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Abstract

In this work, we investigate direction �nding in the presence of

sensor gain uncertainties and directional perturbations for sensor ar-

ray processing in a multi-frequency scenario. Speci�cally, we adopt

a distributed optimization scheme in which coherence models are in-

corporated and local agents exchange information only between con-

nected nodes in the network, i.e., without a fusion center. Numerical

simulations highlight the advantages of the proposed parallel iterative

technique in terms of statistical and computational e�ciency.

Keywords: Calibration, source localization, multi-frequency, sensor ar-
ray processing, distributed optimization.

1 Introduction

Calibration and Direction-of-Arrival (DoA) estimation is a major issue in
array processing [2, 3]. The latter has been studied in several applications,
e.g., radar, sonar, satellite, wireless communication and radio interferometric
systems [4, 5], where we commonly use largely distributed sensors elements
aiming to achieve high resolution. In all these sensor network applications,
calibration is required as some parameters are not exactly known due to im-
perfect instrumentation or propagation conditions [6]. Let us note that cali-
bration algorithms are distinguished by the presence [7] or absence [8] of one
or more cooperative sources, named calibrator sources. Indeed, prior source
information can be available [6] and consists mainly in the true/nominal
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France, M. N. El Korso is with Paris-Nanterre University, France, R. Boyer is with University of
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directions and powers of calibrator sources (i.e., without any perturbation
e�ects or antenna imperfections). Furthermore, most calibration algorithms
are based on the least squares approach, with a sequential procedure updat-
ing each parameter alternatively [4]. The least squares estimator is indeed
equivalent to the Maximum Likelihood (ML) method under a (unrealistic)
Gaussian noise model.

The aim of the proposed methodology here is to estimate successively the
unknown sensor gains and phase errors, along with the calibrator and noise
parameters, through minimization of a proper weighting cost function. In
this work, uncertainties are estimated from the array covariance matrix, since
dealing directly with time series data and operating on the signal domain
quickly becomes computationally unfeasible for a large number of samples
[9]. The scenario under study is general but could be adapted to any prac-
tical application as in the radio astronomy context, where the number of
parameters to estimate is tremendous and frequency bands are wide.

In the multi-frequency scenario, a suboptimal way to perform calibration
is to consider one wavalength bin at a time, with only one centralized pro-
cessor, which has access to data in the whole available range of wavelengths.
In this work, we study an accelerated version based on the scalable form
of the Alternating Direction Method of Multipliers (ADMM) [10, 11] with
a speci�c network topology: there is no fusion center and agents exchange
information only among themselves. The goal being to reduce the complex-
ity in operation �ow and signaling exchanging [12, 13, 14, 15, 16, 17]. For
estimation of the directional gains, the compressive sensing framework, es-
pecially the sparse representation method, is well-adapted and has already
been applied for source localization in fully and partially calibrated arrays
[18, 19, 20, 21].

The notation used through this paper is the following: (.)∗, (.)T , (.)H ,
(.)�α, <(.) and [.]n denote, respectively, the complex conjugate, transpose,
Hermitian operator, element-wise raising to α, real part and the n-th el-
ement of a vector. The expectation operator is E{.}, ⊗, ◦ and � denote,
respectively, the Kronecker, the Khatri-Rao and the Hadamard product. The
operator diag(.) converts a vector into a diagonal matrix, blkdiag(.) is the
block-diagonal operator, whereas vecdiag(.) produces a vector from the main
diagonal of a matrix and vec(.) stacks the columns of a matrix on top of one
another. The operators ‖.‖2 and ‖.‖F refer to the l2 and Frobenius norms,
respectively. Finally, IP is the P × P identity matrix and | · | refers to the
cardinality of a set.

2 Model setup

Let us consider Q emitting signal sources and P sensor elements in the ar-
ray. Each source direction q ∈ {1, . . . , Q} is de�ned by a 2-dimensional
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vector dq =
[
dlq, d

m
q

]T
, s.t., all nominal/true known directions, without any

disturbances, are stacked in DK =
[
dK

1 , . . . ,d
K
Q

]
∈ R2×Q. Propagation

conditions induce wavelength dependent distortions, leading to apparent
source directions Dλ = [d1,λ, . . . ,dQ,λ] di�erent from the true ones. Un-
der the narrowband assumption, the array response matrix reads ADλ

=
1√
P

exp
(
−j 2π

λ ΞDλ

)
in which Ξ = [ξ1, . . . , ξP ]T ∈ RP×2 includes the known

Cartesian coordinates describing each sensor location in the array, s.t., for
p ∈ {1, . . . , P}, ξp = [xp, yp]

T . Therefore, the P × 1 narrowband signals
measured by all antennas is written as follows, for the n-th time sample and
wavelength λ,

xλ(n) = GλADλ
Γλsλ(n) + nλ(n) (1)

where the undirectional antenna gains are collected in the complex diagonal
matrix Gλ = diag{gλ} ∈ CP×P and the directional gain responses, assumed
identical for all antennas, are modeled by the diagonal matrix Γλ ∈ CQ×Q.
Finally, sλ(n) ∼ CN (0,Σλ) and nλ(n) ∼ CN (0,Σn

λ) are the i.i.d. cali-
brator source signal and additive Gaussian thermal noise vectors with their
corresponding diagonal covariance matrices Σλ = diag{σλ} ∈ RQ×Q and
Σn
λ = diag{σnλ} ∈ RP×P , respectively. From (1), we deduce the following

covariance matrix 1

Rλ(pλ) = E
{

xλx
H
λ

}
= EDλ

MλE
H
Dλ

+ Σn
λ (2)

where EDλ
= GλADλ

Σ
1/2
λ and Mλ = ΓλΓ

H
λ = diag{mλ}. In this context,

the calibration problem consists in estimating the parameter vector of inter-
est p = [pTλ1 , . . . ,p

T
λF

]T with F the total number of available wavelengths

and pλ = [gTλ ,d
T
1,λ, . . . ,d

T
Q,λ,m

T
λ ,σ

nT

λ ]T . To this end, we exploit sample co-

variance matrices R̂λ, de�ned as R̂λ = 1
N

∑N
n=1 xλ(n)xHλ (n) for wavelength

λ.
In estimation theory, the ML estimator is well-known for its statistical

e�ciency but not always easy to implement in practice. The Weighting
Least Squares approach is an appropriate alternative as it is asymptotically
equivalent to the ML for a large number of samples N . Therefore, we wish
to minimize the following local cost function, associated to wavelength λ

κλ(pλ) = ||
(
Rλ(pλ)− R̂λ

)
�Ωλ||2F (3)

where Ωλ = (σn
λσ

nT

λ )�−
1
2 . Most sources are assumed buried beneath the

noise and antennas are identical in the array with negligible mutual coupling.
The aim of the designed calibration algorithm is to minimize the global cost

1As in [22], some commonly used assumptions are considered here to overcome scaling
ambiguities, such as �xed phase for the �rst element and one reference source with �xed
direction and directional gain/apparent power.
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function κ(p) =
∑

λ∈Λ κλ(pλ) in a parallel and step-wise approach, with Λ =
{λ1, . . . , λF } the total set of available wavelengths. Usually, minimization
is conducted w.r.t. one speci�c parameter while �xing the others in pλ
[22].Here, our approach is di�erent: we propose an accelerated version where
estimation is performed directly w.r.t. the consensus (hidden) variables, as
described in Algorithm 1 and detailed in the following.

3 Description of the proposed estimator

To achieve multi-frequency calibration in the sensor array, coherence is im-
posed along wavelength subbands for both directional and undirectional
gains, by imposing available constraints or enforcing smooth variation. The
choice of the basis functions is motivated by the application under analysis
and can be adapted accordingly.

3.1 Coherence model for the undirectional antenna gains

To impose coherence along subbands, we introduce a set of smooth wave-
length dependent basis functions and express the gains as linear combina-
tions. Let us de�ne αp = [α1,p, . . . , αKg ,p]

T ∈ CKg , the consensus vec-
tor for the p-th sensor with unknown linear coe�cients. Therefore, for
p ∈ {1, . . . , P} and λ ∈ Λ, [gλ]p =

∑Kg
k=1 bk,λαk,p = bT

λαp, in which

bλ =
[
b1,λ, . . . , bKg ,λ

]T ∈ RKg stands for the polynomial terms, describing
the variation of the undirectional gains w.r.t. wavelength. For instance, we

can consider the typical basis function bk,λ =
(
f−f0
f0

)k−1
in which f = c/λ

is the studied frequency of interest with c the speed of light and f0 is the
reference frequency [22, 23]. By stacking all vectors αp, we obtain the global

consensus vector α =
[
αT

1 , . . . ,α
T
P

]T ∈ CPKg , leading to

gλ = Bλα, (4)

with Bλ =
(
IP ⊗ bT

λ

)
.

3.2 Coherence model for the directional gains

Similarly as for the undirectional gains, the coherence model is de�ned as
follows: let us consider αq ∈ RKm , for q ∈ {1, . . . , Q}, such that for λ ∈ Λ,

[mλ]q = bT
mλ
αmq , (5)

in which αmq is the vector of hidden variables for the q-th calibrator source,
associated to directional gains mλ, while bmλ

is the corresponding basis

vector. As in section 3.1, all αmq are stacked in αm =
[
αTm1

, . . . ,αT
mQ

]T
∈

RQKm , �nally leading to
mλ = Bmλ

αm (6)
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with Bmλ
=
(
IQ ⊗ bT

mλ

)
. We assume identical behavior for all sources but

the process can be straightforwardly adapted to di�erent behavior. In [22],
the directional gains in Γλ were assumed inversely proportional to λ but here
the algorithm can be adjusted to any general existing models.

3.3 Distributed network with a fusion center

Dealing with large data volumes delivered by advanced sensor array systems
requires computationally e�cient calibration algorithms, with a huge number
of unknowns to solve. To improve both computational cost and estimation
accuracy, distributed calibration has been proposed by exploiting data par-
allelism across frequency. Contrary to a centralized hardware architecture
which processes all frequency bands at a single location and is therefore
computationally challenging, distributed optimization introduces more than
one compute agents and analyzes the data simultaneously across smaller
frequency intervals [10]. By distributing the total computations across the
network, we gain a signi�cant reduction in operational and energy cost and
each agent receives information indirectly across the whole frequency range,
thus improving the calibration accuracy. To handle this, let us consider Z
computational agents disposed on a network. Each agent has access to some
wavelengths λ ∈ Λz = {λz1, . . . , λzJz} ⊂ Λ. The corresponding unknown pa-
rameters in p are estimated locally and consensus is enforced among agents
by imposing constraints in (4) and (6).

To start with, let us focus on estimation of the undirectionnal sensor gains
in section 3.1. We de�ne αz as the local copy of the common optimization
variableα for the z-th agent and we note {αz}Z = {α1, . . . ,αZ} the set of all
αz in the network. Calibration is reformulated as the following constrained
problem

α̂ = argmin
α,{αz}Z

Z∑
z=1

κz (αz) subject to αz = α for z ∈ {1, . . . , Z} (7)

where κz (αz) is the cost function for the z-th agent, i.e., for λ ∈ Λz, which

depends on the local variable αz and is associated to data
{

R̂λ

}
λ∈Λz

.

To solve this problem, we use the augmented Lagrangian, given by [24]
L ({αz}Z ,α, {yz}Z) =

∑Z
z=1 κ

z (αz) + <
{
yzH (αz −α)

}
+ ρ

2 ‖α
z −α‖22

where {yz}Z are the Z Lagrange multipliers and ρ is the regularization
term. We resort to the consensus ADMM in the scaled form by introducing
the scaled dual variable uz = 1

ρy
z [10]. The three updates of the iterative
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algorithm are therefore given by

αz[t+1] = argmin
αz

κz (αz) +
ρ

2
‖αz −α[t] + uz[t]‖22 = argmin

αz
L̃z
(
αz,α[t],uz[t]

)
(8)

α[t+1] = argmin
α

Z∑
z=1

‖αz[t+1] −α+ uz[t]‖22 (9)

uz[t+1] = uz[t] +
(
αz[t+1] −α[t+1]

)
(10)

where t is the iteration counter. Minimization (9) leads to the following
average, computed at the fusion center and sent to all agents in the network,

α̂ =
1

Z

Z∑
z=1

(αz + uz) , (11)

from which the undirectional gains can be directly deduced with (4). The
local minimization step in (8) is the computationally most expensive one.
To this end, we adopt an iterative approach and notice that the problem is
separable w.r.t. each αz, i.e., w.r.t. each agent. Let us assume αz and (αz)∗

as two independent variables [25]. We then minimize L̃z (αz, (αz)∗,α,uz)
w.r.t. αz, considering (αz)∗ as �xed and neglecting the diagonal elements
in the cost function. In this case, the local cost function becomes separable

w.r.t. the sub-vectors of αz, i.e., αz =
[
αzT1 , . . . ,αzTP

]T
, where αzp is the

local consensus vector for the p-th sensor at the z-th agent. The following
decompositions w.r.t. the sensor elements are also possible

κz(αz) =

P∑
p=1

κzp(α
z
p) (12)

and L̃z (αz;α,uz) =
∑P

p=1 L̃
z
p

(
αzp;αp,u

z
p

)
with L̃zp

(
αzp;αp,u

z
p

)
= κzp(α

z
p) +

ρ
2‖α

z
p−αp+uzp‖22 where κzp(αzp) corresponds to the cost function for the p-th

row of
{

R̂λ

}
λ∈λz

, which only depends on αzp since the remaining parameters

are considered as �xed in this step. Let us de�ne the operator Sp(.), that
converts to a vector the p-th row of a matrix and removes the p-th element of
this selected vector. We also introduce the quantity RK

λ = ADλ
ΣλMλA

H
Dλ

(reference source model) and the following vectors

r̂λp = Sp
(
R̂λ

)
� ωλp , zλp = Sp

(
RK

λ diag (Bλ(αz)∗)
)
� ωλp (13)

in which ωλp = Sp (Ωλ). In addition, let us consider the Jz × Kg ma-

trix Bz =
[
bλz1 , . . . ,bλzJz

]T
, r̂zp =

[
r̂
λz1T
p , . . . , r̂

λzJzT
p

]T
∈ C(P−1)Jz×1, Zzp =
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blkdiag
(
z
λz1
p , . . . , z

λzJz
p

)
∈ C(P−1)Jz×Jz and Z̃zp = ZzpB

z. We can thus write

κzp(α
z
p) in (12) as κzp(α

z
p) =

∥∥∥r̂zp − Z̃zpα
z
p

∥∥∥2

2
and �nally obtain the following

estimate

α̂zp =
(

2Z̃zHp Z̃zp + ρIKg

)−1 (
2Z̃zHp r̂zp + ρ

(
αp − uzp

))
. (14)

3.4 Distributed network with no fusion center

We consider a speci�c formulation of the ADMMwhere every node in the net-
work performs calibration locally and consensus is only reached with clearly
identi�ed neighbours without fusion center [12]. We note Nz the index set
that corresponds to the neighbours of the z-th agent. The considered net-
work architecture is exposed in Figure 1 where for example, N3 = {2, 4}. We
de�ne the quantity (·)z,y as the copy available at the z-th agent, transferred
to the y-th agent. In such context, the minimization problem becomes

α̂ = argmin
{αz ,βz,y ,∀y∈Nz}Z

Z∑
z=1

κz (αz)

subject to αz = βz,y, βy,z = βz,y, ∀y ∈ Nz, for z ∈ {1, . . . , Z}

(15)

where the auxiliary variables βz,y impose consensus contraints on two neigh-
boring agents and are meant to be local copies of α. The decentralized strat-
egy enables to cooperatively minimize a sum of local objective functions, the
�nal aim being to converge to a common value, with fast convergence speed
and good estimation performance [26]. To obtain a more compact form of
the problem in (15), we de�ne βz =

[
{βz,y}y∈Nz

]
and β =

[
{βz}z∈{1,...,Z}

]
,

leading to

α̂ = argmin
{αz ,βz}Z

Z∑
z=1

κz (αz) subject to Hzαz = βz, for z ∈ {1, . . . , Z}, β ∈ B

(16)

with B =
{
β|βz,y = βy,z, ∀y ∈ Nz, for z ∈ {1, . . . , Z}

}
and Hz = 1Nz×1 ⊗

IKgP where Nz = |Nz|. As in section 3.3, the scaled version of the ADMM
leads to

αz[t+1] = argmin
αz

κz (αz) +
ρ

[t+1]
z

2
‖Hzαz − βz[t] + uz[t]‖22 = argmin

αz
L̃z
(
αz,βz[t],uz[t]

)
(17)

{βz[t+1]}Z = argmin
{βz}Z∈B

L
(
{αz[t+1],βz,uz[t]}Z

)
(18)

uz[t+1] = uz[t] +
(
Hzαz[t+1] − βz[t+1]

)
(19)
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and through decomposition of the problem in (17) w.r.t. sensor dependence,
we obtain

α̂zp =
(

2Z̃zHp Z̃zp + ρNzIKg

)−1 (
2Z̃zHp r̂zp + ρHzH

p

(
βzp − uzp

))
(20)

with Hz
p = 1Nz×1 ⊗ IKg . The selected variables βzp and uzp are obtained

from βz and uz via an appropriate selection matrix. After considering the
projection onto B and denoting the messages passed between the agent as

γz[t+1] =
[
{γz,y[t+1]}y∈Nz

]
= Hzαz[t+1] + uz[t], (21)

we solve (18) thanks to

βz,y[t+1] =
1

2

(
γy,z[t+1] + γz,y[t+1]

)
. (22)

The steps of the proposed distributed method for calibration of sensor gains
are exposed in Algorithm 1.2.

3.5 Estimation of directional gains

In this section, we describe the part of the algorithm dedicated to the
estimation of DoA Dλ and directional gains mλ, for �xed sensor gains,
with a sparse and distributed implementation. Assuming a sparse observed
scene, we de�ne dictionaries of steering matrices for q ∈ {1, . . . Q} and

λ ∈ Λ, as Ãλ =
[
Ã1,λ, . . . , ÃQ,λ

]
∈ CP×Ng , where Ng =

∑Q
q=1Nq de-

notes the total number of directions on the grid. The sparse vectors in

m̃λ =
[
m̃T

1,λ, . . . , m̃
T
Q,λ

]T
∈ RNg , contain the corresponding squared direc-

tion dependent gains. The covariance model is rewritten as Rλ = ẼλM̃λẼ
H
λ+

Σn
λ, in which M̃λ = diag(m̃λ) =

(
INg ⊗ bTλ

)
blkdiag

(
α1, . . . ,αNg

)
, Ẽλ =

GλÃλΣ̃
1
2
λ and Σ̃λ = blkdiag

(
IN1 [σλ]1 , . . . , INQ [σλ]Q

)
. To handle the DoA

estimation and satisfy both sparsity and positivity requirements, we use the
Distributed Iterative Hard Thresholding (IHT) [27, 28]. But contrary to [22],

the following hard-thresholding operator H1

(∑
λ∈Λ

(
V̌qT
λ

ˇ̂rqλ

)�2
)
is consid-

ered to provide access to the DoA of the q-th source, and a �rst estimate of
the directional gain m̌z

q . The quantity (·)q refers to the q-th column of a ma-

trix, the expression (̌·) discards the elements corresponding to the diagonal
of R̂λ and the hard thresholding operator Hs(.) keeps the s-largest compo-
nents and sets the remaining entries equal to zero. Finally, thanks to (5)
and dealing with the consensus variables as in section 3.4, the minimization
problem becomes

α̂mq = argmin
{αz,zmq ,{α

z,y
mq}y∈Nz}Z

Z∑
z=1

ηzq

(
αz,zmq

)
subject to αz,zmq

= αy,zmq
,∀y ∈ Nz, for z ∈ {1, . . . , Z}

(23)
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where we bene�t from the previous hard-thresholding estimate to de�ne
ηzq
(
αmq

)
=
∑

λ∈Λz

∥∥m̌q,λ − bTmλ
αmq

∥∥2

2
=
∥∥m̌z

q −Bz
mαmq

∥∥2

2
with m̌z

q =

[m̌q,λz1
, . . . , m̌q,λzJz

]T and Bz
m =

[
bmλz1

, . . . ,bmλz
Jz

]T
. As previously, we im-

pose consensus between neighbours thanks to some auxiliary variables but
due to lack of space, we only present here the resulting local update for αzmq

,

α̂zmq
=
(

2BzT
m Bz

m + ρzHzT

mHz
m

)−1 (
2BzT

m m̌z
q + ρzHzT

m (βzm − uzm)
)

(24)

where Hz
m = 1Nz×1 ⊗ IKm×Km . From α̂zmq

, we obtain an estimate of [mλ]q
and process the next source, as shown in Algorithm 1.3.

4 Numerical simulations

In order to evaluate the method, we consider realistic simulations for the
radio astronomy context where the new generation of phased array systems
such as the Low Frequency Array (LOFAR) and the Square Kilometre Ar-
ray (SKA) requires the development of new advanced signal processing tech-
niques for calibration purpose [4, 29]. Indeed, lack of calibration leads to
dramatic e�ects and distortions in the reconstructed images. We consider
P = 60 antennas spread over a �ve-armed spiral [30, 31], which corresponds
to the LOFAR's Initial Test Station. Let us assume a sky model with Q = 3
strong calibrator sources and QU = 8 weak unknown sources in the back-
ground. The reference frequency f0 is set to 30 MHz and we consider fre-
quencies ranging from 29.6 MHz to 30.4 MHz, with Z = 3 agents in the
network and Nz = 2. The polynomial orders are chosen as Kg = Km = 3.
The consensus variables α and αm are initialized as zeros and the squared
directional gains are generated thanks to power law functions (λ/λ0)k−1 for
k ∈ {1, . . . ,Km}.

4.1 In�uence of the number of frequency channels

First of all, we investigate the statistical performance of the proposed dis-
tributed algorithm as a function of the number of samples N or the Signal-
to-Noise Ratio (SNR). The SNR is de�ned as the ratio between the sum of
apparent powers for all Q sources and the noise power. Results are averaged
for 100 Monte-Carlo runs. In Figure 2, we plot the three following cases:
F = 3 and each agent handles one frequency, i.e., Jz = 1 (green curve),
F = 9 with Jz = 3 (blue curve) and F = 27 with Jz = 9 (red curve). In Fig-
ure 2 (a), we plot the Root Mean Square Error (RMSE) as a function of N for
the undirectional gains gλ, de�ned as εgλRMSE = 1√

PF

∑
λ∈Λ ‖Bλα̂−Bλα‖2 ,

for �xed SNR = −36 dB. A similar �gure is presented in Figure 2 (b), for
the source directions Dλ, as a function of the SNR and �xed N = 28. We
illustrate the performance by comparing with the mono-calibration scenario
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where each agent handles one single frequency, independently. We notice
that mono-calibration is clearly improved, by using a distributed procedure
where the whole information is �owing through the entire network.

4.2 In�uence of the network architecture

We aim to show the advantages of the proposed distributed network with
no fusion center and only exchange of local information between neighboring
agents, in terms of complexity. With similar number of iterations in all loops
of the algorithm, di�erent estimation performance are attained in Figure 2
(a) while similar RMSE is reachable in Figure 2 (b) but with an additional
computational cost if there is a fusion center (an increase of at least a factor
5 in computing time).

4.3 Convergence analysis

We illustrate the convergence behavior of the proposed algorithm by analyz-
ing the following residuals as function of the iteration number. Depending on
the iteration in Algorithm 1, we plot the primal residual as a function of the

iteration number of Algorithm 1.2, de�ned as ε
[t]
p = 1√

PKgZNz

∑Z
z=1

∥∥Hzαz[t] − βz[t]
∥∥

2
.

Likewise, we also study the di�erent estimates between agents through ε
[t]
DIFF =

1√
PKgZ(Z−1)

∑Z
z,z′=1

∥∥∥αz[t] −αz′[t]∥∥∥
2
. Similar statistical behavior can be ob-

tained for corresponding residuals in Algorithm 1.3

5 Conclusion

In this work, we proposed an iterative algorithm for parallel calibration, ap-
plied in a general context of sensor array processing: complex electronic gains
are imprecisely known and propagation disturbances lead to deviations in the
source locations. In order to reduce the communication overhead, the spe-
ci�c variation of parameters across wavelength is exploited in a distributed
network with no fusion center and local exchange of information between ad-
jacent connected nodes. The two main steps of the algorithm are based on
the scalable form of the ADMM and distributed IHT procedures. We high-
lighted the e�ectiveness and time e�ciency of the proposed method using
simulated data, even in the presence of non-calibrator sources at unknown
directions.
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Figure 1: Example of distributed network with no fusion center.
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Algorithm 1: Proposed calibration algorithm

Input:
{
R̂λ

}
λ∈Λ

,DK, ηp;
Initialize: set
i = 0,

{
gλ = g

[0]
λ ,Dλ = DK,mλ = m

[0]
λ ,Ωλ = 1P×P

}
λ∈Λ

;

repeat

1 i = i+ 1;

2 Estimate in parallel
{
g

[i]
λ

}
λ∈Λ

with Algorithm 1.2;

3 Estimate in parallel
{
D

[i]
λ ,m

[i]
λ ,σ

n[i]
λ

}
λ∈Λ

with Algorithm 1.3;

4 Update locally
{
Ω

[i]
λ

}
λ∈Λ

;

until
∥∥p[i−1] − p[i]

∥∥
2
≤
∥∥p[i]

∥∥
2
ηp;

Output: p̂ =
[
p

[i]T
λ1
, . . . ,p

[i]T
λF

]T
;
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Algorithm 1.2: Distributed estimation of consensus variables for
undirectional gains

Input:
{
R̂λ

}
λ∈Λ
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D

[i−1]
λ

ΣλM
[i−1]
λ AH

D
[i−1]
λ
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λ)−

1
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[k]
λ = g

[i]
λ , M

[k]
λ = M
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λ ,

D
[k]
λ = D
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λ ,σ

n[k]
λ = σ
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