 the function ϕ(η) = η(z) is not invariant under the exchanges in the bulk. Nevertheless,
by observing that the integrand function above can be written as

η(z)(η(x)−〈πN ,1〉) =
1
N
η(z)(η(x)−η(z))+

1
N
η(z)

∑

y 6=x ,z

η(x)−η(y) (46)
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and thanks to the exclusion rule, we can reduce the proof of this corollary to the proof of Lemma A.3.
To do that, go to the proof of Lemma A.3 take ε=1 and since the time scale is now subdiffusive, choose
A= BN−θ .

APPENDIX B. ENERGY ESTIMATE

Now we prove that the density ρ(t,u) belongs to the space L2(0, T ;H 1), see Definition 2.1. Define
the linear functional `ρ defined in C0,1

c ([0, T]×(0,1)) by

`ρ(G) =

∫ T

0

∫ 1

0
∂uGs(u)ρ(s,u)duds=

∫ T

0

∫ 1

0
∂uGs(u)π(s,du)ds.

Proposition B.1. There exist positive constants C and c such that

E
�

sup
G∈C0,1

c ([0,T]×(0,1))

¦

`ρ(G)− c‖G‖22
©�

¶ C <∞.

Above ‖G‖2 denotes the norm of a function G ∈ L2([0, T]×(0,1)).

Before proving this result, we state and prove an energy estimate for the macroscopic density.

Corollary B.2. Any limit point Q of the sequence (QN )N¾1 satisfies

Q
�

π· ∈D([0, T],M ), πt :=ρt(u)du, ρ ∈ L2(0; T,H 1)
�

= 1.

We denote RT the event above.

Proof of Corollary B.2. We first note that because of the exclusion between particles, every limit pointQ
is concentrated on trajectories of measure that are absolutely continuous with respect to the Lebesgue
measure (see e.g. [17], p.57, last paragraph for more details).

From Proposition B.1, `ρ is Q-almost surely continuous and therefore we can extend this linear
functional to L2([0, T]× (0,1)). As a consequence of the Riesz’s Representation Theorem there exists
H ∈ L2([0, T]×(0,1)) such that

`ρ(G) =−
∫ T

0

∫ 1

0
Gs(u)Hs(u)duds

for all G ∈ C0,1
c ([0, T]×(0,1)). From this we conclude that ρ ∈ L2(0, T ;H 1). �

Proof of Proposition B.1. By density and by the Monotone Convergence Theorem it is enough to prove
that for a countable dense subset {Gm}m∈N on C0,2

c ([0, T]×(0,1)) it holds that

E
�

max
k¶m
{`ρ(Gk)− c‖Gk‖22}

�

¶ C0,

for any m and for C0 independent of m. Note that the function that associates to a trajectory π· ∈
D([0, T],M+) the number maxk¶m

�

`ρ(Gk)− c‖Gk‖22
	

, is continuous and bounded w.r.t. the Skorohod
topology of D([0, T],M+) and for that reason, the expectation in the previous display is equal to the
next limit

lim
N→∞
EµN

�

max
k¶m

¨

∫ T

0

1
N −1

N−1
∑

x=1

∂uGk
s (

x
N )ηsN2(x)ds− c‖Gk‖22

«�

.

By entropy and Jensen’s inequalities plus the fact that emaxk¶m ak ¶
∑m

k=1 eak the previous display is
bounded from above by

C0+
1
N

logEνN
α

� m
∑

k=1

e
∫ T

0

∑

x∈ΛN
∂uGk

s (
x
N )ηsN2 (x)ds−cN‖Gk‖22

�

,

By linearity of the expectation, to treat the second term in the previous display it is enough to bound
the term

limsup
N→∞

1
N

logEνN
α

�

e
∫ T

0

∑

x∈ΛN
∂uGs(

x
N )ηsN2 (x)ds−cN‖G‖22

�

,
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for a fixed function G∈C0,2
c ([0, T]×(0,1)), by a constant independent of G. By Feynman-Kac’s formula,

the expression inside the limsup is bounded from above by
∫ T

0
sup

f

¦ 1
N

∫

ΩN

∑

x∈ΛN

∂uGs(
x
N )η(x) f (η)dν

N
α − c‖G‖22+N〈LN

p

f ,
p

f 〉νN
α

©

ds (47)

where the supremum is carried over all the densities f with respect to νN
α . Note that by a Taylor

expansion on G, it is easy to see that we can replace its space derivative by the discrete gradient
∇+N Gs(

x−1
N ) by paying an error of order O( 1

N ). Then, from a summation by parts, we obtain
∫

ΩN

N−2
∑

x=1

Gs(
x
N )(η(x)−η(x+1)) f (η)dνN

α

By writing the previous term as one half of it plus one half of it and in one of the halves we swap the
occupation variables η(x) and η(x+1), for which the measure να is invariant, the last display becomes
equal to

1
2

∫

ΩN

N−2
∑

x=1

Gs(
x
N )(η(x)−η(x+1))( f (η)− f (ηx ,x+1))dνN

α . (48)

Repeating similar arguments to those used in the proof of Lemma A.1, the last term is bounded from
above by

1
4N

∫

ΩN

∑N−2
x=1 (Gs(

x
N ))

2(
p

f (η)+
p

f (ηx ,x+1))2dνN
α +

1
4N

∫

ΩN

∑N−2
x=1 (

p

f (η)−
p

f (ηx ,x+1))2dνN
α

¶
C
N

∑

x∈ΛN
(Gs(

x
N ))

2+
1

4N
D0,N (

p

f ,νN
α )

for some C > 0. From (40) we get that (47) is bounded from above by

C

∫ T

0

�

1+
1
N

∑

x∈ΛN

(Gs(
x
N ))

2
�

ds − c‖G‖22

plus an error of order O( 1
N ). Above C is a positive constant independent of G. Since

1
N

∑

x∈ΛN
(Gs(

x
N ))

2

converges, as N→+∞, to ‖G‖22, then it is enough to choose c> C to conclude that

limsup
N→∞

¦

C

∫ T

0

�

1+
1
N

∑

x∈ΛN

(Gs(
x
N ))

2
�

ds − c‖G‖22
©

® 1

and we are done. �

APPENDIX C. UNIQUENESS OF WEAK SOLUTIONS OF (8)

We start this section by recalling from Section 7.2 of [2] the next two lemmas, which will be used
in our proof. The first one concerns uniqueness of the strong solutions of the heat equation with linear
Robin boundary conditions.

Lemma C.1. For any t ∈ (0, T], the following problem with Robin boundary conditions














∂sϕ(s,u)+a∂ 2
u ϕ(s,u) =λϕ(s,u), (s,u)∈ [0, t]×(0,1),

∂uϕ(s,0) = b(s,0)ϕ(s,0), s ∈ [0, t),
∂uϕ(s,1) =−b(s,1)ϕ(s,1), s ∈ [0, t),
ϕ(t,u) = h(u), u∈ (0,1),

(49)

with h≡ h(u) ∈ C2
0 ([0,1]) , λ¾ 0 , 0< a ≡ a(u, t) ∈ C2,2([0, T]× [0,1]), and for u ∈ {0,1}, 0< b ≡

b(u, t) ∈ C2[0, T], has a unique solution ϕ ∈ C1,2([0, t]× [0,1]). Moreover, if h ∈ [0,1] then we have
∀(s,u)∈ [0, t]×[0,1]:

0¶ϕ(s,u)¶ e−λ(t−s).

The second lemma is a technical regularization result on the coefficients b(s, ·).
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Lemma C.2. Let 0¶ b be a bounded measurable function in [0, T], A= {t ∈ [0, T] : b(t)> 0} and p ∈
[1,∞). Then there is a sequence (bk)k¾0 of positive functions in C∞[0, T] such that bk

k→∞
−−−→ b in

Lp([0, T]) and








b
bk
−1









Lp(A)

k→∞
−−−→ 0.

For the proof of Lemma 2.3, that is of uniqueness of weak solutions of (8), we will follow Filo’s
method [12], but mostly as presented in Section 7.2 of [2]. The main idea is to choose a particular
test function for the weak formulation satisfied by w :=ρ(1)−ρ(2), where ρ(1) and ρ(2) are two weak
solutions with the same initial data. Although we do not have as much work to treat the bulk terms as
in [2], our main issue is the non linearity of the boundary conditions.

Recalling the weak formulation in (9) and Lemma 5.4, since

Dλ,σρ
(1)
s (v)−Dλ,σρ

(2)
s (v) =−ws(v)Vλ,σ(ρ

(1)
s ,ρ(2)s )(v, v) :=ws(v)Vλ,σ(v,s)

for v= 0,1 and (λ,σ) = (α,γ),(β ,δ), we have:

〈wt ,Gt〉=
∫ t

0
〈ws,

�

∂ 2
u +∂s

�

Gs〉ds+

∫ t

0
ws(0)

�

∂uGs(0)−Gs(0)Vα,γ(0,s)
�

ds

−
∫ t

0
ws(1)

�

∂uGs(1)+Gs(1)Vβ ,δ(1,s)
�

ds. (50)

Now we choose our test functions. Since V·,· does not have enough regularity, we have to overcome
this problem by using Lemma C.2. We focus on the left boundary, since for the right boundary the
computations are analogous. Let A0 = {t ∈ [0, T] : Vα,γ(0, t)> 0} (similarly, we define A1 with respect
to the right boundary). From Lemma 5.4 we have Vα,γ(0,s)> 0 and we may therefore exchange [0, t]
by A0 (resp. A1) and apply Lemma C.2. As a consequence of Lemma C.2, for k large enough, there
exists bk(s,0) close to Vα,γ(0,s) in Lp([0, T]) for p ∈ [1,+∞):









Vα,γ(0, ·)
bk(·,0)

−1









Lp(A0)
¶ ε

for ε> 0 and A0 = {s ∈ [0, t] : Vα,γ(0,s)> 0}. Now we choose the space of test functions as a sequence
ϕk, where for each k, the function ϕk solves (49) with bk(·,0) given above and with λ= 0. From the
boundary conditions of (49), second term in (50) writes as

∫ t

0
ϕk(0,s)ws(0)

�

bk(0,s)−Vα,γ(0,s)
�

ds. (51)

Exchanging [0, t] by A0, the last display can be bounded from above by
�

�

�

∫

A0

ϕk(0,s)ws(0)bk(0,s)

�

1−
Vα,γ(0,s)

bk(0,s)

�

ds
�

�

�¶ 2‖bk(0,s)‖L1(A0)









Vα,γ(0,s)

bk(0,s)
−1









L1(A0)
® ε,

where we used that ϕk(·) and w(·) are bounded functions. For the right boundary the argument is
completely analogous.

Now we treat the bulk term. From our choice of test function we have
∫ t

0
〈ws,(∂

2
u +∂s)ϕk〉ds=

∫ t

0
〈ws,(1−a)∂ 2

u ϕk(·,s)〉ds.

Letting a=1, we thus have that 〈wt ,ϕt〉® ε. Since ϕt = h, it is enough to take h≡ hk ∈ C2
0 ([0,1]) such

that hk(·)
k→∞
−−−→ 1{u∈[0,1]:wt (u)>0}(t, ·) in L2([0,1]). The conclusion follows straightforwardly.

Remark C.3. We remark that for the model in [8] the lower bound takes the form of the term x = K in
the sum above, with γ= 0. For K = 1, that is, the case studied in [1], we have V =ρ(1)+ρ(2), and thus
V = 0 =⇒ w= 0.
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