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ABSTRACT 

G-quadruplexes are formed by guanine rich DNA/RNA sequences in the presence of metal ions, 

which occupy the central cavity of these four-stranded structures. We show that these metal ions 

have a significant effect on the photogeneration and the reactivity of guanine radicals. Transient 

absorption experiments on G-quadruplexes formed by association of four TGGGGT strands in 

the presence of K
+
 reveal that the quantum yield of one-photon ionization at 266 nm (8.1×10

-3
) is 

twice as high as that determined in the presence of Na
+
. Replacement of Na

+
 by K

+
 suppresses 

one reaction path involving deprotonated radicals, (G-H2)

  (G-H1)


 tautomerization. Such a 

behavior shows that the underlying mechanisms are governed by dynamical processes, controlled 

by the mobility of metal ions, which is higher for Na
+
 compared to K

+
. These findings may 

contribute to understand the UV-induced DNA damage and optimize optoelectronic devices 

based on four-stranded structures, beyond DNA. 
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Characterizing the formation and subsequent reactivity of guanine (G) radicals is an important 

issue in respect to the oxidatively generated damage to DNA
1
 and the development of DNA-

based electronic devices.
2-3

 Both aspects particularly concern G-quadruplexes, composed of 

vertically stacked G tetrads (Figure 1a). A quite unexpected route leading to G radicals in G-

quadruplexes was reported recently:
4-7

 photoionization at energies significantly lower than the 

guanine vertical ionization potential (VIP). The resulting radicals were shown to follow a 

complex reaction path, involving deprotonation of the radical cations (G)
+

  (G-H2)

 and 

tautomerization of the deprotonated radicals (G-H2)

  (G-H1)


 (Figure 1b). The present study 

is a stepping stone towards understanding this intriguing behavior. Performed by nanosecond 

transient absorption spectroscopy, it focuses on G-quadruplexes formed by association of four 

DNA TGGGGT strands in the presence of K
+
 ions, (TG4T)4/K

+
. The results are compared with 

those obtained for (TG4T)4/Na
+
,
5
 in which the static arrangement of nucleobases is the same, as 

determined by NMR experiments.
8-9

 This is also attested by the identical steady-state UV 

absorption spectra exhibited by the two systems.
9
 It is shown that replacement of Na

+
 by K

+
 

leads to a twofold increase in the propensity of G-quadruplexes to eject an electron upon 

absorption of low-energy photons. This contrasts with their similar VIP values, computed for the 

first time for G-quadruplex structures using Density Functional Theory (DFT). Moreover, our 

experiments reveal that K
+
 ions hinder tautomerization of deprotonated G radicals, readily 

observed in the presence of Na
+
 ions. These findings pinpoint the role of metal ions, which are 

key elements of four-stranded architectures.
10

 In particular, the different mobility of K
+
 and Na

+
 

are likely to affect dynamical processes controlling both electron ejection and tautomerization.  
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TGGGGT oligomers, purified by reversed phase HPLC, were studied in phosphate buffer (0.15 

mol L
-1

 KH2PO4, 0.15 mol L
-1

 K2HPO4). Details for G-quadruplex preparation and handling are 

given in the Supporting Information (SI). They were excited by 5 ns laser pulses at 266 nm 

(Figure SI-1), with incident intensity lower than 2x10
6 

Wcm
-2

, thus avoiding two-photon 

ionization of the solvent. 

 

Figure 1. Schematic illustration of the G-quadruplex structure formed by association of four 

TGGGGT strands (a) and the three types of radicals generated upon photoionization (b). Blue 

spheres, parallelograms and ellipses in (a) represent, respectively, metal ions M
+
 located in the 

central cavity of the G-quadruplex, guanine and thymine moieties.  

Ejected electrons were quantified as a function of the exciting laser intensity by detecting their 

transient absorbance A on the sub-µs time scale, when they had been already hydrated (ehyd
-
)
11

 

exhibiting a broad absorption band peaking around 720 nm. They disappear with a time constant 
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of 0.5 ± 0.1 µs (Figure 2a), being scavenged by the phosphate buffer in high concentration. Their 

decay was fitted with a mono-exponential function A0+A1exp(-t/); the A1 value, combined with 

the molar absorption coefficient of ehyd
-
,
11

 provided their zero-time concentration [ehyd
-
]0. Upon 

varying the concertation of photons absorbed by the probed solution [h], we obtained the 

ionization curve in Figure 2b, fitted with a linear function. The intercept at the origin provides 

the quantum yield for one-photon ionization 1, while the slope is proportional to the yield of the 

two-photon ionization. Under the same experimental conditions, no hydrated electrons were 

detected for the mononucleotide dGMP. The 1 value derived from Figure 2b, (8.1 ± 0.5)×10
-3

, is 

twice as high as that determined for (TG4T)4/Na
+
, (3.5 ± 0.5)×10

-3
.
5
  

 

Figure 2. Quantification of hydrated electrons ejected from (TG4T)4/K
+
 (1.5x10

-5
 molL

-1
) upon 

266 nm excitation. (a) Transient absorption decay at 700 nm obtained with incident intensity of 

1.7x10
6
 Wcm

-2
. (b) Ionization curve; [h] and [ehyd

-
]0 denote, respectively, the concentration of 
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absorbed photons per laser pulse and the zero-time concentration of hydrated ejected electrons. 

Red lines represent fits with model functions: A0+A1exp(-t/) (a) and [ehyd
-
]0/[h]=1 + [h] 

(b).  

Two different scenarios were invoked to explain G-quadruplex ionization by low-energy 

photons:
5-6

 (A) the specific arrangement of guanines lowers their VIP, or (B) electron 

detachment occurs after excited state relaxation towards charge transfer (CT) states.  

The effect of base-stacking and base-pairing on the VIP was found to be moderate.
12-14

 But, so 

far no information is available regarding G-quadruplexes, in which the central metal ions may 

have an influence. Thereby, we computed the VIP using a mixed quantum mechanics 

(QM)/molecular mechanics (MM) approach (Figure SI-2). As the large size of these systems 

makes the use of correlated methods, such as CASPT2, which provide accurate VIP values,
15-17

 

too demanding, we worked at the DFT(M052X)/6-31G(d) level. However, test calculations on 

guanine in gas phase provided similar values at CASPT2 (8.10-8.30 eV) and DFT (8.00 eV) 

levels of theory (SI and Figure SI-3), the latter being also in agreement with previous DFT 

studies.
12, 18-20

 The values found for (TG4T)4/K
+
 (6.48 eV) and (TG4T)4/Na

+
 (6.32 eV). We 

further examined the possibility that a small population exhibits lower VIP, due to 

inhomogeneous environment. Considering a Gaussian VIP distribution whose intensity is 1 at 6.5 

eV, a width of 1.3 eV (FWHM) is required so that the intensity at 4.66 eV (266 nm) to be equal 

to the experimentally determined quantum yield (~8x10
-3

). Such a width is too large knowing 

that those corresponding to the lowest bright transition of nucleotides do not exceed 0.5 eV.
21

 

Given all these considerations, scenario A, involving vertical ionization, does not seem plausible. 



8 

 

 8 

The first step of scenario B implies population of an excited CT state. A recent computational 

study on TEL21/Na
+
 identified two types of CT states, between two guanines of the G-

quadruplex core on the one hand, and between a guanine and the thymine of the loop, on the 

other.
22

 Experimentally, the formation of low energy CT states during the excited state relaxation 

in G-quadruplexes has been evidenced by time-resolved fluorescence anisotropy studies.
9, 22-25

 A 

low energy band is also present in the steady-state fluorescence spectra of dinucleotides dGpT 

(Figure SI-4). Moreover, in both (TG4T)4/K
+
 and (TG4T)4/Na

+
, thymines form an additional 

tetrad for 15% of population,
8
 a configuration that may favor population of thymine-guanine CT 

states. According to the second step of scenario B, the positive charge is trapped by the guanine 

core, where it may be delocalized.
26-27

 This process is tentatively described as:  

T
-
G

+
GGGT  T

-
(GGGG)

+
T  or TGG

-
G

+
GT  T

-
(GGGG)

+
T. Finally, electron ejection, assisted 

by conformational motions, occurs from the thymine anion, whose VIP in the gas phase is lower 

than 0.1 eV.
28

  

Coming to radicals, their spectra (Figure 3) are determined after the decay of ehyd
-
. As in the case 

of previously studied G-quadruplexes,
4-6

 the spectrum at 3 µs exhibits a broad band in the 

visible, explained by the coexistence of (G)
+

 and (G-H2)

. When the transient absorbance A is 

divided by the [ehyd
-
]0 determined for the same excitation intensity, the radical spectrum can be 

quantitatively described by a linear combination of the (G)
+

 and (G-H2)

 spectra in a ratio 

0.4/0.6 (Figure 3a), considering the corresponding spectra reported for either monomeric 

guanosines
29-30

 or (TG4T)4/Na
+
.
5
 The combined quantification of [ehyd

-
]0 and G radicals reveals 

that (40±5)% of the initially generated electron holes are still present at 3 µs, a slightly higher 

percentage than that found for (TG4T)4/Na
+

, (25±5)%.
5
 Deprotonation of this long-lived (G)

+
 



9 

 

 9 

population, occurs practically within 10 µs (Figure 4a), independently of the type of metal 

ions.
5
  

The characteristic absorption band of (G-H2)

 radicals, peaking around 600 nm, is present in the 

spectra of (TG4T)4/K
+
 on the ms time-scale (Figure 3b). Moreover, the decay patterns in the 500 

– 650 nm region are quite similar (Figure 4b). This contrasts with the behavior of (TG4T)4/Na
+
, 

whose spectrum at 6 ms clearly corresponds to deprotonated (G-H1)

 radicals and decay patterns 

are wavelength dependent.
5
 Furthermore, we found that the spectra computed for all G radicals 

are hardly affected by the type of the metal ions (Figure SI-5). Thus, it appears that the (G-H2)

 

 (G-H1)

 tautomerization, which is operative for (TG4T)4/Na

+
,
5 

but also for telomeric G-

quadruplexes TEL21/Na
+
,
4
 is practically suppressed in the case of (TG4T)4/K

+
.  
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Figure 3. Differential absorption spectra determined for (TG4T)4/K
+
 at 3 µs (a; red), 100 µs (b; 

green), 2 ms (b; yellow) and 6 ms (b; blue). In (a) A was divided by the initial concentration of 

hydrated ejected electrons [ehyd
-
]0; the grey line in (a): linear combination of the spectra 

corresponding to the radical cation (40%)
29

 and the (G-H2)

 radical of monomeric guanosine 

(60%),
30

 considered with their  values. A in (b) was normalized to 1 at 585 nm.  

Tautomerization of deprotonated radicals requires, in principle, breaking of a hydrogen bond 

(Figure 1b) which may be local or result from simple dissociation of the four-stranded structures. 

According to an NMR study, the dissociation rate of (TG4T)4/Na
+
 is two orders of magnitude 

faster than that of (TG4T)4/K
+
;
31

 but the associated times (days) are excessively longer 

compared to those found for radical tautomerization (a few ms).
5
 In contrast, the movement of 

the metal ions occurs on a time-sale comparable to our observations.
10, 32-33

 The free energy 

barriers corresponding for moving of metal ions to adjacent binding sites, were reported to be 13-

15 and 4-5 kcalmol
-1

, respectively, for (TG4T)4/K
+
 and (TG4T)4/Na

+
.
34

 Such motions are 

expected to perturb the entire bond network inside tetrads. When radicals are present, there is 

competition between two reactions: (G-H2)

  (G-H1)


 (I) and (G-H2)


  X (II), where X is an 

unknown DNA lesion. Thus, observation of (G-H1)

 radicals is possible only if the rate of bond 

breaking is faster than the rate of reaction (II). In the case of (TG4T)4/K
+
, reaction (II) prevails, 

while the two rates are comparable for (TG4T)4/Na
+
. For the latter system, 40% of the G radical 

population is present as (G-H1)

 at 10 ms, while 60% has already reacted mainly via the (G-H2)


 

form.  

It is worth-stressing that neither the radical concentration generated with a given excitation 

intensity, nor their decay pattern (Figure SI-6) are modified upon tenfold decrease of the ionic 
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strength of the buffer. This means that, on the one hand, the screening of phosphate groups by 

counter ions does not affect the photo-ionization process and, on the other, the buffer ingredients 

do not participate to the (G-H2)

  X reaction.  

 

 

Figure 4. Transient absorption traces recorded for (TG4T)4/K
+
 at 500 nm (blue) on the µs (a) 

and the ms (b) time-scales. The yellow line in (a) corresponds to the fit with a mono-exponential 

function. The decays at 550 nm (green), 600 nm (pink) and 650 nm (red), normalized to their 

maximum, are also shown in (b). Excitation intensity of 2x10
6
 Wcm

-2
. 

In conclusion, the larger propensity of (TG4T)4/K
+
 to undergo electron detachment by 

absorption of low-energy photons, compared to (TG4T)4/Na
+
, in association with their similar 

VIP, indicates that electron detachment occurs via a non-vertical process. We hope that these 

results will incite further experimental and theoretical studies to elucidate the various steps of 
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this complex mechanism. This could have an impact on the design of optoelectronic devices 

inspired by guanine quadruplexes and potentially containing other functional molecules.
35

 

Moreover, the suppression of the (G-H2)

  (G-H1)

 
tautomerization by K

+
 ions, provides a 

unique occasion to identify the DNA lesions stemming from (G-H2)

 radicals by analytical 

chemistry methods. Such a characterization will allow evaluating the overall biological impact of 

oxidative damage related to G-quadruplex structures. The existing studies mainly focus on the 

reaction products resulting from radical cations.
36-37

 Our results show instead that, in the 

presence of K
+
 ions, more abundant than Na

+
 ions in human cells, nearly the entire radical 

population is transformed to (G-H2)

, whose reactivity so far has been neglected.  
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