
HAL Id: hal-02468864
https://hal.science/hal-02468864v2

Preprint submitted on 7 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Challenges of Trace-Driven Wi-Fi Emulation
Mohammad Imran Syed, Renata Teixeira, Sara Ayoubi, Giulio Grassi

To cite this version:
Mohammad Imran Syed, Renata Teixeira, Sara Ayoubi, Giulio Grassi. The Challenges of Trace-Driven
Wi-Fi Emulation. 2019. �hal-02468864v2�

https://hal.science/hal-02468864v2
https://hal.archives-ouvertes.fr


The Challenges of Trace-Driven Wi-Fi Emulation

Mohammad Imran Syed†,¶,§, Renata Teixeira†, Sara Ayoubi†, and Giulio Grassi†

†INRIA, Paris
¶Sorbonne Sciences University, Paris

§EIT Digital Master School
{mohammad.syed, renata.teixeira, sara.ayoubi, giulio.grassi}@inria.fr

ABSTRACT
Wi-Fi link is unpredictable and it has never been easy to
measure it perfectly; there is always bound to be some bias.
As wireless becomes the medium of choice, it is useful to
capture Wi-Fi traces in order to evaluate, tune, and adapt the
different applications and protocols. Several methods have
been used for the purpose of experimenting with different
wireless conditions: simulation, experimentation, and trace-
driven emulation. In this paper, we argue that trace-driven
emulation is the most favorable approach. In the absence
of a trace-driven emulation tool for Wi-Fi, we evaluate the
state-of-the-art trace-driven emulation tool for Cellular net-
works and we identify issues for Wi-Fi: interference with
concurrent traffic, interference with its own traffic if mea-
surements are done on both uplink and downlink simulta-
neously, and packet loss. We provide a solid argument as to
why this tool falls short of effectively capturing Wi-Fi traces.
The outcome of our analysis guides us to propose a number
of suggestions on how the existing tool can be tweaked to
accurately capture Wi-Fi traces.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-
neous; D.2.8 [Software Engineering]: Metrics—com-
plexity measures, performance measures

General Terms
Theory

Keywords
Internet measurement, Wireless link emulation, Wi-Fi
record & replay

1. INTRODUCTION
Mobile networks are becoming increasingly more pop-

ular than wired networks due to the widespread use
of mobile devices (e.g. smartphones, laptops, tablets,
smartwatches, etc.). The number of smartphone users
alone is expected to reach 2.87 billion by 2020 [5].

The portability, availability, affordability, and increas-
ing speeds of wireless connections, have made wireless
the medium of choice.

The quality of wireless connectivity varies drastically
from place to place depending on the coverage. There
are a number of factors that affect signal quality or cre-
ate interference, like poor network configuration, old
equipment, fluctuating demands of users, router posi-
tion, congestion, and coverage. As many of today’s
applications and services will be running over Wi-Fi
or Cellular, it is useful to evaluate the performance of
these applications in different wireless networks. For in-
stance, application developers may wish to understand
the impact of Wi-Fi packet-drop on their application, or
what are the user-perceived latencies over Wi-Fi versus
LTE.

There are different options for evaluating the applica-
tions and services in real network environments, namely
simulation, experimentation, and emulation. Simula-
tion is the easiest way to experiment with different
wireless network conditions. Simulators are used to
mimic the behavior of a certain network in a software-
based environment. They offer different topologies, dif-
ferent network entities like routers, nodes, access points,
etc., and tuning of real network parameters like packet
loss, jitter, delay, and latency. There exist a number of
wireless simulation tools [16], [17], [18], [19], [13], [6], [2].
Repeatability, control, configurability, and experiments
of large-scale networks are the advantages of simula-
tion. The main limitation of simulation tools, however,
is that they require the user to tune different parame-
ters e.g., level of interference, congestion, loss rate, etc.
which may not reflect real wireless network conditions.

At the other end of the spectrum, there is Exper-
imentation, where developers evaluate their applica-
tions over deployed wireless links, either over testbeds
or by relying on volunteer testers. The results of such
experiments capture the impact of real wireless net-
work conditions. One disadvantage of experimentation
is that it offers no repeatability. The variability of wire-

1



less networks makes it hard to reproduce the results.
The results of experimentation are, therefore, hard to
interpret and one can not distinguish the issues with
application versus wireless issues.

Finally, trace-driven emulation involves recording
real wireless traces and later replaying them under em-
ulated network conditions. The clear benefit of trace-
driven emulation is its ability to capture real network
conditions and the repeatability of the experiments.
One can run the same network conditions several times,
which eases application or system debugging, and en-
ables comparative analysis of different applications or
protocols over the same network conditions.

While there exist trace-driven emulation tools for cel-
lular [22] and web traffic [12], to the best of our knowl-
edge, there exists no such tool for Wi-Fi. In this paper,
we evaluate how well the state-of-the-art trace-driven
emulation tool called Saturator [22], originally designed
for cellular networks, works for Wi-Fi, and provide sug-
gestions on how such a tool can be adapted to correctly
record Wi-Fi traces. The rest of this paper is orga-
nized as follows: In Section 2, we highlight the existing
work. Section 3 explains the challenges in using exist-
ing methods. In Section 4, we explain our measurement
set-up. Section 5 presents the results of the state-of-
the-art trace-driven emulation tool [22] over Wi-Fi. In
Section 6, we conclude our work and mention future
work.

2. RELATED WORK
Simulation.

There are several network simulators. NS-2 [16] and
NS-3 [17] are open-source network simulators to repro-
duce Internet systems. OMNET++ [18] is a simulation
platform for building simulators for wireless, wired, and
queuing networks amongst others. OPNET [19] is an
open-source network simulation tool that offers various
topologies and configurations. NETSIM [13] is a com-
mercial network simulator that provides simulation for
layer 1 and layer 2 capabilities of Wireless Local Area
Network (WLAN). QualNet [6] is a commercial network
simulator for scalable network technologies. It offers a
Graphic User Interface (GUI) to make things easier for
users as there is no coding involved. TraceReplay is an
application layer simulator built in NS-3 for network
traces [2]. Despite the fact that there are a lot of sim-
ulators available, it is always very hard to get realistic
settings.

Testbeds.
Wireless Hybrid Network (WHYNET) [23] is a hybrid

testbed as it allows the use of simulation, emulation,
and real hardware. It allows the integration of these on
both individual and combined levels. There is limited
remote access to the WHYNET testbed infrastructure.

ORBIT [20] is a radio grid emulator which provides the
functionality of reproducing wireless experiments with
a large number of nodes. It allows the introduction of
fading and controlled interference. MONROE [11] is an
open-access hardware-based measurement platform for
doing experiments on mobile broadband. The advan-
tages of testbeds include running experiments over real
wireless links and remote management. However, the
testbeds come with a few drawbacks like no repeata-
bility, no mobility (of nodes), small-level scaling, and
dependency on location.

Emulation.
There are several network emulators that have been

previously used to emulate network conditions for Wi-Fi
and other technologies. Mobile network tracing [14] ob-
serves traffic passively to generate traces and then uses
Packet Modulator (PaM) to corrupt, delay or drop cap-
tured packets. However, mobile network tracing does
not address the question of different machines sharing
the same bandwidth. Trace-modulation [15] listens to
a path passively multiple times to generate traces of
real network behavior. Common Open Research Em-
ulator (CORE) [3] is a network emulator that boasts
a GUI that helps in drawing topologies. While CORE
emulates layer 3 and above, Extendable Mobile Ad-hoc
Network Emulator (EMANE) [7] emulates physical and
data link layers (1 and 2). Mahimahi[12] is a framework
for recording and replaying HTTP traffic under differ-
ent network conditions. Mahimahi uses DelayShell and
LinkShell for emulating a fixed propagation delay, and
fixed and variable capacity links respectively. MpShell
[4] extends the Mahimahi framework to record Wi-Fi
and LTE traces simultaneously. This work was mainly
developed to evaluate the performance of MP-TCP in
different network conditions and for various types of
applications. A mobility emulation framework called
EmuWNet [8] is proposed for signal propagation mea-
surements in wireless networks. It allows users to re-
play measurement traces collected either by simulations
or real-world experiments. It is based on ORBIT [20]
testbed and offers various mobility scenarios for testing
in a controlled environment.

In this paper, we opt for trace-driven simulation and
the state-of-the-art trace-driven emulation tool, called
Saturator [22]. Trace-driven emulation is a good option
because 1) testing takes place on a real network and
2) traces help in repeatability; the results and testing
environment can be reproduced later. We, therefore,
prefer trace-driven emulation to simulation, testbeds,
and experimentation.

3. BACKGROUND
In cellular networks, the only form of congestion at

the base-station is self-induced congestion. Further, in

2



cellular networks, the uplink and downlink communica-
tions of users take place on different time slices and they
do not interfere with each other. There are rarely any
standing queues created by the traffic of other users
in the cell. Even in the case of individual queues, a
queuing delay of 750 ms does not starve the load [22].
Whereas the medium is shared in Wi-Fi and hence, the
queues at every network entity are shared by all users.
Cellular networks are also more robust because there are
several numbers of retransmissions to cope with packet
loss, which is not the case with Wi-Fi. The through-
put can only be affected by the demand and competi-
tion for allocation of the time slices in cellular networks,
whereas there are other factors that affect throughput in
Wi-Fi (including cross traffic). This introduces unique
challenges for recording Wi-Fi traces.

We use the state-of-the-art tool Saturator [22] to
demonstrate its behavior over cellular network and Wi-
Fi. Saturator consists of two sender programs running
at a client and a server. The client is connected via two
cellphones, one cellphone is used to saturate the uplink
and the downlink, while the second cellphone is used
for feedback. A window of N packets is maintained by
each sender program. Using the feedback packets, each
sender adjusts the window size to ensure that the link is
saturated without causing any self-induced packet loss.
Both the client and the server record the timestamp, se-
quence number, and estimated round-trip time (RTT)
or one-way delay for every received data or ACK packet
in their respective logs. Uplink and downlink latency,
throughput, and packet loss can be computed using
these logs. The feedback in Saturator consists of ACK
packets sent to the sender for the packets received by the
receiver. The sender can then keep sending consistently
to saturate the link reliably. Therefore, a separate inter-
face is needed for feedback to ensure the timely delivery
of ACK packets to the sender, and to avoid any impact
of feedback delay on the link saturation. If the inter-
face that has to be saturated, is also used for feedback,
queuing might cause enough delay for ACK packets to
not arrive on time. In this case, there is a possibility

Network (s) Traces (s)
0.40 0.40
0.29 0.29
0.32 0.32
0.37 0.37
0.37 0.37

(a) LTE

Network (s) Traces (s)
0.24 0.32
0.18 0.31
0.20 0.50
0.24 0.30
0.22 0.32

(b) Wi-Fi

Table 1: File transfer completion times in seconds
This table shows the transfer completion time for downloading a
file over LTE and Wi-Fi (Network columns) versus over-recorded
and replayed LTE and Wi-Fi traces (Traces columns).

Figure 1: Experiment Set-up
This figure shows the experimental set-up for our tests that

includes 2 Dell laptops and a TP-Link access point

the link might not get properly saturated.
The traces collected via Saturator are replayed using

Cellsim [22]. Cellsim requires its own machine with two
Ethernet interfaces. It is connected to the client di-
rectly with an Ethernet cable, whereas it is connected
to the Internet with a second Ethernet interface. The
client machine is not connected to the Internet, whereas
the server machine is connected to the Internet via Eth-
ernet. Cellsim delays the packets received on both its
Ethernet interfaces by a considerable amount of time
to emulate propagation delay before adding the packets
to the queue. The traffic from the client is sent to the
server over the Internet by Cellsim.

We collect the traces with Saturator for both LTE
and Wi-Fi. We then use Cellsim to replay the traces
captured with Saturator. We set up 3 machines for re-
play; one as a client, one as a server, and one as a Cell-
sim machine. We measure the time it takes to download

0.2 0.4 0.6 0.8 1.0
Ratio of achieved throughput and capacity

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Figure 2: Distribution of the fraction of capacity con-
sumed by Saturator

3



a given file over a Wi-Fi network and compare the re-
sults against the time it takes to download the exact
same file using traces recorded with Saturator for the
same Wi-Fi network. We repeat the same measurement
for LTE. To ensure that the LTE and Wi-Fi conditions
do not fluctuate much between the real and trace-driven
experiments, we run the real and emulated experiments
back-to-back. We use a 250 MB file for the Wi-Fi ex-
periment, and a 15 MB file for LTE, given that we have
limited data for LTE.

We see in Table 1 that the file transfer completion
times in both record and replay are always exactly the
same for LTE. This is expected because Saturator is
designed for cellular networks. Whereas, for Wi-Fi,
it takes more time to complete the transfer in the re-
play phase. This indicates that Saturator works really
well for LTE as expected but it is most probably not
measuring the Wi-Fi link properly. There is likely to
be some error in the Wi-Fi measurements that creates
doubt about Saturator’s compatibility with Wi-Fi.

4. EXPERIMENTAL SET-UP
In this section, we present the experimental set-up

that we use for all our measurements. Figure 1 presents
our measurement set-up which is as follows:

• one laptop as a client; connected to Wi-Fi for mea-
surements and connected to an access point with
an Ethernet cable for feedback.

• one laptop as server; connected to the same access

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Ratio of achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Saturator
Iperf - 1 stream TCP

0 1 2 3 4 5 6 7 8
Ratio of achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Saturator
Iperf - 8 stream TCP

Figure 3: Saturator with concurrent TCP traffic and
variable bandwidth

point as the client with an Ethernet cable

The AP is TP-Link Archer C7 which supports
802.11ac, and 2.4 and 5 GHz connections simultane-
ously. We perform our testing with 802.11ac and 2.4
GHz. We use 2 Dell laptops with identical specifica-
tions; Intel 8th generation core i7 CPU - 1.9GHz (Turbo
4GHz), 16 GB RAM, and 520 GB SSD hard drive. Both
machines have Ubuntu 18.04 freshly installed, they do
not have anything else installed on them. We use this
set-up to avoid any impact of CPU load on Saturator.

We run Saturator client and server versions on these
machines. We use Linux’s traffic control (tc) [9] option
on the client machine to vary the bandwidth and loss
rate. We need to limit the bandwidth to a certain value
to test Saturator’s compatibility with Wi-Fi. We vary
the bandwidth values every 12 seconds as follows: 15
Mbps, 40 Mbps, 10 Mbps, 30 Mbps, and 15 Mbps.

Similarly, for loss rate, we use tc and vary the per-
centage value for packet loss every 12 seconds as follows:
0.3%, 0.5%, 0.25%, 1%, and 0.3%.

We perform all the tests 5 times each once we have
all set-up in place. The test duration is 1 minute for all
the tests. We conduct tests for constant and variable
bandwidth and packet loss values.

5. SATURATOR OVER WI-FI
In this section, we showcase the limitations of Satura-

0.4 0.6 0.8 1.0 1.2
Ratio of achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Saturator
Iperf - 1 stream UDP

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Ratio of achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Saturator
Iperf - 8 stream UDP

Figure 4: Saturator with concurrent UDP traffic and
variable bandwidth

The effect of Saturator on concurrent UDP traffic in the
presence of variable bandwidth is represented in this figure

4



0 10 20 30 40 50 60
Time in seconds

0

10

20

30

Th
ro

ug
hp

ut
 in

 M
bp

s

BW= BW= BW= BW= BW=
15Mbps 40Mbps 10Mbps 30Mbps 15Mbps

Saturator
Iperf - 1 stream TCP

0 10 20 30 40 50 60
Time in seconds

0

10

20

30

40

Th
ro

ug
hp

ut
 in

 M
bp

s

BW= BW= BW= BW= BW=
15Mbps 40Mbps 10Mbps 30Mbps 15Mbps

Saturator
Iperf - 8 stream TCP

Figure 5: Saturator with concurrent UDP traffic and
variable bandwidth
BW means bandwidth and it represents the bandwidth limit set

by tc

tor for Wi-Fi. Given that Wi-Fi’s queuing mechanism
and medium access control are different from that of
Cellular, we study the impact of these two features on
Saturator’s ability to accurately record Wi-Fi traces.
First, we evaluate Saturator’s ability to saturate the
Wi-Fi link without any concurrent traffic, a set-up that
closely resembles Cellular links. Next, we evaluate the
behavior of Saturator when we introduce concurrent
UDP and TCP traffic on the Wi-Fi link. Finally, we
look at the impact of saturating both the Wi-Fi uplink
and downlink simultaneously.

5.1 Saturator with Concurrent Traffic
The first step is to test Saturator with Wi-Fi without

any modifications and in the absence of cross-traffic;
to verify if Saturator is able to saturate the link. We
make use of tc to limit the bandwidth as explained in
the previous section and carry out tests without any
concurrent traffic.

We observe that Saturator is able to fill the pipe.
Saturator reacts to the bandwidth variations very well
and adapts accordingly. This is the expected behavior
because the testing conditions without concurrent traf-
fic are similar to cellular networks. Figure 2 shows the
ratio of achieved throughput and capacity. The more
the ratio is closer to 1, the more Saturator is able to fill
the pipe. Smaller values of the ratio in Figure 2 can be
deceptive because Saturator is able to consistently sat-
urate the link. These small values of the ratio, however,
are the result of changing bandwidth during the tests

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Saturator
Iperf - 1 stream TCP

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Saturator
Iperf - 8 stream TCP

Figure 6: Saturator with concurrent TCP traffic and
variable packet loss

as Saturator takes nearly 1–2 milliseconds to adapt to
the new value.

The main question is how would Saturator cope with
concurrent traffic in Wi-Fi. We consider the following
conditions while doing these tests:

• with concurrent traffic and variable bandwidth
• with concurrent traffic and variable packet loss

We generate concurrent TCP and UDP traffic with
iPerf [10], and we limit the per-iPerf stream bandwidth
to 5 Mbps. We see in Figure 3 that the ratio between
achieved throughput and expected throughput is mostly
close to 1 for Saturator; it does considerably well to fill
the pipe with concurrent TCP traffic even with variable
bandwidth. However, it ends up suppressing everything
else, as TCP traffic gets a lot less than what is expected.
As evident from Figure 3, the ratio for iPerf is way less
than 1. iPerf gets around 1 Mbps for 1 stream, whereas
it gets a maximum of 10 Mbps for 8 streams. It shows
Saturator is not fair to TCP traffic.

The results are, however, different for concurrent
UDP traffic generated by iPerf. When we use just 1
stream restricted to 5 Mbps, iPerf consistently manages
to achieve the expected throughput. However, as we
increase the number of streams for UDP traffic, iPerf’s
UDP traffic seems to saturate the pipe completely, as
we observe in Figure 4. However, we see in Figure 4 that
the ratio of achieved throughput and expected through-
put for Saturator even exceeds 1; which suggests Satu-
rator achieves the expected throughput. Figure 5 clears
this anomaly; we see that Saturator is able to achieve
the expected throughput for higher bandwidth values

5



0.80 0.85 0.90 0.95 1.00 1.05 1.10
Ratio of achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e 
fra

ct
io

n 
of

 1
-s

ec
on

d 
bi

ns
Saturator
Iperf - 1 stream UDP

0.80 0.85 0.90 0.95 1.00 1.05 1.10
Ratio of achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Saturator
Iperf - 8 stream UDP

Figure 7: Saturator with concurrent UDP traffic and
variable packet loss

(i.e. 40 Mbps and 30 Mbps). However, iPerf UDP dom-
inates for lower values of bandwidth (i.e. 15 Mbps and
10 Mbps). This raises a question of Saturator’s com-
patibility with Wi-Fi. Figure 5 shows the result of one
of the experiments but the results are consistent across
all experiments. As discussed earlier, concurrent traffic
is very likely to be present and Wi-Fi is not a stable
medium as well, it casts doubt on the use of Saturator.

Another important aspect to study about Saturator is
its ability to react to packet loss. We use tc to introduce
packet loss as explained in Section 4.

We observe that Saturator is able to cope with the

0 10 20 30 40 50 60
Time in seconds

0

10

20

30

40

50

60

70

Pa
ck

et
 lo

ss
 %

 p
er

 se
co

nd

2way Saturator - Uplink PacketLoss
2way Saturator - Downlink PacketLoss
1way Saturator - Uplink PacketLoss

Figure 8: Saturator Packet Loss
This figure represents the packet loss calculated from Saturator

logs

packet loss reasonably well as compared to the concur-
rent traffic. It is evident from Figures 6 and 7 that it
keeps sending more traffic to reach a decent throughput,
as the ratio between achieved throughput and expected
throughput is consistently close to 1. It is a surprising
finding considering 1) it is UDP traffic and 2) Satura-
tor does not react to packet loss itself. We examine it
further to find the cause of this behavior and analyze
the logs. As mentioned in Section 3, Saturator reacts to
RTT only, it just keeps the check of the number of pack-
ets in flight with respect to the window size and keeps
sending packets whenever there is an opportunity. As
packets get lost, there are fewer packets in flight and
Saturator sees it as an opportunity to send more. In
this way, it ends up sending more packets than it nor-
mally does in case of no loss. The sender side has a
number of packets sent more than the number of pack-
ets received at the receiver by a certain percentage in
accordance with the loss.

5.2 Saturator in One Direction
As mentioned earlier, Saturator is originally designed

to work with cellular network and it saturates both up-
link and downlink at the same time. It does not matter
much for cellular networks because both communica-
tions take place on different time and frequency slots
and they do not affect each other. Whereas Wi-Fi is a
shared medium and there are always chances that up-
link and downlink communications happening at the
same time can interfere with each other resulting in
decreased performance. We, therefore, make a minor
change in Saturator to make it work in only one direc-
tion. We evaluate Saturator with Wi-Fi for 2 conditions
as following:

• saturate both uplink and downlink

0 20 40 60
Time in seconds

40

60

80

100

120

Th
ro

ug
hp

ut
 in

 M
bp

s

2way Saturator - Uplink Throughput
2way Saturator - Downlink Throughput
1way Saturator - Uplink Throughput
2way Saturator - Uplink + Downlink Throughput

Figure 9: Saturator Throughput
This figure shows the comparison of 2-way Saturator

throughput versus 1-way Saturator throughput

6



0 20 40 60
Time in seconds

120

140

160

180
Th

ro
ug

hp
ut

 in
 M

bp
s

1way Saturator - Data Sent by Client
1way Saturator - Data Received by Server

Figure 10: Data sent vs data received - 2-way Saturator

• saturate just uplink

In the two-way experiments where Saturator is run
in both uplink and downlink directions, it always gets
more throughput on the uplink. Downlink communi-
cation is badly affected by packet loss as packet loss
goes up to 80%. Figure 8 represents the packet loss for
one of the five experiments, it is consistent across all
five runs. Uplink packet loss for the 2-way Saturator is
not clearly visible in the figure because it is exactly the
same as the 1-way uplink packet loss. The client always
initiates the communication, which could explain why
the uplink achieves more bandwidth than the downlink.
We make a slight change to make sure the client just
initiates the connection with the server but it actually
starts sending data with a delay of 1 second. We find
out that the server takes over the bandwidth initially
but as soon as the client starts sending, we see more
traffic on the uplink, same as in previous cases. Mul-
tiple factors could explain this behavior; one possible
explanation is that the uplink queue is larger than the
downlink queue. Another possible reason is that the
access point might be giving higher priority to uplink
traffic than downlink traffic.

Figure 9 shows the throughputs in Mbps for one run.
The results are similar for all runs. We see that the re-
sults are far better and more stable when only the up-
link is saturated. The 1-way throughput is always more
than the sum of uplink and downlink throughputs of the
2-way Saturator. We recommend using Saturator only
in the uplink direction when used with Wi-Fi to elim-
inate the possible interferences and collisions between
the uplink and downlink traffic and enable Saturator to
fully saturate the pipe.

5.3 Packet Loss Issue
As we discussed earlier, there is a huge packet loss

with Saturator running in both directions. We use the

0 20 40 60
Time in seconds

50

75

100

125

150

Th
ro

ug
hp

ut
 in

 M
bp

s

2way Saturator - Data Sent by Client
2way Saturator - Data Received by Server
2way Saturator - Data Sent by Server
2way Saturator - Data Received by Client

Figure 11: Data sent vs data received - 1-way Saturator

sequence numbers of packets received to find the packet
loss. We are still not fully convinced that Wi-Fi could
introduce such losses; so, we analyze it further to find
out if it is really a Wi-Fi-related behavior. Since Satura-
tor only logs incoming data packets at the Sender side,

0.0 0.5 1.0 1.5 2.0 2.5
Ratio between achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Iperf - 8 stream TCP
Concurrent Iperf - 5 stream TCP

(a) 5 stream TCP Traffic

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ratio between achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Iperf - 8 stream TCP
Concurrent Iperf - 15 stream TCP

(b) 15 stream TCP Traffic

Figure 12: Multithreaded TCP iPerf - TCP vs TCP

7



0.2 0.4 0.6 0.8 1.0 1.2 1.4
Ratio between achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Iperf - 8 stream TCP
Concurrent Iperf - 5 stream UDP

(a) 5 stream UDP Traffic

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Ratio between achieved throughput and expected throughput

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n 

of
 1

-s
ec

on
d 

bi
ns

Iperf - 8 stream TCP
Concurrent Iperf - 15 stream UDP

(b) 15 stream UDP Traffic

Figure 13: Multithreaded TCP iPerf - TCP vs UDP

we use tcpdump [21] to be able to capture the client’s
outgoing data traffic too. We use tshark [1] to get times-
tamps and packet lengths from the pcap files and then
use those to find the throughput. We can see in Figures
10 and 11 that Saturator sends way more than what is
actually received. As mentioned previously, Saturator is
designed for cellular networks, it does not consider Wi-
Fi network conditions and ends up sending more than
what it could actually send. This results in the driver
dropping the packets to cope with excessive Saturator
traffic. Therefore, the packet loss we see is not because
of Wi-Fi, but it is because Saturator’s sending window
is tuned for LTE buffer sizes, which are typically larger
than Wi-Fi’s.

5.4 Alternative Solutions
Given the aforementioned limitations of Saturator,

in this section, we explore whether iPerf could be used
instead to record Wi-Fi traces. We study the impact of
the number of threads of TCP iPerf on the bandwidth
it measures. We use 8 iPerf TCP streams as traffic
generated by us, and a different number of streams for
TCP and UDP iPerf as concurrent traffic. We consider
the following scenarios:

• 8 iPerf TCP streams vs 5 iPerf TCP streams
• 8 iPerf TCP streams vs 15 iPerf TCP streams
• 8 iPerf TCP streams vs 5 iPerf UDP streams
• 8 iPerf TCP streams vs 15 iPerf UDP streams

We run tcpdump in parallel with iPerf and use the
pcap files to calculate the throughput. We see the re-
sults for all these scenarios in Figures 12 and 13. The
bandwidth measured by iPerf depends on the number of
streams used. If iPerf has more streams than concurrent
traffic, then it ends up getting more bandwidth (mainly
because of TCP’s fair share); that would affect the real
traffic in the network and create a bias in the measure-
ments. It shows one has to be careful when choosing the
number of parallel streams as it can not only create a
bias in the measurements but also have a negative effect
on the actual traffic; especially if multiple streams are
used with UDP iPerf, it can badly degrade performance
for other users.

6. CONCLUSION
In this paper, we evaluate how well the state-of-the-

art trace-driven emulation tool Saturator captures Wi-
Fi traces. Since Saturator is originally designed for cel-
lular networks, we showcase how the differences between
Wi-Fi and Cellular inhibit the applicability of Satura-
tor for Wi-Fi as-is. We highlight through experimen-
tal analysis that the measurements done by Saturator
are influenced by the nature of concurrent traffic. Ad-
ditionally, we illustrate how saturating Wi-Fi in just
one direction eliminates interference, thereby enhanc-
ing Saturator’s ability to effectively fill the pipe.

Although all the experiments we conduct are in ideal
Wi-Fi conditions, for future work, we aim to repeat our
experiments in different set-ups to study the effects of
multipath fading. We also plan to study the impact of
802.11 frame-aggregation on trace replay. Further, we
plan to explore the idea of introducing packet loss in the
replay as this is a common behavior in Wi-Fi. Finally,
we aim to investigate the ideal window size to eliminate
the observed packet drops at the driver side.

7. REFERENCES
[1] Manpage of tshark.

https://www.wireshark.org/docs/man-
pages/tshark.html.

[2] Agrawal, P., and Vutukuru, M. Trace based
application layer modeling in ns-3. In 2016
Twenty Second National Conference on
Communication (NCC) (March 2016).

[3] Ahrenholz, J., Danilov, C., Henderson,
T. R., and Kim, J. H. Core: A real-time
network emulator. In MILCOM 2008 - 2008 IEEE
Military Communications Conference (Nov 2008).

8

https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html


[4] Deng, S., Netravali, R., Sivaraman, A.,
and Balakrishnan, H. WiFi, LTE, or both?:
Measuring multi-homed wireless Internet
performance. In Proceedings of the 2014
Conference on Internet Measurement Conference
(New York, NY, USA, 2014), IMC ’14, ACM.

[5] Department, S. R. Number of smartphone
users worldwide from 2014 to 2020 (in billions).
https://www.statista.com/statistics/
330695/number-of-smartphone-users-
worldwide/, 2016.

[6] Dinesh, S., and Sonal, G. Qualnet simulator.
International Journal of Information &
Computation Technology 4, 13 (2014).

[7] Ivanic, N., Rivera, B., and Adamson, B.
Mobile Ad Hoc Network emulation environment.
In MILCOM 2009 - 2009 IEEE Military
Communications Conference (Oct 2009).

[8] Karimi, P., Mukherjee, S., Kolodziejski, J.,
Seskar, I., and Raychaudhuri, D.
Measurement based mobility emulation platform
for next generation wireless networks. In IEEE
INFOCOM 2018 - IEEE Conference on Computer
Communications Workshops (INFOCOM
WKSHPS) (April 2018).

[9] Kerrisk, M. Linux traffic control, 2014. https:
//man7.org/linux/man-pages/man8/tc.8.html.

[10] Mah, B. iperf, 2014.
https://github.com/esnet/iperf.

[11] Midoglu, C., Wimmer, L., Lutu, A., Alay,
O., and Griwodz, C. MONROE-Nettest: A
configurable tool for dissecting speed
measurements in mobile broadband networks. In
IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications Workshops
(INFOCOM WKSHPS) (April 2018).

[12] Netravali, R., Sivaraman, A., Das, S.,
Goyal, A., Winstein, K., Mickens, J., and
Balakrishnan, H. Mahimahi: Accurate
record-and-replay for HTTP. In Proceedings of the
2015 USENIX Conference on Usenix Annual
Technical Conference (Berkeley, CA, USA, 2015),
USENIX ATC ’15, USENIX Association.

[13] NetSim Simulator by Tetcos.
https://www.tetcos.com/wlan.html.

[14] Noble, B., Nguyen, G., Satyanarayanan,
M., and Katz, R. Mobile network tracing, 1996.

[15] Noble, B. D., Satyanarayanan, M.,
Nguyen, G. T., and Katz, R. H. Trace-based
mobile network emulation. SIGCOMM Comput.
Commun. Rev. 27, 4 (Oct. 1997), 51–61.

[16] Wikipage of NS-2 network simulator.
http://nsnam.sourceforge.net/wiki/index.
php/User_Information.

[17] NS-3 network simulator.

https://www.nsnam.org/.
[18] Omnet++ network simulator.

https://omnetpp.org/intro/.
[19] Opnet network simulator.

http://opnetprojects.com/opnet-network-
simulator/.

[20] Raychaudhuri, D., Seskar, I., Ott, M.,
Ganu, S., Ramachandran, K., Kremo, H.,
Siracusa, R., Liu, H., and Singh, M.
Overview of the ORBIT radio grid testbed for
evaluation of next-generation wireless network
protocols. In IEEE Wireless Communications and
Networking Conference, 2005 (March 2005).

[21] Richardson, M., and Fenner, B. Tcpdump
and libpcap, 1999. https://tcpdump.org.

[22] Winstein, K., Sivaraman, A., and
Balakrishnan, H. Stochastic forecasts achieve
high throughput and low delay over cellular
networks. In Presented as part of the 10th
USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13) (Lombard,
IL, 2013), USENIX.

[23] Zhou, J., Ji, Z., Varshney, M., Xu, Z.,
Yang, Y., Marina, M., and Bagrodia, R.
WHYNET: A hybrid testbed for large-scale,
heterogeneous and adaptive wireless networks. In
Proceedings of the 1st International Workshop on
Wireless Network Testbeds, Experimental
Evaluation & Characterization (New York, NY,
USA, 2006), WiNTECH ’06, ACM.

9

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://github.com/esnet/iperf
https://www.tetcos.com/wlan.html
http://nsnam.sourceforge.net/wiki/index.php/User_Information
http://nsnam.sourceforge.net/wiki/index.php/User_Information
https://www.nsnam.org/
https://omnetpp.org/intro/
http://opnetprojects.com/opnet-network-simulator/
http://opnetprojects.com/opnet-network-simulator/
https://tcpdump.org

	Introduction
	Related Work
	Background
	Experimental Set-up
	Saturator over Wi-Fi
	Saturator with Concurrent Traffic
	Saturator in One Direction
	Packet Loss Issue
	Alternative Solutions

	Conclusion
	References

