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Abstract

®

CrossMark

Spontaneously formed liquid crystal topological defects under external fields offer a nature-
assisted route to the creation of geometric phase optical vortex generators (g-plates). Here we
report on the consequences of the unavoidable swirled transverse spatial distribution of the
optical axis of such optical elements on the beam shaping and we propose a swirl-compensation
scheme based on the arithmetic of geometric phase optical elements.
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1. Introduction

In wave physics, the concept of twisted waves is closely related
with phase singularities defined as locations of null amplitude
where the phase is undefined and around which the phase winds
by an integer multiple of 27 are along a closed circuit. Phase
singularities are actually a natural ingredient of real-world fields
once recalled that three plane waves are enough to generate them.
In fact, one can even make them appear as the backbone of
propagating waves by choosing the Laguerre-Gauss modes as
the exact basis for the solutions of the paraxial scalar Helmholtz
equation. Indeed, the complex amplitude of each of these modes
is proportional to the pure phase factor exp(if¢) where finteger is
the topological charge of the singularity and ¢ is the polar angle
in the transverse plane with respect to the propagation direction.
The connection between propagating beams carrying phase sin-
gularities (i.e. vortex beams) and orbital angular momentum,
which has been established for light [1], sound [2] and electrons
[3], led to the advent of a plethora of devices enabling the
creation of vortex beams.

A straightforward solution to twist a wavefunction consists
of the use of transmissive plates having azimuthally varying
thickness, which impart an azimuthally varying phase profile
® = /¢ to the incident field. In optics, such an approach has
been experimentally reported in the early 1970s [4] and see-
mingly rediscovered two decades later [5]. Nowadays, much
attention is paid to the development of flat-optics devices, ideally
endowed with photonic function and operating wavelength that
are independently adjustable. Electrically addressable liquid
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crystal spatial light modulators represent a popular versatile
solution. Such devices allow pixel-by-pixel control of the
‘dynamic’ phase associated with the average optical path length
of individual pixels made of uniformly oriented liquid crystals.
Another kind of liquid crystal device, to which the present work
is devoted, relies on the ‘geometric’ phase associated with the in-
plane orientation of the liquid crystals according to a generic
approach anticipated by Bhandari [6]. The latter approach relies
on a slab made of a half-wave birefringent retarder whose optical
axis orientation angle, v, varies spatially. As the polarization
degrees of freedom couple to the spatial ones [7], a phase profile
® = 207 is imparted to an incident circularly polarized light as
its helicity ¢ = +1 is flipped (c — —o0).

Since the first report of a liquid crystal geometric phase
optical vortex generator [8], both the technology and its
application prospects have much evolved, as recently
reviewed in [9]. In particular, the so-called g-plate design,
which refers to 1 = g¢, enables the generation of phase
singularities with topological charge ¢ = +2¢g and user-
friendly tunable operating wavelength owing to electrically
controlled half-wave retardation condition [10]. Electrically
tunable operating wavelength, however, comes at the expense
of a loss of patterning resolution compared to the state-of-the-
art standards associated with static material vortex patterns
with maintained topology down to micrometer scales [11].

One decade ago, the self-structuring capabilities of liquid
crystals to form topological defects behaving as geometric
phase optical vortex generators [12] suggested a nature-
assisted route to mitigate the latter technological issue.

© 2020 IOP Publishing Ltd  Printed in the UK
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Figure 1. Images of various kinds of pinned swirled self-structured
umbilical liquid crystal g-plate, with ¢ = +1, observed between
crossed linear polarizers. (Left) Electrically induced umbilic inside a
square-shaped pixel with 50 pm side [19]. (Middle) Opto-electri-
cally induced umbilics using photo-activated polymer interface
under dc applied voltage [17] and photoconductor substrate under ac
applied voltage [20]. (Right) Magneto-electrically induced umbilic
using a ring magnet with 8 mm diameter clear aperture [18]. In all
cases, a voltage drop of a few volts across the liquid crystal layer is
enough to fulfill the half-wave retardance requirement for visible
light.

Different kinds of topological defects spontaneously appear-
ing in nematic liquid crystal slabs have been identified as
electrically tunable g-plates: umbilics [13] and disclinations
[14]. Until now, it is the umbilical defects associated with
g = +1 that have attracted the most attention and optical
vortex generation with high-purity has been reported in var-
ious situations'. Indeed, several pinning strategies have been
proposed to fix them in place, hence getting rid of previous
limitations associated to random location of the defects [13]
while preserving electrical tuning capabilities. Namely,
boundary-assisted electrical pinning using pixelated electro-
des [15], optically-assisted electrical pinning using photo-
responsive substrates under ac [16] or dc [17] electric fields,
and magnetic pinning using static ring magnets [18]. All these
works offer a palette of clear aperture ranging typically over
three decades from microscopic to macroscopic scales, as
illustrated in figure 1.

Remarkably, swirled umbilical defects (either right-han-
ded or left-handed) are observed independently of the pinning
strategy, whose origin lies in the anisotropic elasticity of
liquid crystals as discussed in detail in [21, 22]. Still, we
notice that the appearance of swirled nematic textures goes
beyond the particular case of umbilics as it is a generic feature
of elastic energy minimization in confined geometries, such as
spherical droplets, circular sessile droplets and tactoids, as
discussed in [23]. In the framework of optical vortex gen-
eration, swirled designs are associated to geometric phase
lensing effects, which can be an asset, for instance for long-
itudinal splitting of circularly polarized components of a
multi-vortex field [24], or a drawback, for instance in vortex
Fourier filtering [25]. This motivates the development of agile
swirl-control strategies, which is the purpose of the present
work. Hereafter, we start in section 2 by presenting the used
umbilical g-plate (UQP) and characterizing quantitatively its
swirl. The effects of the swirl on light is addressed in
section 3 and in section 4 we introduce a swirl-compensation

! Maximal purity equal to 1 corresponds to half-wave retardance condition

for the used wavelength.
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Figure 2. (a) Experimental setup used for the characterization of
swirled UQP generated by magneto-electric stimulus. PC ,:

polarization controllers; Cam: camera; PM: powermeter; MO:
microscope objective with 4 x magnification, numerical aperture
NA = 0.1 and effective focal length f = 45 mm. The inset shows
the detail of the magneto-electric UQP. RM: ring magnet; S: glass
substrates with transparent electrodes; N: nematic liquid crystal film.
(b) Oppositely swirled umbilics observed between crossed linear
polarizers using incoherent illumination.

scheme based on the arithmetic of geometric phase optical
elements.

2. Magneto-electric swirled UQP

For our experiments, we choose an UQP produced according
to the magneto-electric approach described in [18], which has
the advantage to combine robustness, simplicity of use, up to
centimeter-size clear aperture and spectrally agile behavior.
The schematic of the UQP and setup used for its character-
ization is shown in figure 2. We use of a 20 um thick film of
nematic liquid crystal (MLC-6608 from Merck Japan) sand-
wiched between two parallel glass substrates provided with
indium-tin oxide electrodes and spin-coated with a polyimide
anchoring layer ensuring perpendicular alignment of the
liquid crystal orientation at both ends of the film. In the
absence of external fields, the liquid crystal orientation is
therefore perpendicular to the sample plane everywhere in the
bulk of the film, which defines the z axis; see figure 2(a). The
operating wavelength is A = 532 nm and experiments are
carried out at 20°C.

The static magnetic field is ensured by a nickel-plated
neodynium (grade N50) ring magnet whose magnetization is
directed along the z axis. Its thickness, inner diameter and
outer diameter are respectively 6 mm, 4 mm and 12 mm and
it is associated with a pull force of 32 N (manufacturer data
sheet). The front side of the magnet is placed at ~2 mm
distance from the liquid crystal layer. Since the nematic has a
negative dielectric anisotropy ¢, = —4.2 at 1 kHz frequency,
the liquid crystal is expected to reorient above the electrical
reorientation threshold voltage amplitude given by Uy =
K5/ (€oles]) = 2.19V when using a square waveform,
where ¢, is the vacuum permittivity. Consistently, we detect
the liquid crystal reorientation above Uy, which leads to the
formation of an umbilic, spontaneously swirled in a random
direction. This is illustrated in figure 2(b) that displays images
of oppositely swirled umbilics (labeled with the index
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Figure 3. (a) Typical voltage dependence of the purity 7 of the
optical vortex generation process of a swirled umbilic. (b) Azimuth
average radial profile of the liquid crystal in-plane orientation for
¢ = +1 (red and blue curves) at U = 2.60 V. The black curves refer
to the fit by the function (p(r) = ((n/2)[1 — tanh(r/R)] with

R =450 pm.

¢ = +1) when observed between crossed linear polarizers
(oriented along the x and y axis throughout the paper), under
an applied voltage U = 2.60 V, which corresponds to the
half-wave retardance condition. This corresponds to the full
conversion of a circularly polarized input light with helicity o
into a contra-circularly polarized output light having opposite
helicity —o.

Experimentally, we use either incoherent illumination
from a halogen lamp spectrally filtered at 532 nm wavelength
or a collimated Gaussian laser beam having a beam waist
radius w >~ 400 pm at the liquid crystal plane, propagating
along the z. The light passes through two polarization con-
trollers (PC1 and PC2), each being a quarter-wave plate
coupled with a wire-grid polarizer. This allows us to prepare
the input polarization state and selecting on-demand the
projection of the output light onto the desired polarization
state.

The characterization of the UQP is made in two steps.
First, using a circularly polarized input laser beam, we
determine the purity parameter n = P_,/(P., + P,,), where
P.o is the power of the circularly polarized component of the
output beam with helicity £o, as a function of the applied
voltage. A typical result is shown in figure 3(a), which does
not exhibit a noticeable influence of the swirl handedness. In
our study, we further use three values of voltage that corre-
spond to quarter-wave (n = 0.5), half-wave (n = 1) and full-
wave (n = 0) retardance conditions, namely, U = 242V,
U=260V and U =3.00V, respectively. Second, we
retrieve quantitatively the radial distribution of the effective
in-plane orientation angle of the optical axis of the UQP,
P (r, ¢). This is done from spatially resolved Stokes polari-
metry of the light emerging from the liquid crystal sample,
whose recipe can be found in [20]. Assuming an axisym-
metric description of the swirled structure of the form

Y(r, ¢) = ¢ + Cp(r), ey

we determine the radial dependence of the swirl function

according to Cp(r) = (¥ — ¢)y(r) = i OQW [Y(r, @) — ¢ldo.
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Figure 4. (a) Setup for analyzing the far-field of the generated vortex
field, at U = 2.60 V, as a function of the swirl handedness ¢ and the
helicity o of the incident beam. L: spherical lens with focal length
f=200 mm; M: mirror; BS: beamsplitter; MO: microscope
objective with 10x magnification, numerical aperture NA =0.25.
The incident light field is a collimated circularly polarized Gaussian
laser beam with helicity ¢ and waist radius ~400 pm in the plane of
the sample. (b) (Top) Spiraling interference pattern using a coaxial
Gaussian reference beam. (Bottom) Far-field intensity profiles re-
imaged by the microscope objective on the camera.

The results are shown in figure 3(b) for ( = +1 (color curves)
where the black curves refer to the fit with the following ansatz

o(r) = g[l — tanh(r/R)], )

where the characteristic length R is the only adjustable parameter,
and we find R ~ 450 pm.

3. Swirl effects on processed light

Using the setup sketched in figure 4(a), we explore the far-
field phase and intensity distributions of the generated optical
vortices. The idea is to analyze the light in the focal plane of
the lens L with focal length f= 200 mm by re-imaging it
onto the camera owing to the microscope objective MO.
Firstly, we note that the occurrence of the double-charge on-
axis phase singularity with o-dependent sign is unaffected by
the swirl handedness; see the top row of figure 4(b). It is an
expected result, because the swirl is not affecting the topology
of the UQP. In contrast, the far-field intensity distributions
exhibit a substantial dependence on the product (o = +1; see
the bottom row of figure 4(b).

To understand the latter point, let us stress the fact that
the far-field intensity distribution of two light fields of the
form E. (r, ¢) = Eo(r)explilp £ iV(r)], with finteger and
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Figure 5. Ratio between the radii of maximal intensity of the
doughnut intensity profiles, namely, rS- 1 /r7=""! for ¢ = %1,
taking the experimental values f = 200 mm and w = 400 pm, see
figure 4(a). (a) Case 1: in the focal plane of the lens L as a function
of the normalized curvature % of the incident Gaussian beam with
waist w in the plane of the sample, where & = kz with zg = Tw?/\.
The chosen typical range |%| < 10 for the normalized curvature is
dictated by the preservation of the paraxial approximation. (b) Case
2: around the focal plane of the lens L, z being the distance from the
lens and assuming an incident Gaussian beam with planar wavefront.
The single-mask situation refers to section 3, whereas the two-mask
situation refers to section 4.2.

Ey(r) the field magnitude (positive real), are identical.

Indeed, let us consider the Fourier transform of E. in
the polar coordinate system (y, #) as E.(y, 0) = f o

0
fogo Ei(r)exp[—ixrcos(d — ¢)lrdrdp . The corresponding
intensity profile is axisymmetric and is given by

L(x, 0) x IfoOO Eo(r)J;(xr)etiV(r)rdr?, where J; is the £
th-order Bessel function of the first kind, and one gets
I, = I .. A possible reason of the experimentally observed
discrepancy is related to the additional radial-coordinate-
dependent phase factor, e.g. intrinsic curvature of the Gaus-
sian beam. This is numerically illustrated in two cases in what
follows, based on analytical formulations derived from [26]
and using the swirl ansatz given by equation (2).

Casel. Let us model the incident laser Gaussian field as
EV @) = Ey exp[—:v—z2 — i7z\r2/<;)] where % is the incident
beam curvature. By modeling the UQP as a mask with
complex transmittance exp[2ioi) (r, ¢)], the output field Eqy
in the focal plane of the lens L is thus expressed as

EQr, 6) x EoSr [ (2”’)674”"”@@)
out\/» 0 )\f 0 2 N W
,7rp2
X e "X " pdp. 3)

From the above equation, we calculate the ratio between the
radii of maximal intensity of the doughnut intensity profiles
foro = +1and 0 = —1, as defined in figure 4(b). The results
are displayed as solid curves in figure 5(a) for ( = +1.
Identical doughnut intensity profile are obtained only for
k = 0, which corresponds to a planar incident wavefront,
whereas any deviation from this ideal setting leads to a ratio

close to that observed in the experiments, which offer a
decent explanation to the observations reported in figure 4(b).

Case2. From an experimental point of view, it is also
interesting to evaluate the role of a mismatch between the
focal plane of the lens L and the observation plane. This is
done by considering an incident beam with a planar wave-
front, E{?(r) = Egexp(—r2/w?) and evaluating the output
field E,, at a distance z from the lens L, which gives

)2 .
j(\)oo b (ZWﬁr)efﬁJer(ngo(p)

Y
¥ )pdp, “4)

2ioo
E® r, 9) x E ©
out( ¢) 0 /\f

i
X e

where one identifies (z — f)/(zf) as the z-dependent curva-
ture in the last term of the integrand. The results are displayed
as solid curves in figure 5(b) and, as expected, the swirl has
no effect in the focal plane of the lens. Indeed, equation (3)
for kK = 0 and equation (4) for z = f are identical. Although
the extremal values for the calculated ratio explore the same
range in cases 1 and 2, we note that our experimental preci-
sion when positioning the lens L, the reimaging microscope
objective MO and the camera are of the order of less than a
millimeter. Therefore, present analysis implies that observed
distinct sizes for the doughnut intensity profiles in figure 4(b)
is due to nonzero curvature of the incident Gaussian beam in
the plane of the sample.

Above two examples emphasize the role of the propa-
gation-induced wavefront curvature before or after the sam-
ple, respectively. These results recall that any practical
deviation from an ideal experimental implementation can
bring substantial swirl-induced symmetry breaking. This
leads us to the next section where we propose an attempt to
control the very existence of the swirl.

4, Taming the swirl

4.1. Experimental approach

Starting from the fact that the occurrence of the swirled UQPs
cannot the avoided (figure 1) we propose a compensation
scheme to get rid of it owing to the arithmetic of geometric
phase optical elements. Latter has already received attention in
the context of generating phase singularities with topological
charges that differs from £2g [27, 28] or passive tuning the
retardance of g-plates [29]. In all cases, an effective behavior
is obtained by an appropriate combination of g-plates and
homogeneous optical retarders. Here we extend these approa-
ches to the case of radially inhomogeneous elements, the basic
idea being to cancel the swirl of a first UQP by that of a second
UQP having opposite switl.

The setup used to implement this compensation strategy
is shown in figure 6, where the afocal system made of the pair
of lenses inserted between UQP; and UQP, allows one-to-one
superposition of their respective swirls while preserving the
incident collimation. Two configurations, which respectively
correspond to UQPs retardance set to half-wave and quarter-
wave conditions, are detailed in the next subsections.
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Figure 6. Setup for observing the effective phase mask resulting
from swirl arithmetics with two cascaded elements, UQP; and
UQP,. MO: microscope objective with 4 x magnification, numerical
aperture NA = 0.1 and effective focal length f = 45 mm.

Cam

contra
UQPetr

Figure 7. Half-wave cascading scheme. Individual and effective
UQPs observed between crossed linear polarizers using incoherent
illumination using the setup shown in figure 6 for {; = —(, (a) and
¢ = ¢, (b). Here, (; = +1. The observation of UQP; (resp. UQP)
alone is made by setting (U;, U,) = (2.60, 3.00) V (resp. (U, U,) =
(3.00, 2.60) V) noting that an applied voltage of 3.00 V corresponds
to neutral 27 birefringent phase retardation; see figure 3(a).

4.2. Half-wave configuration

Assuming an incident circularly polarized light with helicity
o, the half-wave retardance setting lead to impart a phase
profile ®; = 20[¢ + (¢ (r)] to the light emerging from
UQP,, which has a helicity —o. Then, the helicity is flipped
from —o to o owing to the polarization controller PC, tuned
to half-wave retardance. Further, UQP, imparts a phase pro-
file @, = 20[¢ + {¢(r)] to the light passing through it.
Overall, the cascaded UQPs behave as an effective one
imparting a phase equal to the sum of the contributions from
the two UQPs. Namely

Pepr = 40 + 20 (¢ + Q) (), &)

to the incident light. The individual swirls cancel one another
out for contra-swirled UQPs ((; = —(,) while they add up for
co-swirled UQPs ((; = ¢,). The experimental demonstration
is shown in figure 7 that shows the image of the effective
birefringent phase masks observed between crossed linear
polarizers for contra-swirled (figure 7(a)) and co-swirled
(figure 7(b)) geometries. The swirl is actually either canceled
or doubled, whereas the topological charge of the effective

contra co
UQPgsr UQPg
A L

oc=+1 oc=+1

Figure 8. Far-field intensity profiles of the light beam passing
through the contra-swirled ({; = —(,) or co-swirled (¢; = (,)
cascaded UQPs. The corresponding experimental scheme is
described in figure 4(a). The incident collimated Gaussian beam has
circular polarization with helicity o.

uQP, UQP, UQP™™

Figure 9. Quarter-wave cascading scheme. The presentation is
similar to that of figure 7. The observation of UQP; (resp. UQP;,
alone is made by setting (U;, U,) = (2.42, 3.00) V (resp.

U, Uy) = (3.00, 2.42) V).

UQP is g, = +2 in both cases, as one can judge from visual
inspection of the eight-brush patterns.

Moreover, we checked the sensitivity to residual curva-
ture effects observed in far-field discussed in section 3 but this
time for two cascaded UQPs. As expected, the swirl-provided
discriminatory lensing vanishes in the contra-swirled situa-
tion, whereas it is enhanced for co-swirled individual UQPs;
see the images in figure 8. In the latter figure, the observed
ringing intensity profile in the third panel recalls the fact that
we are dealing with a superposition of Laguerre-Gauss
modes, even in the absence of the swirl [30], and that cur-
vature effects are also present. Also, we have evaluated the
ratio between the radii of maximal intensity of the far-field
intensity similarly to the single-mask case and the results are
shown in figure 5 as dashed curves.

4.3. Quarter-wave configuration

As noticed above, the half-wave configuration doubles the
topological charge, hence raising the question whether one
could cancel the swirl while preserving an effective UQP with
qer = +1. This leads us to consider a cascade of two UQPs
each set to a quarter-wave configuration. In this case, the PC,
placed between the two UQPs should be removed. The results
of such combination are shown in figure 9. As expected, the
co-swirled geometry (b) does not bring added-value since the
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obtained effective UQP qualitatively corresponds to a single
UQP set to half-wave retardance. In contrast, although the
contra-swirled geometry (a) actually leads to a non-swirled
effective structure, it does not correspond anymore to an
effective geometric phase optical element characterized by a
spatial distribution of the optical axis orientation angle,
Yerr (7, @), and a spatial distribution of the birefringent phase
retardation, Ay (r, ).

Indeed, let us recall the expression of the Jones matrix J
of a geometric phase optical element made of a z-invariant
anisotropic and inhomogeneous slab fully characterized by
the arbitrary distributions 1 (r, ¢) and A(r, ¢). In the circular
polarization basis (c,, ¢_) associated with the helicity
(+1, —1), we have

cos—  isin ée*Z"@'
2 2
J(A ) = A | (6)
i sin —e2¥ cos —
2 2

The effective Jones matrix in the contra-swirled quarter-
wave configuration is, taking ¢ = —(, = ¢,

Jeir = J(@/2, ¢ — Co(rNI(T/2, ¢ + Cp(r). (N

The latter expression simplifies to

1( 1 — 4o 2i coSh(ZiGp(r))ezm)’ (8)

Joit = — - A
i 2| 2i cosh(2iCp(r))e*® 1 — 4G

which cannot be recast in the form given by equation (7) for
p(r) = 0. As such, this effective optical element is not useful
when one needs to generate usual optical vortex beams car-
rying on-axis phase singularity.

5. Conclusion

Summarizing, we have reported on the quantitative analysis of
unavoidably swirled in-plane distortions of self-structured
UQPs in the framework of a magneto-electric excitation. In
particular, we pointed out that the helicity-dependent radial
dependence of the geometric phase associated to the swirl can
affect substantially the spatial distribution of light in experi-
ments as soon as residual curvature effects are present. More-
over, we have demonstrated that existence of the swirl can be
controlled in an effective manner by cascading two swirled
elements in order to either cancel or enhance aspheric geo-
metric phase lensing induced by the swirl. The present study
also invites further experimental work to unravel a possible
switl in the third dimension and its effects on light. Therefore,
recalling that the umbilical defects at work here have only been
described so far within two-dimensional mathematical treat-
ments [31, 22], theoretical efforts to assess the three-dimen-
sional nature of umbilics are also worth considering.
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