
HAL Id: hal-02468596
https://hal.science/hal-02468596v1

Submitted on 5 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of QUIC session establishment and its
implementations

Eva Gagliardi, Olivier Levillain

To cite this version:
Eva Gagliardi, Olivier Levillain. Analysis of QUIC session establishment and its implementations.
13th IFIP International Conference on Information Security Theory and Practice (WISTP), Dec 2019,
Paris, France. pp.169-184, �10.1007/978-3-030-41702-4_11�. �hal-02468596�

https://hal.science/hal-02468596v1
https://hal.archives-ouvertes.fr

Analysis of QUIC Session Establishment and its
Implementations

Eva Gagliardi1 and Olivier Levillain2

1 French Ministry of the Armies,
2 Télécom SudParis, Institut Polytechnique de Paris

Abstract. In the recent years, the major web companies have been
working to improve the user experience and to secure the communica-
tions between their users and the services they provide. QUIC is such an
initiative, and it is currently being designed by the IETF. In a nutshell,
QUIC originally intended to merge features from TCP/SCTP, TLS 1.3
and HTTP/2 into one big protocol. The current specification proposes
a more modular definition, where each feature (transport, cryptography,
application, packet reemission) are defined in separate internet drafts.
We studied the QUIC internet drafts related to the transport and cryp-
tographic layers, from version 18 to version 23, and focused on the con-
nection establishment with existing implementations.
We propose a first implementation of QUIC connection establishment
using Scapy, which allowed us to forge a critical opinion of the current
specification, with a special focus on the induced difficulties in the im-
plementation. With our simple stack, we also tested the behaviour of the
existing implementations with regards to security-related constraints (ex-
plicit or implicit) from the internet drafts. This gives us an interesting
view of the state of QUIC implementations.

Keywords: QUIC · Secure communications · Protocol implementation.

1 Introduction

In the recent years, the major web companies have been working to improve
the user experience and to secure the communications between their users and
the services they provide. One of this effort was QUIC, proposed by Google
in 2012. Another change in parallel was the standardization of TLS 1.33, which
both achieves better performance, with a faster session establishment, and better
security, since only up-to-date and secure primitives were kept in this new version
of the protocol.

However, even with TLS 1.3 and HTTP/2, the TLS/HTTP combination is
still considered a bottleneck by some actors. So the development of QUIC went
on, and Google proposed their protocol to the IETF for a standardization. A
working group was formed and since 2016, 23 draft versions of the protocol have
been discussed. The original protocol has since been renamed gQUIC (for Google

3 Actually, TLS 1.3 borrowed several ideas from the initial QUIC design.

2 E. Gagliardi and O. Levillain

QUIC). In the remainder of this article, QUIC refers to the IETF version of the
protocol, which differs significantly from gQUIC. Indeed, the IETF version offers
a more modular protocol than the original proposal. QUIC design relies on the
following architecture:

– A transport layer is defined in the quic-transport internet draft [4] over
UDP. This way, QUIC avoids the delay induced by the TCP three-way hand-
shake, but obviously has to handle packet loss and reordering.

– During the session establishment, cryptographic parameters and keys are
negotiated using TLS 1.3 Handshake message. The way QUIC embeds and
interacts with TLS is described in the quic-tls internet draft [11].

– On top of the transport layer, a new version of the HTTP protocol is being
proposed, HTTP/3, which will be designed for QUIC [2].

The working group also wrote several peripheral internet drafts to specify
generic properties for QUIC [7, 10] or to give details on specific features [3, 6]. In
this article, we focus on the establishment phase described by quic-transport

and quic-tls drafts.

Section 2 describes the QUIC protocol and section 3 details the protection
mechanism used to encrypt QUIC packets. For our study, we implemented parts
of the protocol with Scapy; section 4 presents the challenges we had to face to
interact with existing QUIC stacks. Using our tool, we ran some tests to study the
behaviour of public servers with regards to security-related constraints (explicit
or implicit) from the internet drafts; section 5 describes the test bench while
section 6 contains the obtained results. Related work is presented in section 7
before our conclusion.

2 QUIC in a Nutshell

The message flow of a typical QUIC connection is given in Figure 1. First, the
client sends an Initial packet, which includes a TLS 1.3 ClientHello. If the en-
closed (QUIC and TLS) parameters are acceptable for the server, it answers
with an Initial packet (including the TLS ServerHello). This message is followed
by a Handshake packet including the rest of the TLS server messages (in par-
ticular the messages related to server authentication). The handshake ends with
a message from the client. Then, application data can be exchanged using so-
called 1-RTT packets. The three phases, corresponding to different packet types
(Initial, Handshake, 1-RTT) correspond to the three cryptographic epochs used
in TLS 1.3 (cleartext messages, protection using Handshake secrets, protection
using Traffic secrets), with the notable exception that Initial packets are actually
encrypted using publicly-available data (we explore this in section 3.1).

Analysis of QUIC Session Establishment 3

Client Server
QUIC Initial
(ClientHello)

QUIC Initial

(ServerHello)

QUIC Handshake

(EncryptedExtensions +

Certificate + CertVerify +

Finished)

QUIC Handshake
(Finished)
QUIC 1 RTT

(Application data)

Initial Protection

Handshake Secrets

Traffic Secrets

Fig. 1. A typical QUIC connection. The TLS 1.3 messages encapsulated in CRYPTO
frames are given in parentheses. ACK and Padding frames have been left out for clarity.

2.1 QUIC Main Goals and Features

The QUIC protocol aims at providing an efficient and secure channel for appli-
cation data. The efficiency properties include:

– Low-latency session establishment. As shown in Figure 1, a typical
connection allows the client to send application data to the server after only
1-RTT4, whereas TLS 1.2 usually requires 3 (including the TCP handshake)
and TLS 1.3 typically requires 2. Moreover, when connecting to a known
server, a client can benefit from TLS 1.3 0-RTT feature to send application
data in its first datagram (whereas TLS 1.3 still requires the RTT induced
by the TCP handshake).

– Stream multiplexing within a shared connection. 1-RTT packets (as
well as 0-RTT packets) include application data which are associated with
streams. From the QUIC point of view, these streams are independant and
can be multiplexed in QUIC packets using the client and server policies. This
feature (also present in HTTP/2) solves the so-called Head of Line blocking
issue from HTTP/1.1 pipelining where you must wait for the end of a request
to emit the next one.

– Low bandwidth usage. The message design in QUIC was made to limit
the bandwidth usage of the signaling and transport structures. For example,
the draft uses several variable-length fields to limit their sizes. It also defines
a padding scheme without any overhead (in case padding is not used).

4 The session establishment latency is usually measured in RTTs (Round-Trip Time),
that is the time required for the client to send a request and get an answer.

4 E. Gagliardi and O. Levillain

The security properties rely on:

– State-of-the-art cryptographic primitives. This point is granted by the
use of TLS 1.3, which was designed to clean up the cryptographic zoo accu-
mulated for more than 20 years and only uses up-to-date and robust schemes.

– Privacy-oriented measures. QUIC offers a padding feature to avoid traffic
analysis, and most of QUIC packet contents are encrypted and integrity-
protected. However, as discussed in section 3.1, even if Initial packets are
encrypted, this mechanism offers no protection in typical attacker models.

– Countermeasures against denial-of-service attacks. Since QUIC uses
UDP, it is essential not to enable or encourage amplification attacks where
an attacker would send a small packet to a server with a forged source IP
address, expecting a much larger answer to be sent to the victim. To this
aim, before the session has been established, there are constraints on the
size of the data the server can send. Moreover, QUIC allows the server to
validate the client address before the session establishment (via the so-called
Retry mechanism).

Another goal for the IETF working group is for QUIC to be compatible with
the internet. In particular, the working group has to face so-called middleboxes,
network devices that may intercept or block traffic at different places of the
internet5. This goal led to the definition of several QUIC invariants [10], which
should be taken into account by middleboxes. It also led to encrypting as much
as possible, including Initial packets, to make a QUIC packet as hard as possible
to grasp for a piece of equipment unaware of a particular version of QUIC.

3 QUIC Packet Protection

Almost every QUIC packet follows the steps described in Figure 2 to encrypt
both the payload and parts of the header. Moreover, since the header is fed
as Associated Data to the AEAD (Authenticated Encryption with Associated
Data) algorithms, both header and payload are integrity-protected.

To protect a packet, the header is first isolated from the payload. Then, the
payload is encrypted using the negotiated AEAD. It takes as input the plaintext
payload, a key derived from the key exchange, and a nonce (which comes from
the XOR of the packet number from the header with an IV also derived from
the key exchange).

Then, part of the payload is sampled and used as input to an encryption
algorithm (in typical setups, the sample is 16 bit long and is encrypted with
AES-ECB). The resulting ciphertext is used to mask (with a XOR) several fields
of the header.

This convoluted procedure aims at protecting several fields in the header,
such as the Packet Number.

5 These middleboxes were a real problem during the definition of TLS 1.3 and the TLS
working group actually decided to include optional dummy messages in the message
flow to accommodate them.

Analysis of QUIC Session Establishment 5

Header Payload

Encrypted
Payload

AEAD
(AES-GCM)

AES-ECB Sampling
XOR

(selected fields)

Packet
Number

Masked
Header

Encrypted
Payload

Protected QUIC Packet

Associated Data
Plaintext

iv

Unprotected QUIC Packet

Nonce
key

Key

header protection key

Fig. 2. QUIC packet protection mechanism. The inputs are the packet to protect, the
key and the iv used to encrypt the payload, and the header protection key.

3.1 The Special Case of Initial Packets

There is however an egg-and-chicken problem with Initial packets, since they are
supposed to be protected, but they contain the key exchange messages which
should provide the keying material.

Actually, Initial packets must be protected, but the used parameters are
defined by the RFC and one field from the client Initial packet:

– the AEAD used to protect the payload is AEAD AES 128 GCM;
– the Initial secret (from which the key, the IV and the header protection

key are derived), is derived from the so-called salt, a constant defined in
the specification for a given version of the protocol, and the Destination
Connection ID (DCID) embedded in the client Initial packet.

This DCID is actually only sent in the first packet, since each endpoint is
responsible for the definition of its own Connection ID (which can be void).
Thus, a server would typically answer with an Initial message with a freshly
generated Source Connection ID and the DCID chosen by the client (in the
Source Connection ID field of the first packet).

It must be clearly stated that this mechanism offers absolutely no protection
from an attacker able to observe the first packet sent by the client. The draft
indeed states that “[t]his provides protection against off-path attackers and ro-
bustness against QUIC version unaware middleboxes, but not against on-path

6 E. Gagliardi and O. Levillain

attackers.” The part about robustness refers to the idea that middleboxes un-
aware of a given QUIC version will not know the corresponding salt and will
not be able to inspect the packet. We strongly believe that this is a naive rea-
sonning, and that middleboxes will nevertheless try and decrypt and inspect the
packet, which will most certainly lead to reject the packet or report an incident
in typical cases. From our point of view, protecting initial packets is a useless
mechanism that provides no security in practice.

3.2 Header Protection keys

The hp key, used to encrypt selected fields from the header, is generated from
the Initial secret, and “is used for the duration of the connection, with the value
not changing after a key update.” Thus, if an attacker is able to observe the
client first packet, she can easily remove the header protection for the whole
connection. Since the header protection includes a somewhat great complexity,
for a very small benefit, we wonder whether the trade-off is well balanced.

Moreover, the specification is unclear on how to protect the header when a
Chacha20- or an AES-256-based ciphersuite is selected during the handshake.
Indeed, the initial (and only) header protection key is supposed to be 16-byte
long. Yet, when using Chacha20 or AES-256, a 256-bit key (32 bytes) is expected.
How should we reconcile this?

4 Implementation of the Initial Exchange

To better assess the reality of the message protection scheme, we implemented a
portion of the QUIC protocol in Scapy, a Python framework used to dissect and
forge packets for various network protocols [1]. Appendix A presents excerpts of
our implementation.

What struck us during this work was the complexity of the mechanism, es-
pecially for the client initial packet. Indeed, protecting a packet corresponds to
the following sequence (step 5 is only required for the first Initial packet):

1. build6 the header from its fields;
2. build the payload from its fields;
3. pad the payload so the packet size is long enough;
4. report the payload length in the header to take the padding into account;
5. derive secrets from the version and the DCID;
6. derive the nonce from the IV (derived during the previous step) and the

Packet Number (from the header);
7. encrypt the payload;
8. extract the sample;
9. encrypt the header.

6 We use the term build to describe the production of a byte string from the abstract
structure manipulated by the rest of the application. It is the reverse operation of
the binary parsing, and is sometimes called unparsing, dumping, or serializing.

Analysis of QUIC Session Establishment 7

The corresponding actions to unprotect a received packet are the following
(step 2 is only needed to handle the client initial packet):

1. parse the first fields of the header;
2. derive secrets from the version and the DCID;
3. extract the sample from the payload, assuming the Packet Number Length

is 4 (more on this later);
4. decrypt the Packet Number Length;
5. infer the real offset/length of the Packet Number field and of the payload;
6. decrypt the Packet Number;
7. derive the nonce from the IV and the Packet Number;
8. decrypt the payload.

Even if these description are very detailed and even if some of our difficul-
ties might be related to the way Scapy works, we strongly believe the sequence
is inherently complex. Focusing on the protection procedure, it mixes classical
building steps (steps 1 and 2), cryptographic operations (steps 5, 6, 7 and 9), but
also raw manipulations of the binary packet (steps 3, 4 and 87). Such manipula-
tions are highly undesirable from a software engineering point of view, especially
when they are intertwined with cryptographic or parsing/building steps.

Moreover, the manipulation steps are really hard to get right. For example,
updating the payload length in the header requires identifying the offset of this
specific field (which is not fixed) and encoding the new length using a variable
length field: the precise length of the packet may be different after this update!

Another example of the complexity induced by the specification: since the
Packet Number Length is encrypted, there is no way for the receiver to establish
where the payload actually starts. This is why the sample required to encrypt
the header is not computed from the start of the payload, but from what would
be the first byte of the payload, assuming the Packet Number Length is 4 (this
means a shift of 0 to 3 bytes).

Overall, the QUIC design forces developers to write so-called shotgun parsers,
that is parsers which mix several kind of operations (parsing, input-validating
code, processing code) [9], whereas a cleaner design would lead to a simpler and
more straightforward implementation.

5 Test Description

To better understand the emerging QUIC ecosystem, we then looked at the ex-
isting implementations in the wild, as listed on the QUIC Working Group wiki8.
During our study, which spanned over several months and followed drafts 18
to 23, we contacted around 20 public servers, corresponding to 16 different im-
plementations. To investigate several configurations further, we also installed
several implementations locally.

7 As a matter of fact, since header encryption (step 9) is not a straightforward XOR
on a clearly delimited message, this could also be considered as a raw manipulation.

8 https://github.com/quicwg/base-drafts/wiki/Implementations

8 E. Gagliardi and O. Levillain

Table 1 describe the implementations we considered and their availability in
October 2019. Out of the 16 public servers, 10 were available and up to date
after the draft-23 publication.

Implem. Test server Comments

aioqquic quic.aiortc.org:443 OK (draft-23)
ats quic.ogre.com:4443 OK (draft-23)
f5 204.134.187.194:4433 No answer (latest draft: -22)
lsquic http3-test.litespeedtech.com:4433 No complete Handshake
mozquic mozquic.ducksong.com:4433 No answer (latest draft: -12)
msquic quic.westus.cloudapp.azure.com:4433 No complete Handshake
mvfst fb.mvfst.net:4433 OK (draft-23)
ngtcp2 nghttp2.org:4433 OK (draft-23)
ngx quic cloudflare-quic.com:443 OK (draft-23)
Pandora pandora.cm.in.tum.de:4433 OK (draft-23)
picoquic test.privateoctopus.com:4433 OK (draft-23)
quant quant.eggert.org:4433 OK (draft-23)
quiche quic.tech:4433 OK (draft-23)
QUICker quicker.edm.uhasselt.be:4433 No answer (latest draft: -20)
quicly quic.examp1e.net:4433 No complete Handshake
Quinn ralith.com:4433 OK (draft-23)

Table 1. List of the servers we probed during our study and their status in October
2019 when facing a draft-23 Client Initial packet. Two servers never answered to our
stimuli during the whole study (mozquic and QUICker), which might be explained by
the fact that their development seems to be on hold. For the results described in this
article, we will only consider the 10 servers we could connect to properly during our
latest tests (after draft-23 publication).

Indeed, one major difficulty we faced during our tests was that public servers
would randomly go down and stop answering to our stimuli. The problem was
especially visible each time a new draft was published.

To test the behaviour of these implementations, we sent different stimuli.
The baseline was a valid QUIC Client Initial Packet corresponding to the latest
version9. Then, we sent variations around this first stimulus:

– packets with a future version of the protocol, some of them being partly
incompatible with the current wire format;

– packets not respecting the constraints on Client Initial Packet length;
– packets missing mandatory information (QUIC transport parameters, TLS

Application-Layer Protocol Negotiation extension);
– packets containing forbidden frame types;
– packets with mangled CRYPTO frames.

9 To be precise, we actually sent several valid stimuli, to accommodate with minor
quirks with the ALPN extension, as described in section 6.3.

Analysis of QUIC Session Establishment 9

6 Results

For this section, we chose to use the latest results, which correspond to the
23rd version of the drafts, published in September 2019. As explained in the
previous section, due to the unavailability of several servers, we could only scan
10 implementations in a reliable way before the submission.

Moreover, it is important to keep in mind that the tested implementations,
as well as the specifications, are still works in progress, and that the results
presented here are only a snapshot of a fast-evolving ecosystem. Our goal is thus
not to blame a given QUIC stack for possible deviations with regards to the
draft (or its spirit, in case of implicit constraints), but to draw the attention on
possible issues, which are the consequence of a complex protocol.

6.1 Version Negotiation

The QUIC specification aims at describing a robust protocol able to survive
future changes of the concrete representation of messages on the wire. This is
why the beginning of a QUIC packet is defined in a document called “QUIC
Invariants” [10]: the long header should always look like the definition in Figure 3.

It is important to notice in particular that the payload length is not part
of this definition. Thus, a QUIC packet advertising a new version should be
able to redefine how the packet length is specified. This is why we sent three
different stimuli to the test servers: a standard valid draft23-compatible Initial
packet, a similar packet advertising a yet-to-be-defined version, and a similar
packet advertising the same future version but with the current Length field set
to a huge value. Since the length should not be parsed for unknown versions,
we expect compliant implementations to answer the first stimulus with a valid
handshake (an Initial packet followed by Handshake packets) and the two other
stimuli with a Version Negotiation message, asking the client to re-emit its packet
using a version of the protocol supported by the server.

The majority of the contacted servers actually behaved this way, but we
also witnessed one implementation (see Table 2, ngtcp2 implementation) that
answered correctly with a Version Negotiation message when our stimulus con-
tained a correct length, while timing out when the length was incorrect. This is
a violation of the invariants as described in the specifications.

As a side note, it is interesting that we discover this behaviour by accident
after a change in the draft describing the invariants when draft-22 was published.
Indeed, in July 2019, the working group decided to change the way Connection
ID length was sent on the wire10. Since we studied both pre-draft-22 and draft-22
implementations at the time, we triggered the incorrect behaviour with recent
versions choking an on old stimulus (or the other way around).

10 We let the reader reflect on the introduction of a change in a document describing
the protocol invariants. Even though this was a bit unsettling, let us recall that this
change was a simplification in the design and that QUIC documents are still drafts.

10 E. Gagliardi and O. Levillain

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+

|1|X X X X X X X|

+-+

| Version (32) |

+-+

| DCID Len (8) |

+-+

| Destination Connection ID (0..2040) ...

+-+

| SCID Len (8) |

+-+

| Source Connection ID (0..2040) ...

+-+

Fig. 3. Description of the first fields of any (long-header) QUIC packet, as defined in
the “QUIC Invariants” Internet draft [10].

Implem. Reaction to a Future version with
correct length incorrect length

Expected Version Negotiation Version Negotiation

aioqquic Version Negotiation Version Negotiation
ats Version Negotiation Version Negotiation
mvfst Version Negotiation Version Negotiation
ngtcp2 Version Negotiation Time Out
ngx quic Version Negotiation Version Negotiation
Pandora Version Negotiation Version Negotiation
picoquic Version Negotiation Version Negotiation
quant Version Negotiation Version Negotiation
quiche Version Negotiation Version Negotiation
Quinn Version Negotiation Version Negotiation

Table 2. Reaction of the servers selected in the previous section to an initial packets
advertising a future version of the protocol. The first one presents a correct length
field (with regards to the current specification) while the second presents a bigger
length. The Time Out in the second column corresponds to a server waiting for what
it interprets as missing bytes.

Analysis of QUIC Session Establishment 11

6.2 Client Initial Packet Length

Since QUIC uses UDP, it is inherently subject to reflection attacks, where an
attacker sends a packet with a forged source address, leading the server to answer
to the victim. In some cases, the attacker can trigger a huge amount of data using
a small packet. These so-called amplification attacks may lead to denial of service
situations.

To avoid such attacks, QUIC specifies that a client should send at least a
1,200-byte long initial packet, and that a server should never answer with more
than three times the amount of data the client initially sent. Moreover, a server
should ignored a client Initial packet which is too small. The combination of
these constraints allows the server to send up to 3,600 bytes in its first flight,
which is considered sufficient.

To check how servers behaved regarding these constraints, we sent small
stimuli, and observed the reaction of the public servers. Several implementations
actually answered our invalid packet, as shown in Table 3. The exact implemen-
tations that were affected did vary across time, but we also always observed that
the server answer was capped at three times the size of the client Initial packet,
which at least limited the amplification impact, as planned.

6.3 Missing Parameters

Scattered across the specifications, several parameters of the client Initial packet
are described as mandatory. In particular, the TLS 1.3 ClientHello must contain
an extension dedicated to QUIC to define the initial values of several transport
parameters (e.g. to define the maximum size of the exchanged packets) and
the ALPN extension (which defines the nature of the protocol encapsulated in
QUIC).

We found out that several implementations seemed to accept a stimulus
missing these elements, and in the case of ALPN, we even found implementations
that only answered when the extension was missing. The situation might not be
a problem after all, since we only looked at the first messages of the connections,
and what seemed to be a valid connection might then be shut down by the server
when handling the application layer.

Yet, we believe errors should be triggered as soon as possible, both to avoid
useless resource usage and to make debugging easier. Indeed, several implemen-
tations return an empty error packet when some parameters are missing (or do
not correspond to the expected values), and the only way to understand what
is happening is to have access to the server logs, or to compare the behaviour of
a given server with different stimuli.

6.4 Frame Mangling

Another venue we investigated was to send forbidden frames to the servers.
The specification indicates that the only frames that should be sent in an Initial
packet are crypto frames (which embed TLS messages), acknowledgement (ACK)

12 E. Gagliardi and O. Levillain

Implem. Reaction to a small Initial packet

Expected Time Out

aioqquic Time Out
ats Handshake (886 bytes)
mvfst Time Out
ngtcp2 Time Out
ngx quic Time Out
Pandora Time Out
picoquic Time Out
quant Time Out
quiche Handshake (896 bytes)
Quinn Time Out

Table 3. Reaction of the selected servers to a small initial packet (300 bytes). Even if
several implementations answer with the beginning of a Handshake, they respect the
constraint not to send more than three times the amount of data initially received.

Implem. Ping frame Split Crypto Overlapping Crypto frames
consistent inconsistent

Expected Error Error Error Error

aioqquic Handshake Handshake Handshake Handshake
ats Handshake Handshake Error Error
mvfst Error Handshake Handshake Handshake
ngtcp2 Handshake Handshake Handshake Handshake
ngx quic Error Handshake Handshake Handshake
Pandora Error Time Out Error Error
picoquic Time Out Handshake Handshake Handshake
quant Error Error Error Error
quiche Error Handshake Handshake Handshake
Quinn Error Handshake Handshake Handshake

Table 4. Reaction of the selected servers to a initial packets containing strange frames.
Behaviours in bold are unexpected ones.

Analysis of QUIC Session Establishment 13

frames, Connection Close frames (which signal errors) and padding frames. How-
ever, we observed that several servers would accept a Ping frame enclosed in the
first client Initial packet11. Again, we would expect the servers to be stricter
with the messages they accept.

We also tried to split the TLS ClientHello across two Crypto frames, which
should be rejected by implementations, since the specification states that “[t]he
first packet sent by a client always includes a CRYPTO frame that contains the
entirety of the first cryptographic handshake message.”. Most of the implemen-
tations nevertheless answered our stimulus.

Finally, we sent packets with two overlapping Crypto frames (bytes 0 to 149,
followed by bytes 50 to the end), first where both fragments would contain the
same content, and then with a glitch introduced in the first fragment12. We
thus observed that most of the servers tolerated overlapping frames, including
when they were inconsistent. There is no obvious way to directly exploit this
behaviour, but we found this a bit unsettling, and would advocate a stricter set
of rules in the implementations.

Table 4 summarises these experiments on frame mangling.

7 Related Work

QUIC is a relatively new protocol, and most of the literature related to QUIC
is about gQUIC. For example, Jager et al. showed how to exploit the Bleichen-
bacher attack against RSA Encryption to forge a signature and bypass server
authentication in Google QUIC [5].

More recently, McMillan and Zuck presented a modeling of QUIC to test the
state machines of existing implementations [8]. We believe our approaches are
complementary since we propose a (partial) concrete test bench, whereas they
validate implementations at a more abstract level. Their work showed in partic-
ular the existence of ambiguities in the specification, which our measurements
seem to confirm, when we look at the diversity of behaviours in the existing
implementations.

An online tool, QUIC Tracker13, describes a test suite regarding QUIC fea-
tures, and shows the reaction of existing implementations. Yet, QUIC Tracker
seems to only look at features whereas we believe measuring the conformance to
specific constraints from the specification would be of great help.

8 Conclusion and Perspectives

QUIC is a relatively recent protocols aiming at improving the efficiency and
security of the web. As of today, it is still a work in progress, which reflects on

11 As a side note, it appears that placing the Ping frame after instead of before the
Crypto frame gets the stimulus accepted by one more server.

12 We also tried with the glitch on the second fragment, but we mostly obtained errors
from the servers.

13 https://quic-tracker.info.ucl.ac.be

14 E. Gagliardi and O. Levillain

the stability and robustness of the implementations. In our work, we focused on
the initial negotiation phase of the protocol, and how to implement it.

We assessed the complexity in practice of the QUIC protection mechanisms
by writing a Scapy implementation. We learned that QUIC is a complex beast
and we believe it would be useful to simplify several aspects of the specification
which are not justified in our mind. We already discussed with the IETF Working
Group of several aspects of our findings and plan to continue this interaction.

We proposed a first framework to send stimuli to servers and observe their
behaviour during the session establishment. Obviously, it would be useful to
pursue this effort and propose more elaborate scenarios to test other features,
e.g. address migration or 0-RTT data exchanges.

In the end, QUIC is a very complex protocol, and this complexity will cer-
tainly lead to implementation bugs. Indeed, the current situation is far from
perfect, since most of the studied implementations do not conform to the spec-
ification on several aspects, and some of these aspects could be the first step
towards a complex attack.

References

1. Biondi, P., the Scapy community: Scapy. http://www.secdev.org/projects/scapy/
(2003-2016), http://www.secdev.org/projects/scapy/

2. Bishop, M.: Hypertext Transfer Protocol Version 3 (HTTP/3). Internet-
Draft draft-ietf-quic-http-23, Internet Engineering Task Force (Sep 2019),
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-23, Work in Progress

3. Iyengar, J., Swett, I.: QUIC Loss Detection and Congestion Control.
Internet-Draft draft-ietf-quic-recovery-23, Internet Engineering Task Force (Sep
2019), https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-23, Work in
Progress

4. Iyengar, J., Thomson, M.: QUIC: A UDP-Based Multiplexed and Secure Transport.
Internet-Draft draft-ietf-quic-transport-23, Internet Engineering Task Force (Sep
2019), https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-23, Work in
Progress

5. Jager, T., Schwenk, J., Somorovsky, J.: On the Security of TLS 1.3 and QUIC
Against Weaknesses in PKCS#1 v1.5 Encryption. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-16, 2015. pp. 1185–1196 (2015)

6. Krasic, C.B., Bishop, M., Frindell, A.: QPACK: Header Compression for
HTTP/3. Internet-Draft draft-ietf-quic-qpack-10, Internet Engineering Task Force
(Sep 2019), https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-10, work
in Progress

7. Kühlewind, M., Trammell, B.: Applicability of the QUIC Transport Protocol.
Internet-Draft draft-ietf-quic-applicability-05, Internet Engineering Task Force
(Jul 2019), https://datatracker.ietf.org/doc/html/draft-ietf-quic-applicability-05,
work in Progress

8. McMillan, K.L., Zuck, L.D.: Formal specification and testing of QUIC. In: Pro-
ceedings of the ACM Special Interest Group on Data Communication, SIGCOMM
2019, Beijing, China, August 19-23, 2019. pp. 227–240 (2019)

Analysis of QUIC Session Establishment 15

9. Momot, F., Bratus, S., Hallberg, S.M., Patterson, M.L.: The Seven Turrets of
Babel: A Taxonomy of LangSec Errors and How to Expunge Them. In: IEEE
Cybersecurity Development, SecDev 2016, Boston, MA, USA, November 3-4, 2016.
pp. 45–52 (2016)

10. Thomson, M.: Version-Independent Properties of QUIC. Internet-Draft
draft-ietf-quic-invariants-07, Internet Engineering Task Force (Sep 2019),
https://datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-07, Work in
Progress

11. Thomson, M., Turner, S.: Using TLS to Secure QUIC. Internet-
Draft draft-ietf-quic-tls-23, Internet Engineering Task Force (Sep 2019),
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-23, Work in Progress

A Scapy Implementation

The description of a QUIC packet in Scapy can be done as shown in the following
extract:

class QUIC(Packet):
fields_desc = [

Flags
BitEnumField("header_type", 1, 1, {0: "short", 1: "long"}),
BitEnumField("fixed_bit", 1, 1, {0: "error", 1: "1"}),
BitEnumField("type", 0, 2, {0: "initial", 1: "0-RTT",

2: "handshake", 3: "retry"}),
BitField("reserved", 0, 2),
BitFieldLenField("PNL", None , 2, length_of="PN",

adjust=lambda pkt ,x:x-1),

Version
XIntField("version", 0x0),

Connection IDs (DCID/SCID)
BitFieldLenField("DCIL", None , 8, length_of="DCID"),
StrLenField("DCID", b’’, length_from=lambda pkt:pkt.DCIL),

BitFieldLenField("SCIL", None , 8, length_of="SCID"),
StrLenField("SCID", b’’, length_from=lambda pkt:pkt.SCIL),

Token (only when type is initial)
ConditionalField(QuicVarLenField("token_length", None ,

length_of="token"),
lambda pkt: pkt.version != 0 and pkt.type == 0),

ConditionalField(StrLenField("token", b’’,
length_from = lambda pkt:pkt.token_length),
lambda pkt: pkt.version != 0 and pkt.type == 0),

Length (only when type is 0-RTT or initial)
ConditionalField(QuicVarLenField("length", None),

lambda pkt: pkt.version != 0 and pkt.type != 3),

Packet Number (only when type is 0-RTT or initial)
ConditionalField(StrLenField("PN", b’\x00’,

length_from = lambda pkt:pkt.PNL+1),
lambda pkt: pkt.version != 0 and pkt.type != 3),

]

Of course, since most fields are only valid for specific types of QUIC packets,
we need to determine the presence most of the fields by the presence of certain
values before in the packet.

16 E. Gagliardi and O. Levillain

To apply packet protection, we had to write dedicated functions. The follow-
ing excerpt shows a simplified version of the protection function, which takes a
QUIC packet as input and produces the byte string that can be sent on the wire.

def protect(material , packet):
(key , iv, hp) = material
header = packet.copy()
header.payload = Raw()
payload = packet [1]

Compute nonce
nonce = int.from_bytes(iv , byteorder=’big’) ^

int.from_bytes(header.PN , byteorder=’big’)
nonce = nonce.to_bytes (12, byteorder = ’big’)

Encrypt the payload
encryptor = Cipher(algorithms.AES(key), modes.GCM(nonce),

backend=default_backend ()).encryptor ()
encryptor.authenticate_additional_data(raw(header))
encrypted_payload = encryptor.update(raw(payload)) +

encryptor.finalize () + encryptor.tag

Extract the sample
PNL = header.PNL + 1
sample_start = 4 - PNL # The receiver will assume PNL is 4
sample = encrypted_payload[sample_start:sample_start + 16]

Compute the mask
encryptor = Cipher(algorithms.AES(hp), modes.ECB(),

backend=default_backend ()).encryptor ()
mask = encryptor.update(sample) + encryptor.finalize ()

Encrypt the flags and the PN
encrypted_header = bytearray(raw(header))
encrypted_header [0] ^= (mask [0] & 0x0f)
for i in range(PNL):

encrypted_header[-PNL + i] ^= mask[i+1]
encrypted_header = bytes(encrypted_header)

return encrypted_header + encrypted_payload

Our implementation could be improved by the addition of a Scapy automaton
to handle the QUIC state machine and its transitions. However, we must keep
in mind that our goal was to send possibly non-conformant stimuli to servers,
so we might want not to follow the expected state machine all the time in our
future work.

