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Abstract

We propose a new method to efficiently price swap rates derivatives under the LIBOR
Market Model with Stochastic Volatility and Displaced Diffusion (DDSVLMM). This method
uses polynomial processes combined with Gram-Charlier expansion techniques.

The standard pricing method for this model relies on dynamics freezing to recover an Heston-
type model for which analytical formulas are available. This approach is time consuming and
efficient approximations based on Gram-Charlier expansions have been recently proposed.

In this article, we first discuss the fact that for a class of stochastic volatility model, including
the Heston one, the classical sufficient condition ensuring the convergence of the Gram-Charlier
series can not be satisfied. Then, we propose an approximating model based on Jacobi process
for which we can prove the stability of the Gram-Charlier expansion. For this approximation,
we have been able to prove a strong convergence toward the original model; moreover, we give
an estimate of the convergence rate. We also prove a new result on the convergence of the
Gram-Charlier series when the volatility factor is not bounded from below. We finally illustrate
our convergence results with numerical examples.

Keywords: Stochastic Volatility; Displaced Diffusion; Jacobi dynamics; Gram-Charlier ex-
pansions; Polynomial processes; LIBOR Market Model.

1 Introduction

Since the work of [30], [8] and [24], so-called market models have spread among practitioners. [25]
extended the original LIBOR Market Model to both stochastic volatility and displaced diffusion,
whereas [35] proposed a widely used version of the stochastic volatility component which is a
Cox-Ingersoll-Ross (CIR) process; on this basis they provided several analytical results such
as integral-based formulas for caplets and swaptions prices. Combining that two modelling
frameworks yield the so-called Displaced Diffusion with Stochastic Volatility LIBOR Market
Model (referred to as DDSVLMM), very popular within insurance market. Our main motivation
is indeed to propose a modelling framework allowing for efficient Risk-Neutral valuation of the
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1. INTRODUCTION

balance sheet of insurers. Several other versions of the model proposed in [35] have been
developed in the literature, whose differences mainly lie in the way of modelling the stochastic
volatility component and the scope of instruments to be addressed. The model introduced in [32]
is also very popular: the stochastic volatility factor is again a CIR process but uncorrelated to
other drivers and the developed pricing methodology is built on successive suited approximations
of the primary dynamics. An overview of existing modelling choices can be found in [10] and
references therein.

Due to the complexity of the resulting swap rate dynamics in the DDSVLMM or its variants,
as in particular the forward rates are involved in the drift of the stochastic volatility process,
one resorts to the so-called freezing technique, see [1]. As a result, the swap rate dynamics can
be assimilated to an Heston-type model (with time-varying coefficients), whose characteristic
function can be analytically derived and then used for pricing, see [22] or [35]. The famous Fast
Fourier Transform described in [13] used to pricing over a grid of strikes is especially suited for
pricing when using such models.

Beyond numerical instability issues of the Heston characteristic function, as pointed out and
solved by [7], recent interest has been dedicated to the significant computational time cost of
these methods and the use of more efficient techniques for pricing. In particular, approximations
based on Gram-Charlier and Edgeworth expansion techniques have been proposed by [15], who
developed an adjustment of a reference Gaussian distribution (Bachelier model) for skewness
and kurtosis, and as a by-product derived a smile formula linking the volatility to the moneyness
with interpretable parameters. Pricing formulas under the DDSVLMM involving moments up
to order four are provided in analytical form by [15] taking advantage of the explicit knowledge
of the characteristic function in Heston-type models.

However, ensuring the convergence of the Gram-Charlier series in the case of such affine
dynamics is not solved. In this paper we actually prove that the classical sufficient condition
presented in [21] used to secure the convergence of the expansion technique is not satisfied for
a class of unbounded stochastic volatility models including the classical Heston model.

In order to provide a modelling framework suitable for Gram-Charlier expansion series, we
rely on the theory of polynomial processes. In particular, we use the so-called Jacobi process
for the volatility as in [3], whose main feature is to allow for naturally bounding the volatility
process while preserving the tractability of moments using matrix exponentials. The Jacobi
process was initially introduced to study gene frequencies (see for instance [27]). Furthermore,
applications to finance have been studied more recently: [17] worked with an interest-rate model
based on a Jacobi dynamics whereas [29] studied a stochastic correlation adjustment modelled
by a Jacobi process. This has also been studied in [18] and [12] with further applications in
finance in [20].

Combining the works of [3] and [?], we propose a new approximation of the DDSVLMM.
We will refer to this suggested model as Jacobi version of the DDSVLMM. Our purpose is to be
able to price swap rates derivatives with Gram-Charlier expansions, as in [?], in a framework in
which the convergence of the series holds using a Jacobi process, as in [3]. Indeed, [3] justified
the use of Gram-Charlier expansion in an equity type context when bounding the stochastic
volatility factor. Gram-Charlier expansion is a technique allowing to approximate the density
of the modelled swap rate using as reference a Gaussian density. As such, the approximation
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is made by a Bachelier-type model, to which adjustments are added in the form of higher
moments of the swap rate distribution. It is particularly interesting due to the tractability and
the interpretability of the Bachelier model. However, alternatives do exist to develop converging
expansions approximations for Heston-type models. As pointed out in [21], a bilateral Gamma
density can be used as reference density in the Heston model, at the price of computational
difficulties of the orthonormal basis of polynomials, see for instance [4].

Our proposed model can be viewed as an approximation of the standard DDSVLMM. As in
[3], the model converges weakly to the original model when volatility bounds vanish. Moreover,
we have been able to prove this convergence in the L1 space and obtain a convergence rate.
Numerical investigations seem to indicate that the obtained convergence speed can be still
improved and allow to conjecture the value of the optimal convergence rate. Our conjecture is
supported by the derivation of a better speed of convergence for the weak error on the volatility
process. While [3] provided a bound on the error made when truncating the Gram-Charlier
series, in this work we use the obtained convergence rate to assess the pricing error made when
comparing the use of Jacobi and standard CIR processes. We also have been able to prove a
conjecture stated in [3] on the convergence of the Gram-Charlier series when the volatility factor
is not bounded from below. Finally, note that we work here with time-dependent coefficients
(mainly, piecewise constant), which extends the previous mentioned works.

This paper is structured as follows. In the end of this introductory section, we bring in the
density approximation technique we are interested in, then we present a preliminary motivation
result and finally we introduce the notion of (time-dependent) polynomial processes exempli-
fied by the particular Jacobi process. In Section 2, after recalling the standard DDSVLMM
framework, we specify our proposed approximating dynamics, especially by introducing the
Jacobi model for the stochastic volatility factor. Our main results about convergence of the
Gram-Charlier series, L1 convergence of the approximating model along with the derivation of
strong and weak convergence results are stated in this section. We provide numerical results
and illustrations in Section 3. The paper ends with some concluding remarks.

Notations We consider a probability space (Ω,F ,P) equipped with a filtration (Ft)t≥0

satisfying usual conditions. In a financial context, P can be viewed as the historical probability
measure whereas the filtration will represent market information (quoted prices, observed
smile, etc.). The latter is assumed to be generated by a multivariate Brownian motion. For
two (local) martingales (Xt)t≥0 and (Yt)t≥0, ⟨X·, Y·⟩t will denote their quadratic variation at
time t. Z

d
=Z ′ means that distributions of Z and Z ′ are in fact the same whereas Z a.s.

= Z ′

stands for almost sure equality. σ(Z) is the sigma-algebra generated by the random variable
Z. E[·] is the expectation associated to P, Ex[XT ] is the conditional expectation of XT given
the starting point X0 = x.
We will denote with bold font u the vectors; the canonical scalar product between two vectors
will be denoted u · v. Unless otherwise stated, ∥u∥ will represent the (L2-) norm induced by
the scalar product i.e. ∥u∥ =

√
u · u. If x ∈ R, we will denote by x the vector of which all

coordinates are equal to x: x = (x, x, · · · , x).
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1. INTRODUCTION

1.1 Density approximation

In this section, we provide more insights on the Gram-Charlier expansion. It is a technique
used to approximate an unknown density based on a reference - also named auxiliary - Gaussian
distribution denoted by

gr(x) = e−(x−µr)2/(2σ2
r)/
√

2πσ2r , (1)
of mean µr and variance σ2r . Note that generally, Gram-Charlier expansion (of type A) only
refers to the particular case where µr = 0 and σr = 1.

Let Z be the random variable of unknown probability density f that is aimed at being
approximated and define the L2

r Hilbert space as

L2
r =

{
h : R → R measurable such that ∥h∥2r :=

∫
R
h(u)2gr(u)du <∞

}
.

Let us introduce the family of polynomials (lying in L2
r) defined by

Hn(x) =
1√
n!

⌊n/2⌋∑
k=0

(−1)kn!

2kk!(n− 2k)!

(
x− µr
σr

)n−2k

.

(Hn)n∈N forms an Hilbertian basis of L2
r and in case where µr = 0 and σ2r = 1, the Hn are

generally known as the (normalized) Hermite polynomials (see for instance [19]). Thanks to
this basis, we can define for any N ∈ N pseudo-density functions by

f (N)(x) = gr(x)

N∑
n=0

cnHn(x).

These are called pseudo-densities since they can take negative values while always integrating
to one. As long as the likelihood ratio f̄ = f/gr belongs to L2

r , f can be approximated in this
space in the sense that

f (N)

gr

L2
r−−−−→

N→∞
f̄ .

We emphasize that the condition f/gr ∈ L2
r is equivalent to∫

R
f(u)2e

(u−µr)
2

2σ2
r du <∞, (2)

and is a sufficient condition to ensure the convergence of (f (N)/gr)N∈N in L2
r . In this space,

the standard inner product is defined by ⟨h1, h2⟩L2
r
=
∫
R h1(u)h2(u)gr(u)du for h1, h2 ∈ L2

r .
Since the (Hn)n∈N are orthogonal in L2

r with respect to this inner product, the coefficients cn
are uniquely determined as cn = ⟨f/gr,Hn⟩L2

r
=
∫
RHn(u)f(u)du = E[Hn(Z)], n ∈ N. Thus,

the coefficients cn are linear combination of moments of the unknown density f : to perform a
density approximation following this technique, the moments of Z have to be computed.

Numerically, the Gram-Charlier expansion is performed up to a given order N ∈ N. The
assessment of the error due to the truncation of the series can be an issue. When the condition
(2) is not satisfied, we can not conclude on the convergence of the approximating density; in
addition, there is no estimation of the error induced by the numerical truncation of the ap-
proximating series. More details about approximation density techniques based on orthonormal
polynomials expansion can be found in [21] and references given there.

The next subsection proves that for general stochastic volatility models (and in particular
in the Heston model), (2) is not satisfied.
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1.2 Preliminary result

The use of Gram-Charlier type techniques is appealing in financial applications, since pricing
can be performed efficiently while only requiring the computation of moments up to some order.
This has mostly been explored for modelling equity and associated derivatives, see e.g. [14],
[31], [33], [11] and [23] among others, as well as for the DDSVLMM modelling framework for
interest rates, see [15]. The aim of the present section is to analyze the core sufficient condition
for the convergence of the Gram-Charlier series, and in particular to prove that this condition
is not satisfied for general stochastic volatility model with unbounded volatility factor.

Let fix an horizon T and consider the following model:
dSt = u(Vt)λ(t)dBt

dVt = b(t, Vt)dt+ h(t, Vt)dWt

(S0, V0) ∈ R× R+

(3)

where the functions u : R+ −→ R+, λ : R+ −→ R, b : R+ × R+ −→ R and h : R+ ×
R+ −→ R are assumed to be regular enough to ensure existence and uniqueness of a solution to
(3). (St)t≤T stands for the financial driver (share price, interest-rate, …) of interest - possibly
at log-scale, (Vt)t≤T is a second source of risk, and (Bt)t≤T and (Wt)t≤T are two Brownian
motions under the appropriate probability measure. Correlation between Brownian motions is
driven by a coefficient ρ ∈] − 1, 1[ such that d ⟨B·,W·⟩t = ρdt. In the case where u(v) =

√
v,

(Vt)t≤T is interpreted as the instantaneous volatility of (St)t≤T . Moreover, when (Vt)t≤T is
a Cox-Ingersoll-Ross (CIR) process, model (3) is an Heston type model. This is a particular
case of interest since the standard approximation of the DDSVLMM is an Heston type model
as well. Let gT denote the unknown density of the random variable ST , and consider the
reference Gaussian distribution as introduced in Equation (1). The following result shows that
the sufficient condition to the convergence of a Gram-Charlier expansion does not hold under
some unboundedness assumption.

Theorem 1. We assume that the map t→ λ(t) is bounded:

0 < λ2min ≤ λ(t)2 ≤ λ2max <∞.

We also assume that the cumulated variance
∫ T
0 u(Vs)ds is unbounded and is positive:

for any constant M > 0, P
(∫ T

0
u(Vs)ds ≥M

)
> 0

and P
(∫ T

0
u(Vs)ds = 0

)
= 0.

(4)

Then the sufficient condition (2) to the L2
r−convergence of the approximating density series of

gT is not satisfied, that is: ∫
R
gT (u)

2e
(u−µr)

2

2σ2
r du = ∞.

Proof. We first derive an analytical expression for the density gT of ST . Consider (W⊥
t )t≥0 a

Brownian motion independent of (Wt)t≥0. Since

ST
a.s.
= S0 +

∫ T

0
u(Vs)λ(s)dBs

d
=S0 + ρ

∫ T

0
u(Vs)λ(s)dWs +

√
1− ρ2

∫ T

0
u(Vs)λ(s)dW

⊥
s ,
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one can note that, conditionally to FW
T = σ(Wt, t ≤ T ), ST is normally distributed with mean

S̃T := S0 + ρ
∫ T
0 u(Vs)λ(s)dWs and variance C2

T := (1 − ρ2)
∫ T
0 u(Vs)

2λ(s)2ds. By application
of Jensen’s inequality:

C2
T ≥ (1− ρ2)

T
λ2min

(∫ T

0
u(Vs)ds

)2

a.s., (5)

and thus with Assumption (4), we deduce P
(
C2
T = 0

)
= 0. Then, for any measurable function

f , we have thanks to Fubini theorem

E[f(ST )] = E
[
E[f(ST )|FW

T ]
]
= E

[∫
R
f(x)

1√
2πC2

T

e
− (x−S̃T )2

2C2
T dx

]

=

∫
R
f(x)E

[
1√
2πC2

T

e
− (x−S̃T )2

2C2
T

]
dx

which allows to identify the density of ST as gT (x) = E[GT (x)] where GT (x) :=

(2πC2
T )

−1/2e
− (x−S̃T )2

2C2
T . Now, Equation (5) along with Assumption (4) shows that

P
(
C2
T > 2σ2r

)
> 0 for all σr > 0 and thus with positive probability YT := −

(
1

2C2
T
− 1

4σ2
r

)
> 0.

Now, we have∫
R

g2T (x)

gr(x)
dx =

√
2πσ2r

∫
R
E[GT (x)]

2e(x−µr)2/(2σ2
r)dx

≥
√
2πσ2r

∫ a

−a
E
[
1C2

T>2σ2
r
×GT (x)e

(x−µr)2/(4σ2
r)

]2
dx

≥
√
2πσ2r
2a

(∫ a

−a
E
[
1C2

T>2σ2
r
×GT (x)e

(x−µr)2/(4σ2
r)
]
dx
)2

(Jensen’s inequality)

=
σr
2a

E
[
1C2

T>2σ2
r

CT

∫ a

−a
e
− (x−S̃T )2

2C2
T

+
(x−µr)

2

4σ2
r dx

]2
(Fubini theorem)

=
σr
2a

E
[
1YT>0

CT
exp

(
µ2r
4σ2

−
S̃2
T

2C2
T

− 1

4YT

( S̃T
C2
T

− µr
2σ2

)2)
×

∫ a

−a
e

(
√
YT x+ 1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

))2

dx

]2
=

σr
2
E
[
1YT>0√
YTCT

exp

(
µ2r
4σ2

−
S̃2
T

2C2
T

− 1

4YT

( S̃T
C2
T

− µr
2σ2

)2)
×

1

a

∫ √
YT a+ 1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

)
−
√
YT a+ 1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

) ey2dy]2.
By Fatou’s lemma

lim
a+∞

E
[
1YT>0√
YTCT

exp

(
µ2r
4σ2

−
S̃2
T

2C2
T

− 1

4YT

( S̃T
C2
T

− µr
2σ2

)2)1

a

∫ √
YT a+ 1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

)
−
√
YT a+ 1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

) ey2dy]

≥ E
[
1YT>0√
YTCT

exp

(
µ2r
4σ2

−
S̃2
T

2C2
T

− 1

4YT

( S̃T
C2
T

− µr
2σ2

)2)
×

lim
a+∞

1

a

∫ √
YT a+ 1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

)
−
√
YT a+ 1

2
√

YT

(
S̃T
C2
T

− µr
2σ2

) ey2dy].
6
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Finally, the lower bound can be proved to be infinite since for any λ > 0 and µ ∈ R,

1

a

∫ λa+µ

−λa+µ
ey

2
dy ≥ 1

a

∫ λa+µ

λa+µ
2

ey
2
dy ≥ λa+ µ

2a
e

(λa+µ)2

4 ,

so that lima+∞
1
a

∫ λa+µ
−λa+µ e

y2dy = ∞. This concludes the proof.

Thus, to be able to perform a Gram-Charlier expansion and assess the truncation error for
a stochastic volatility model, we should work with a bounded volatility factor.

In the next subsection, we introduce the class of polynomial processes which is a generaliza-
tion of the class of affine processes; as such, it still benefits from analytical tractability of their
marginal moments based on matrix exponentials, while loosing in general that of the moment
generating function.

1.3 Polynomial processes

In the original papers [12] and [20], a theory of polynomial processes is developed for time-
homogeneous dynamics: [12] focus on Markov process possibly with jumps whereas [20] deal
with continuous dynamics but non-necessarily Markov. For such models, the expectation of
any polynomial function of the process at a given date reduces to a polynomial in the initial
condition with equal or lower degree.

The theory of polynomial processes has been extended by [16] to time-dependent parameters
under appropriate smoothness assumption. In this subsection, we present continuous Markov
processes whose diffusion parameters are piecewise constant with respect to time. We derive
matrix exponential representations of the moments for polynomial processes with such time-
dependency as in [?].

1.3.1 Moments computation for polynomial processes

Let us denote by Pk(Rm) the set of polynomial functions of degree at most k ∈ N on Rm:

Pk(Rm) =

{
Rm ∋ x 7−→

∑
α cαx

α1
1 . . . xαm

m : cα ∈ R,max {α1 + · · ·+ αm : cα ̸= 0} ≤ k

}
. We

consider an E-valued time-inhomogeneous continuous stochastic process, (Xt)0≤t≤T , specified
by a Stochastic Differential Equation and whose infinitesimal generator at time t is denoted
by At; its domain is denoted by Dom(At). We fix a time horizon T . We assume that for all
t ≤ T , Pk(Rm) ⊂ Dom(At). For technical reasons, we assume that E ⊂ Rm has a non-empty
interior (see Section 2 in [20] for a detailed discussion). Following the definition of [20], a
diffusion is said to be polynomial if At maps Pk(Rm) to itself for all k ∈ N and t ≤ T .

In our work, we deal with piecewise constant infinitesimal generators. Let us split the whole
time interval [0, T ]: let 0 ≤ t1 ≤ · · · ≤ tJ ≤ T be instants such that for any t ∈ [tj , tj+1[, At ≡
Aj , 1 ≤ j ≤ J − 1. As a linear operator, the action of each Aj on Pk(Rm) can be represented
in a unique way through a M ×M matrix, A(k)

j , where M = dim (Pk(Rm)). Let us consider a
polynomial function p ∈ Pk(Rm). In a given basis b(x) :=

(
b1(x), b2(x), . . . , bM (x)

)
of Pk(Rm),

p ∈ Pk(Rm) can be uniquely represented thanks to a vector p ∈ RM such that p(x) = b(x) · p.
Thus, Aj(p)(x) = b(x) · A(k)

j p. We can now adapt one of the main property of polynomial
process to the time-dependent case.

7
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Proposition 2. Let k ∈ {1, . . . , q} and p ∈ Pk(Rm). Assume that E[∥X0∥2k] < ∞. For
t1 < t2 < ... < tJ ≤ t ≤ T ,

E
[
p(Xt)

∣∣F0

]
= b(X0) ·

 J∏
j=1

e(tj−tj−1)A
(k)
j−1

 e(t−tJ )A
(k)
J p. (6)

Proof. As a direct application of theorem 3.1 in [20], we have at any time tj ≤ t ≤ tj+1

E
[
p(Xt)

∣∣Ftj

]
= b(Xtj ) · e

(t−tj)A
(k)
j p.

Now, assuming in addition E[∥Xtj−1∥2k] < ∞, two successive conditionings at times tj−1 and
tj give for t ∈ [tj , tj+1[,

E
[
p(Xt)

∣∣F0

]
= E

[
E
[
E
[
p(Xt)|Xtj

]
|Xtj−1

] ∣∣X0

]
= E

[
E
[
b(Xtj )|Xtj−1

] ∣∣X0

]
· e(t−tj)A

(k)
j p

= E
[(

E
[
b1(Xtj )|Xtj−1

]
, . . . ,E

[
bM (Xtj )|Xtj−1

])∣∣X0

]
· e(t−tj)A

(k)
j p

= E
[(

b(Xtj−1) · e
(tj−tj−1)A

(k)
j−1b1, . . . , b(Xtj−1) · e

(tj−tj−1)A
(k)
j−1bM

)∣∣X0

]
e(t−tj)A

(k)
j p

= E
[
b(Xtj−1)

∣∣X0

]
· e(tj−tj−1)A

(k)
j−1e(t−tj)A

(k)
j p.

For the fifth equality, coordinates vector of the basis vectors (b1(x), . . . , bM (x)) have been
introduced as b = (b1, . . . , bM ). Note that bi is only composed of zeros except at i-th coordinate
that is a 1. A recursive reasoning gives the result.

Note that the order in (6) matters as in general matrix exponentials may not commute.
This way, taking a monomial function p(x) = xli for some i ∈ J1,MK and l ∈ N and applying
the formula (6) allows to compute marginal moments of the process X.

Remark 1. An alternative characterisation of the polynomial process can be done using the
coefficients of the diffusion. Namely, the following stochastic differential equation, driven by a
Brownian motion (Wt)t≤T ,

dZt = b(Zt)dt+ σ(Zt)dWt

would define a polynomial diffusion, according to the terminology of [20], if b ∈ P1(Rm) and
σ2 ∈ P2(Rm). The case σ2 ∈ P1(Rm) defines an affine process.

We can now introduce the so-called Jacobi process and its dynamics which can be viewed
as an alternative to the CIR process. It is a stochastic process which is naturally bounded over
time under some technical conditions on the parameters. Moreover, it is a one-dimensional
stochastic process belonging to the class of the polynomial processes. It will be useful for us in
the following of this work.
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1.3.2 Jacobi process

Let us consider the function

Q(v) =
(vmax − v)(v − vmin)

(
√
vmax −

√
vmin)2

, (7)

where 0 ≤ vmin < vmax ≤ ∞. We can observe that Q(v) ≤ v for any v ∈ R and that Q(v) ≥ 0

for v ∈ [vmin, vmax].
Let us consider now the following dynamics{

dVt = κ (θ − Vt) dt+ ϵ
√
Q(Vt)dBt,

V0 ∈ [vmin, vmax],
(8)

where κ > 0, θ ∈]vmin, vmax], ϵ > 0 and (Bt)t≥0 is a one-dimensional Brownian motion. Strong
existence and uniqueness of the process V is studied in theorem 2.1 of [3]. Moreover, Feller’
condition allows to ensure the process remains bounded through time. Namely, P

(
∀t ≥ 0, Vt ∈

]vmin, vmax[
)
= 1 if and only if V0 ∈]vmin, vmax[ and Feller condition

ϵ2(vmax − vmin)

(
√
vmax −

√
vmin)2

≤ 2κmin (vmax − θ, θ − vmin) (9)

is satisfied (see [26], Section 5.5.C, for a detailed treatment of the topic). The infinitesimal
generator, GJ , of (8) applied to a twice differentiable function f ∈ C2(R) writes as

GJf(v) = κ(θ − v)
∂f

∂v
+
ϵ2

2
Q(v)

∂2f

∂v2
.

Straightforward computations show that GJ (Pk(R)) ⊂ Pk(R): if p(v) =
∑k

i=0 civ
i,

GJp(v) = −
k∑

i=0

(
iκ+

i(i− 1)ϵ2

(
√
vmax −

√
vmin)2

)
civ

i +

k∑
i=0

(
iκθ +

i(i− 1)ϵ2(vmin + vmax)

2(
√
vmax −

√
vmin)2

)
civ

i−1

− ϵ2vmaxvmin

2(
√
vmax −

√
vmin)2

k∑
i=0

i(i− 1)civ
i−2 ∈ Pk(R).

As a result, the Jacobi process is polynomial.

Remark 2. We propose to give details on the computation of marginal expectation of V . In
the basis {1, v} of P1(R), the action of GJ can be represented by the 2× 2 matrix

GJ =

(
0 κθ

0 −κ

)
.

Due to its upper triangular form, the exponential of GJ can be analytically computed. First
observe that

GJ =

(
1 −θ
0 1

)(
0 0

0 −κ

)(
1 θ

0 1

)
and that the left sided matrix is the inverse of the right sided one. Then, for a given t ≤ T

exp(tGJ) =

(
1 θ

(
1− e−κt

)
0 e−κt

)
,

and thus
Ev0 [Vt] = (1, v0) · exp (tGJ) (0, 1)

T = v0e
−κt + θ

(
1− e−κt

)
.

Note that the expectation does not depend on vmin and vmax and is equal to the expectation of
a CIR process. Recall that a CIR process is defined by taking Q(v) = v in (8) and V0 ∈ R+.

9



2. SWAPTION PRICING WITH GRAM-CHARLIER EXPANSION

2 Swaption pricing with Gram-Charlier expansion

2.1 Reference model

We introduce in this subsection the standard dynamics generally used for pricing under the
Displaced Diffusion LIBOR Market Model with Stochastic Volatility. [25] proposed an extension
of the standard LMM with respect to two features: a stochastic volatility factor has been added
to reproduce the observed implied smile of volatility while a displacement coefficient (also called
shift) allows to generate negative interest-rates, which has became necessary in view of late
market conditions. [35] proposed a tractable and widely used (among insurance market) version
of the model with stochastic volatility (but no displacement factor) modelled through a Feller
process (Cox-Ingersoll-Ross dynamics) often named by practitioners DDSVLMM.

Let P (t, T ) be the time-t price of a Zero-Coupon bond maturing at time T > t with par
value 1. Let us consider a finite tenor structure 0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn. We denote by
∆Tj = Tj+1−Tj . The swap rate seen at time t ≤ Tm that prevails over the period [Tm, Tn], can
be expressed as

Sm,n
t =

P (t, Tm)− P (t, Tn)∑n−1
j=m∆TjP (t, Tj+1)

(10)

according to an arbitrage-free reasoning (see Section 1.5 in [10]). We will denote by BS(t) :=∑n−1
j=m∆TjP (t, Tj+1) the annuity of the swap rate. Under the probability measure PS (the

forward swap measure, named after [24]) associated to the numéraire BS(t), the swap rate is
a martingale. The standard modelling consists in giving to the swap rate (10) the following
dynamics:

dSm,n
t =

√
Vt

(
ρ(t)∥λm,n(t)∥dWt +

√
1− ρ(t)2λm,n(t) · dW S,∗

t

)
,

dVt = κ
(
θ − ξ0(t)Vt

)
dt+ ϵ

√
VtdWt,

(11)

where (W S,∗
t )t≥0 is a D-dimensional Brownian motion under PS , whose components are all

independent from the Brownian motion (Wt)t≥0. The coefficients κ, θ, and ϵ are non-negative
parameters. They are assumed to satisfy Feller condition 2κθ ≥ ϵ2 (it coincides with (9) when
vmax = ∞ and vmin = 0) that ensures the process V to remain non-negative almost surely, as
long as V0 > 0. The time-dependent coefficients are all bounded. In particular, ξ0 is positive and
bounded: 0 < ξ0min ≤ ξ0(t) ≤ ξ0max. Namely, in standard set-up all time dependent quantities
are assumed to be piecewise constant on time intervals [Ti, Ti+1[. The function ρ accounts for
the correlation between the swap rate and its instantaneous volatility; D-dimensional vector
function λm,n distorts the volatility structure over time; ξ0 is a deterministic adjustment in the
drift term of the instantaneous volatility due to the correlation structure between swap rate and
instantaneous volatility (see for instance [35]). To understand in detail the dynamics (11) and
especially how the time-dependent functions are defined, we refer the reader to [35]. We also
refer the interested reader to [9] for the treatment of the Heston model with time-dependent
parameters.

Observe that (11) defines an Heston-type process. As an affine dynamics, (11) offers the
ability of explicitly knowing the moment generating function of Sm,n through Riccati equations.
This has been developed and solved in [?] or in [35] for the swap rate modelling. Exploiting

10



2. SWAPTION PRICING WITH GRAM-CHARLIER EXPANSION

the explicit knowledge of the moment generating function allows to derive closed-form formulas
for prices of swap rate derivatives (especially, for swaptions). In our work, we aim at pricing
such derivatives using Gram-Charlier expansions. As discussed in Theorem 1, the convergence
of such expansion can not be ensured a priori for dynamics (11). This is why, an approximation
of this dynamics is suggested in the following subsection.

2.2 Jacobi dynamics approximation

We consider the following approximation of the model (11) referred to as Jacobi version of the
DDSVLMM:

dSm,n
t =

√
Q(Vt)ρ(t)∥λm,n(t)∥dWt +

√
Vt − ρ(t)2Q(Vt)λ

m,n(t) · dW S,∗
t

dVt = κ
(
θ − ξ0(t)Vt

)
dt+ ϵ

√
Q(Vt)dWt.

(12)

where λm,n, ξ0 and ρ are the same as in (11), Q is defined in (7). We recall that all components
of W S,∗ are independent and are also all independent from W . We also recall that we impose
vmin < vmax. The volatility factor (Vt)t≥0 follows a Jacobi dynamics introduced in Section 1.3
with additional time dependency in the drift. For this dynamics, the Feller condition writes:

ϵ2(vmax − vmin)

(
√
vmax −

√
vmin)2

≤ 2κmin
(
ξ0minvmax − θ, θ − ξ0maxvmin

)
. (13)

It ensures the process V in (12) to remain bounded at any date t: P(∀t ≥ 0 : Vt ∈ [vmin, vmax]) =

1. In this setting, the coefficient ρ(t) defined in (30) is interpreted in dynamics (12) as a scaling
factor of the instantaneous correlation between the swap rate and its volatility since the following
holds:

d ⟨V·, Sm,n
· ⟩t√

d ⟨V·, V·⟩t
√
d ⟨Sm,n

· , Sm,n
· ⟩t

= ρ(t)

√
Q(Vt)

Vt
.

We observed that 0 ≤ Q(v) ≤ v for v ∈ [vmin, vmax] and thus the instantaneous correlation is
smaller than ρ(t) at each time. The time-dependent infinitesimal generator of the diffusion (12)
applied to a function [vmin, vmax]× R ∋ (v, s) 7−→ f(v, s) is given by

Atf(v, s) = κ
(
θ − ξ0(t)v

)∂f
∂v

(v, s) +
ϵ2

2
Q(v)

∂2f

∂v2
(v, s) +

v

2
∥λm,n(t)∥2∂

2f

∂s2
f(v, s)

+ ϵQ(v)ρ(t)∥λm,n(t)∥ ∂
2f

∂s∂v
f(v, s), f ∈ Dom(At), t ≤ T.

(14)

Note that for all k ∈ N, at all date t ∈ [0, T ], At(Pk(R2)) ⊂ Pk(R2). Then, the dynamics (12)
is a polynomial diffusion in the terminology of [20]; in addition it is a Markov process and thus
(12) is a also 2-dimensional polynomial model in the terminology of [12]. Marginal moments of
Sm,n solution of (12) can thus be computed by matrix exponentials following method presented
in Section 1.3.

Remark 3. The dynamics (12) is an extension of affine models as observed in [3] in the special
case of the Heston model. Reference dynamics (11) belongs to the class of affine model. When
vmin = 0 and vmax = ∞, (12) coincides with the case when Q(v) = v which is the standard
DDSVLMM (11). Thus (12) can be viewed as an approximation of the reference model (11).
Namely, the proposed process (12) converges toward the standard one (11) in the path space

11



2. SWAPTION PRICING WITH GRAM-CHARLIER EXPANSION

of processes as vmin → 0 and vmax → ∞. This result is proved in [3], Theorem 2.3. In
Subsection 2.4, we will able to further prove a L1 convergence in Theorem 6 coming along with
a convergence rate.

2.3 Gram-Charlier expansion

The Gram-Charlier expansion is justified now. We assume that the two following conditions
hold:

Assumption (A):
{

4κθ > ϵ2,

2κ(vmax − θ) ≥ ϵ2,
(15)

and

Assumption (B): sup
t∈[0,T ]

|ρ(t)| < 1. (16)

Note that when vmin = 0, Feller condition (13) implies that 4κθ > ϵ2 and thus assumption (A)
is stronger than (13).

2.3.1 Convergence result

Each coordinate of the D−dimensional function t ∈ [0, T ] 7−→ λm,n(t) is piecewise constant
and so is its norm t ∈ [0, T ] 7−→ ∥λm,n(t)∥. Its bounds are denoted by λmin and λmax so that
0 < λmin ≤ ∥λm,n(t)∥ ≤ λmin <∞. We define the cumulated volatility process

Ξt :=

∫ t

0
∥λm,n(s)∥2

(
Vs − ρ(s)2Q(Vs)

)
ds. (17)

Let us denote by fT the density of Sm,n
T . Recall that it depends on vmin and vmax. Following

the notations in Section 1.1, fT will be approximated with a reference Gaussian density gr.

Theorem 3. We suppose assumptions (A) and (B) hold, vmin ≥ 0 and vmax < ∞. Consider
now a centered Gaussian density gr of variance σ2r satisfying

σ2r >
Tvmax

2
λ2max. (18)

Then, a Gram-Charlier expansion can be performed on the density fT using the reference
density gr. In particular, the sufficient condition (2) to the L2

r−convergence of the family of
approximating densities is satisfied; that is∫

R

fT (u)
2

gr(u)
du <∞.

The proof of the theorem is based on the following lemma.

Lemma 4. For η < 1/(2Tvmaxλ
2
max), fT is such that∫

R
eηu

2
fT (u)du <∞.

In addition, if

ES
[
Ξ
−1/2
T

]
<∞ (19)

holds, then then u 7−→ fT (u) and u 7−→ eηu
2
fT (u) are uniformly bounded over R.

12



2. SWAPTION PRICING WITH GRAM-CHARLIER EXPANSION

Remark 4. In [3], the results claimed in Theorem 3 and Lemma 4 are proved (in a time-
independent framework) under the following assumptions:

– ρ2 < 1 which is equivalent to present Assumption (B);

– Feller condition (13) holds (with ξ0(t) ≡ 1), that is ϵ2(vmax−vmin)
(
√
vmax−

√
vmin)2

≤
2κmin (vmax − θ, θ − vmin), with 0 < vmin < vmax <∞.

They conjecture the results are still valid for vmin = 0. In our framework, Feller condition is
again required to bound the volatility process, and Assumption (A) is used to prove the mentioned
conjecture.

Proof of the lemma. We have from Equation (12):

Sm,n
T

a.s.
= Sm,n

0 +
1

ϵ

∫ T

0
ρ(u)∥λm,n(u)∥dVu − κ

ϵ

∫ T

0
ρ(u)∥λm,n(u)∥

(
θ − ξ0(u)Vu

)
du

+

∫ T

0

√
Vu − ρ(u)2Q(Vu)λ

m,n(u) · dW S,∗
u

=: S̃m,n
T +

∫ T

0

√
Vu − ρ(u)2Q(Vu)λ

m,n(u) · dW S,∗
u .

Since W S,∗ and V are independent, Sm,n
T is a Gaussian variable of S̃T and variance ΞT

conditionally to σ(Vt, t ≤ T ). Since λmin > 0 and supt∈[0,T ] |ρ(t)|2 < 1, note that ΞT > 0 almost
surely. The conditional density of Sm,n

T writes

FT (u) =
1√

2πΞT
exp

(
−(u− S̃T )

2

2ΞT

)
.

Fubini’s theorem allows to identify fT (u) = ES [FT (u)] . Hence, fT is uniformly bounded as long
as ES

[
1√
ΞT

]
< ∞. The maps [0, T ] ∋ t 7−→ ∥λm,n(t)∥ and [0, T ] ∋ t 7−→ ρ(t) are piecewise

constant, so their derivatives are almost everywhere zero. They also have a finite number of
discontinuities over [0, T ] occurring at times (Ti)1≤i≤n(T ) where n(T ) = max{i : Ti ≤ T}.
Integrating with respect to the volatility process V over whole interval [0, T ] gives

S̃T
a.s.
= Sm,n

0 +
1

ϵ

∑
i≤n(T )

ρ(Ti)∥λm,n(Ti)∥
(
VTi+1 − VTi

)
− κ

ϵ

∫ T

0
ρ(u)∥λm,n(u)∥

(
θ − ξ0(u)Vu

)
du.

As a consequence, the following stands almost surely

|S̃T | ≤ Sm,n
0 +

2vmax

ϵ
λmax +

Tκ

ϵ
λmax

(
θ + sup

0≤u≤T
|ξ0(u)|vmax

)
=: Λ <∞.

Moreover, as
|ΞT | ≤ Tvmaxλ

2
max,

we set
1− 2ηΞT ≥ 1− 2ηTvmaxλ

2
max =: ν,

where 0 < ν since we assumed η < 1/(2Tvmaxλ
2
max). Furthermore,

eηu
2
FT (u) =

1√
2πΞT

exp

(
−1− 2ηΞT

2ΞT

(
u− S̃T

1− 2ηΞT

)2
+

ηS̃2
T

1− 2ηΞT

)
. (20)

13
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Integration of (20) gives∫
R
eηu

2
FT (u)du =

1√
1− 2ηΞT

exp

(
ηS̃2

T

1− 2ηΞT

)
≤ eηΛ

2/ν

√
ν

<∞ almost surely.

Taking expectation in (20) leads to

eηu
2
fT (u) = ES

[
eηu

2
FT (u)

]
≤ ES

[
1√
ΞT

]
eηΛ

2/ν

√
2π

.

Thus, eηu2
fT (u) is uniformly bounded as soon as (19) holds.

We can now prove Theorem 3.

Proof of the theorem. We proceed in two steps. First, we show that (19) holds under assump-
tions (A) and (B), for any vmin ≥ 0 and vmax < ∞; secondly, we explain why (19) implies (2)
when (18) is satisfied.

The treatment of the case vmin > 0 is done in [3]. Assume that vmin = 0. Almost surely
λ2min

∫ T
0

(
Vs − ρ(s)2Q(Vs)

)
ds ≤ ΞT ≤ λ2max

∫ T
0

(
Vs − ρ(s)2Q(Vs)

)
ds. Since R∗

+ ∋ x 7−→ 1√
x

is
convex, Jensen inequality implies

1√
1
T

∫ T
0 ∥λm,n(s)∥2 (Vs − ρ(s)2Q(Vs)) ds

≤ 1

Tλmin

∫ T

0

ds√
Vs − ρ(s)2Q(Vs)

a.s..

Taking expectation and applying Fubini theorem lead to

ES
[
Ξ
−1/2
T

]
≤ 1

λminT 3/2

∫ T

0
ES

[
1√

Vs − ρ(s)2Q(Vs)

]
ds

with possibly infinite values. Since Q(v) ≤ v, for any t ≥ 0√
Vs(1− ρ(t)2) ≤

√
Vs − ρ(t)2Q(Vs) a.s.

and thus

ES
[
Ξ
−1/2
T

]
≤ (1− sup

t∈[0,T ]
ρ(t)2)−1/2T−3/2λ−1

min

∫ T

0
ES

[
1√
Vs

]
ds. (21)

In order to exhibit a control of the right hand side, we consider the stopped process Xτn
t :=√

Vt∧τn where τn, n ∈ N∗, is the first time when the volatility process goes below the threshold
1/n: τn = inf{t ≥ 0 : Vt ≤ 1

n}. Ito’s lemma applied to the stopped process gives

Xτn
T

a.s.
=
√
V0 +

(
κθ

2
− ϵ2

8

)∫ T∧τn

0

du√
Vu

+

∫ T∧τn

0

(
ϵ2

8vmax
− κξ0(s)

2

)√
Vudu

+
ϵ

2

∫ T∧τn

0

√
1− Vu

vmax
dWu

(22)

where we used that Q(v) = v − v2

vmax
. Ito integral is a martingale since 1 − v

vmax
≤ 1 for

v ∈ [0, vmax] and thus vanishes when taking the expectation in (22):

ES
[√

VT∧τn −
√
V0

]
− ES

[∫ T∧τn

0

(
ϵ2

8vmax
− κξ0(s)

2

)√
Vsds

]
=

(
κθ

2
− ϵ2

8

)
ES

[∫ T∧τn

0

ds√
Vs

]
.
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First recall that V0 ∈ [0, vmax] (almost surely) and thus E
[√
V0
]
< ∞. Now, we aim at taking

the limit as n goes to ∞ in the previous equality to show that the right-hand side is finite.
Since τn

a.s.−−−→
n→∞

τ0
a.s.
= ∞ where τ0 is the first time the volatility process hits 0, T ∧ τn

a.s.−−−→
n→∞

T .
√
Vt ≤ √

vmax for any t ≥ 0, and thus ES
[√

VT∧τn
]
≤ √

vmax for all n ∈ N. Lebesgue’s
dominated convergence theorem then provides that ES

[√
VT
]
= limn ES

[√
VT∧τn

]
≤ √

vmax.
Then, we recall that ξ0 is bounded on [0, T ] which gives∣∣∣∣ES

[∫ T∧τn

0

(
ϵ2

8vmax
− κξ0(s)

2

)√
Vsds

]∣∣∣∣ ≤
(

ϵ2

8vmax
+
κ|ξ0max|

2

)
√
vmaxT =: K1 <∞.

Using monotone convergence theorem, we have that∫ T∧τn

0

√
Vudu

a.s.−−−→
n→∞

∫ T

0

√
Vudu and

∫ T∧τn

0
ξ0(u)

√
Vudu

a.s.−−−→
n→∞

∫ T

0
ξ0(u)

√
Vudu.

This combined with dominated convergence theorem gives

ES

[∫ T

0

(
ϵ2

8vmax
− κξ0(s)

2

)√
Vsds

]
= lim

n→∞
ES

[∫ T∧τn

0

(
ϵ2

8vmax
− κξ0(s)

2

)√
Vsds

]
≤ K1 <∞.

Observe that assumption (A) implies
(
κθ
2 − ϵ2

8

)
> 0. Together with (23) gives the existence of

a constant K <∞ such that

lim
n→∞

ES

[∫ T∧τn

0

du√
Vu

]
≤ K.

Fatou’s lemma provides

ES

[∫ T

0

du√
Vu

]
≤ lim

n→∞
ES

[∫ T∧τn

0

du√
Vu

]
<∞,

which allows to deduce the claimed result

ES
[
Ξ
−1/2
T

]
<∞.

Now, following Lemma 4, as long as (19) holds, x ∈ R 7−→ eηx
2
fT (x) is uniformly bounded

and integrable for η < 1/(2Tvmaxλ
2
max): eηx

2
fT (x) ≤ C < ∞ and

∫
R e

ηx2
fT (x)dx < ∞. We

apply this result with η = 1/(4σ2r ) < 1/(2Tvmaxλ
2
max) ⇐⇒ σ2r > vmaxλ

2
maxT/2:∫

R

fT (x)
2

gr(x)
dx =

√
2πσ2r

∫
R

(
e

x2

4σ2
r fT (x)

)2

dx

≤ C
√
2πσ2r

∫
R
e

x2

4σ2
r fT (x)dx <∞.

Hence the result.

Remark 5. When using a non-centered Gaussian density gr with mean µr ∈ R, a slight
modification of the proof of Theorem 3 shows that Lemma 4 implies the convergence of the
Gram-Charlier expansion for σ2r > vmaxλ

2
maxT .
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2.3.2 Application to pricing of swap rate derivatives

In this section, we use some notations introduced in Section 1.1. The convergence of approx-
imating densities built with Gram-Charlier method is ensured in L2

r . An application of the
Cauchy-Schwarz inequality shows that the convergence of approximating prices can be deduced
for square-integrable payoffs. Let us consider a (discounted) payoff φ ∈ L2

r and fT the density
function of Sm,n

T that is modelled with dynamics (12). The spot price of a European derivative
PT (φ) expiring at time T > 0 associated to the considered payoff can be computed thanks to
the likelihood ratio f̄T = fT /gr:

PT (φ) =

∫
R
φ(x)fT (x)dx =

⟨
φ, f̄T

⟩
L2
r
=
∑
p≥0

hpφp, (23)

where the coefficients (φp)p∈N are given by

φp = ⟨φ,Hp⟩L2
r
,

while the Hermite moments (hp)p∈N are defined by

hp =
⟨
f̄T ,Hp

⟩
L2
r
=

∫
R
Hp(x)fT (x)dx = ES

[
Hp(S

m,n
T )

]
.

The coefficients hp are linear combinations of the moments of fT . Since the polynomial functions
Hp are analytically known (see Section 1.1), the only matter here is to be able to compute the
moments of fT . This can be achieved using the polynomial property of (12) discussed in
Subsection 2.2. The approximating price

PN
T (φ) =

N∑
p=0

hpφp

is so that PN
T (φ) −−−−→

N→∞
PT (φ) once the Gram-Charlier convergence is ensured. Numerically,

we have to truncate (23) at a given order N ∈ N. However, the estimation of the speed of
convergence of the series as N increases is not clear ([3] provided a numerical estimation of the
truncation error).

Remark 6. For operational efficiency, a recursive relation can be derived as in [3] to compute
the coefficients φp.

Pricing under model (12) using expansion techniques introduces two types of errors when
compared to reference model (11): first one is due to the truncation of the Gram-Charlier series
as discussed above, and second one is due to the boundedness of the volatility factor. Estimation
of this second kind of error is the purpose of next section.

2.4 Rates of convergence and pricing error

We prove in this section the results about strong and weak convergence in the particular case
where vmin = 0. We consider a sequence of upper bounds parameters (v

(p)
max)p∈N such that

v
(p)
max −−−→

p→∞
+∞. Let use denote by (S

m,n,J(p)
t , V

J(p)
t )t≤T the solution of (12) associated to the

bound parameters v(p)max. (Sm,n,ref
t , V C

t )t≤T represents the solution of the reference dynamics
(11). In particular, (V C

t )t≥0 is a CIR process. For all p ∈ N, we will consider an initial condition
R∗
+ ∋ v0 = V C

0 = V
J(p)
0 ≤ infp∈N v

(p)
max and S

m,n,J(p)
0 = Sm,n,ref

0 = sm,n
0 ∈ R.
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2. SWAPTION PRICING WITH GRAM-CHARLIER EXPANSION

2.4.1 Study of the moments

The following result shows that the marginal moments of the Jacobi process can be bounded
independently from the parameters v(p)max.

Lemma 5. For any k ≥ 0, supp∈N sup0≤t≤T ES

[(
V

J(p)
t

)k]
≤ Ck.

Proof. Fix a p ∈ N. We first observe that for any time t ≥ 0, ES [V
J(p)
t ] = ES [V C

t ] does not
depend on v

(p)
max since the deterministic drifts in dynamics of (V J(p)

t )t≤T and (V C
t )t≤T are the

same (the computation has been done in Remark 2). Take k = 2. Applying Ito’s formula to
the process

(
(V

J(p)
t )2

)
t≤T

and taking the expectation lead to

ES [(V
J(p)
t )2]

= (v0)
2 +

∫ t

0

{
2κθES [V C

s ]− 2κξ(s)ES [(V J(p)
s )2] + ϵ2

(
ES [V C

s ]− 1

v
(p)
max

ES [(V J(p)
s )2]

)}
ds

≤ (v0)
2 +

∫ t

0

{
(2κθ + ϵ2)ES [V C

s ]− 2κξ(s)ES [(V J(p)
s )2]

}
ds.

Gronwall’s lemma gives

ES [(V
J(p)
t )2] ≤

{
(v0)

2 +

∫ t

0
(2κθ + ϵ2)ES [V C

s ]ds
}
exp

(
− 2κ

∫ t

0
ξ(s)ds

)
and the claim is true for the constant C2 =

(
(v0)

2 +
∫ T
0 (2κθ + ϵ2)ES [V C

s ]ds
)
exp

(
2κ∥ξ∥∞T

)
that does not depend on v

(p)
max nor on t ≤ T . Now assume that

∀p ∈ N, ∀t ≤ T, ES [(V
J(p)
t )k−1] ≤ Ck−1

holds for a given k ≥ 2. Applying Ito’s lemma again to
(
(V

J(p)
t )k

)
t≥0

and taking expectation
lead to, for t ≤ T ,

ES [(V
J(p)
t )k] = (v0)

k +

∫ t

0

{(
2kκθ + k(k − 1)

ϵ2

2

)
ES
[
(V J(p)

s )k−1
]

−

(
2κξ(s) +

ϵ2k(k − 1)

2v
(p)
max

)
ES
[
(V J(p)

s )k
]}

ds

≤ (v0)
k +

∫ t

0

{(
2kκθ + k(k − 1)

ϵ2

2

)
ES
[
(V J(p)

s )k−1
]
− 2κξ(s)ES

[
(V J(p)

s )k
]}

ds

and Gronwall’s lemma again shows that

ES [(V
J(p)
t )k] ≤

[
(v0)

k + t
(
2kκθ + k(k − 1)

ϵ2

2

)
Ck−1

]
exp

(
−
∫ t

0
2κξ(s)ds

)
.

Hence the result holds for k with

Ck =
(
(v0)

k + T
(
2kκθ + k(k − 1)

ϵ2

2

)
Ck−1

)
exp

(
2κ∥ξ∥∞T

)
.

This result is useful to get a rate of convergence in the L1 space and in a weak sense.
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2. SWAPTION PRICING WITH GRAM-CHARLIER EXPANSION

2.4.2 Strong convergence

We recall that (V C
t )t≤T denotes the solution of the second stochastic differential equation (11).

Note that the same Brownian motion (Wt)t≤T is used to build Cox-Ingersoll-Ross process in
Equation (11) and Jacobi process in Equation (12).

Theorem 6. There exists finite constants C,K ∈ R such that for any n ∈ N

sup
0≤t≤T

ES
[
|V J(n)

t − V C
t |
]
≤ C/ log

(
v
(n)
max

v0

)
,

and

ES

[
sup

0≤t≤T
|V J(n)

t − V C
t |

]
≤ K/

√√√√log

(
v
(n)
max

v0

)
.

Proof. In this proof, we draw from A. Alfonsi in [5], Section 4.3, who studied discretization
scheme for CIR process and proved strong convergence.

Let us consider the family of Yamada functions, ψη,m, parametrized by two positive num-
bers η and m. Observe that for any m ≥ 1,

∫ η

ηe−ϵ2m

1
ϵ2u

du = m. Then, we can find
a continuous function ρη,m, with compact support included in ]ηe−ϵ2m, η[, and such that
ρη,m(x) ≤ 2

ϵ2xm
1
x∈]ηe−ϵ2m,η[

and
∫ η

ηe−ϵ2m
ρη,m(u)du = 1. Then, ψη,m is defined as

ψη,m(x) =

∫ |x|

0

∫ y

0
ρη,m(u)dudy,

so that these functions satisfy

|x| − η ≤ ψη,m(x) ≤ |x|, |ψ′
η,m(x)| ≤ 1, 0 ≤ ψ

′′
η,m(x) = ρη,m(|x|) ≤ 2

ϵ2|x|m
.

ψη,m is a nice smooth (twice differentiable) and even function approximating the absolute value
function. Take n ∈ N. Since

|V J(n)
t − V C

t | ≤ η + ψη,m(V
J(n)
t − V C

t ), (24)

we apply Ito’s formula to the right-hand side to get

ψη,m(V
J(n)
t − V C

t )
a.s.
= − κ

∫ t

0
(V J(n)

s − V C
s )ξ(s)ψ

′
η,m(V J(n)

s − V C
s )ds

+
ϵ2

2

∫ t

0

(√
Q(V

J(n)
s )−

√
V C
s

)2
ψ

′′
η,m(V J(n)

s − V C
s )ds

+ ϵ

∫ t

0

(√
Q(V

J(n)
s )−

√
V C
s

)
ψ

′
η,m(V J(n)

s − V C
s )dWs.

(25)

Using that sups≥0 ES [V C
s ] < ∞, |

√
x − √

y| ≤
√
|x− y| (due to 1

2 -Hölder regularity of the
square-root) and |ψ′

η,m(x)| ≤ 1 lead to(√
Q(V

J(n)
s )−

√
V C
s

)2
ψ

′
η,m(V J(n)

s − V C
s ) ≤

∣∣∣Q(V J(n)
s )− V C

s

∣∣∣ ≤ v(n)max + V C
s a.s.

18



2. SWAPTION PRICING WITH GRAM-CHARLIER EXPANSION

which allows to deduce that the expectation of the Ito integral in (25) is zero. Using again
1
2 -Hölder regularity of the square-root, the second term in the right-hand side of (25) can be
decomposed in the following way∫ t

0

(√
Q(V

J(n)
s )−

√
V C
s

)2

ψ
′′
η,m

(
V J(n)
s − V C

s

)
ds

≤
∫ t

0

(
|Q(V J(n)

s )− V J(n)
s |ψ′′

η,m

(
V J(n)
s − V C

s

)
+ |V J(n)

s − V C
s |ψ′′

η,m

(
V J(n)
s − V C

s

))
ds.

The first term in this integral is handled using that ∥ψ′′
η,m∥∞ ≤ 2eϵ

2m

ϵ2ηm
and

|Q(v)− v| ≤ v2

v
(n)
max

. (26)

The second term is bounded with |x|ψ′′
η,m(x) ≤ 2

ϵ2m
. This leads to the almost sure inequality∫ t

0

(√
Q(V

J(n)
s )−

√
V C
s

)2

ψ
′′
η,m

(
V J(n)
s − V C

s

)
ds ≤

∫ t

0

{
(V

J(n)
s )2

v
(n)
max

2eϵ
2m

ϵ2ηm
+

2

ϵ2m

}
ds.

Finally, for the first integral in (25), we use that ∥ψ′
η,m∥∞ ≤ 1 and thus∣∣∣∣−κ∫ t

0
(V J(n)

s − V C
s )ξ(s)ψ

′
η,m(V J(n)

s − V C
s )ds

∣∣∣∣ ≤ κ

∫ t

0
|V J(n)

s − V C
s |∥ξ∥∞ds a.s..

Taking the expectation in (24) using the inequalities that have just been derived and using the
fact that the moments of the Jacobi process are uniformly bounded with respect to v(n)max (cf.
Lemma 5), we get that

ES [|V J(n)
t − V C

t |] ≤ η + κ∥ξ∥∞
∫ t

0
ES [|V J(n)

s − V C
s |]ds+ C ′Teϵ

2m

v
(n)
maxηm

+
T

m
.

Gronwall’s lemma again shows that

ES [|V J(n)
t − V C

t |] ≤ eκ∥ξ∥∞T

(
η +

C ′Teϵ
2m

v
(n)
maxηm

+
T

m

)
.

Taking η = 1

log(v
(n)
max/v0)

and m = log(v
(n)
max/v0)
2ϵ2

, we get the existence of a constant C ∈ R satisfying

sup
0≤t≤T

ES
[
|V J(n)

t − V C
t |
]
≤ C/ log

(
v
(n)
max

v0

)
. (27)

The Ito’s integral in right-hand side of (25) can be more accurately handled. We have

ES

[
sup

0≤t≤T

∫ t

0

(√
Q(V

J(n)
s )−

√
V C
s

)
ψ

′
η,m(V J(n)

s − V C
s )dWs

]

≤ CBDGES

(∫ T

0

(√
Q(V

J(n)
s )−

√
V C
s

)2

∥ψ′
η,m∥2∞ds

)1/2


≤ CBDG

√∫ T

0

(
ES
[∣∣∣Q(V

J(n)
s )− V

J(n)
s

∣∣∣]+ ES
[∣∣∣V J(n)

s − V C
s

∣∣∣] )ds
≤ CBDG

√√√√( C2

v
(n)
max/v0

+
C

log(v
(n)
max/v0)

)
T (28)
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2. SWAPTION PRICING WITH GRAM-CHARLIER EXPANSION

where we used successively: Burkholder-Davis-Gundy inequality, ∥ψ′
η,m∥∞ ≤ 1, Jensen’s one,

1
2 -Hölder regularity of the square-root and triangle inequality. This allows to deduce (28) after
using inequality (26) combined with Lemma 5 for the first term in the square-root and the
previous result (27) for the second term. Combining this with previous inequalities used in this
proof leads to the existence of a constant K ∈ R such that

ES

[
sup

0≤t≤T
|V J(n)

t − V C
t |

]
≤ K/

√
log
(
v
(n)
max/v0

)
.

2.4.3 Weak convergence

We now state and prove the weak convergence result. In this subsection only, we assume that
ξ0(t) ≡ ξ0 does not depend on time. We first introduce some useful notations. Considering E
a subset of Rd, we will denote, for α = (α1, . . . , αd) ∈ Nd and a smooth function f defined over
E, by ∂αf the following differentiation operator

x = (x1 . . . , xd) ∈ E 7→ ∂αf(x) = ∂α1
x1
. . . ∂αd

xd
f(x).

We then introduce the set of functions with derivatives of polynomial growth:

C∞
pol(E) =

{
f : E → R : f ∈ C∞, ∀α ∈ Nd,∃Cα > 0,∃eα ∈ N∗,∀x ∈ E, |∂αf(x)| ≤ Cα(1 + ∥x∥eα)

}
.

We recall the following proposition proved in [6], Proposition 3.3.1.

Proposition 7. Assume that f ∈ C∞
pol(R). The function uC(t, x) = E[f(V C

T−t)|V C
0 = x] is well

defined over [0, T ]× R+, is C∞, satisfies the following backward Kolmogorov equation

(P ) :

{
t ∈ [0, T ], x ∈ R+, ∂tu

C + κ(θ − ξ0x) ∂xu
C + ϵ2

2 x ∂
2
xu

C = 0,

uC(T, x) = f(x),

and is such that

∀(l,m) ∈ N2,∃(Cl,m, el,m) ∈ (R∗
+)

2, ∀x ∈ R+,∀t ∈ [0, T ],

|∂lt∂mx uC(t, x)| ≤ Cl,m(1 + xel,m).

We can now state our weak error estimation.

Theorem 8. Let us consider f ∈ C∞
pol(R). Then there exists a constant K > 0 such that for

any n ∈ N,
|E[f(V C

T )]− E[f(V J(n)
T )]| ≤ K

v
(n)
max

.

Remark 7. Numerical investigations suggest that this rate of convergence can be extended to
strong convergence. As discussed in the numerical analysis Section 3.3, we conjecture that we
can find a constant K (independent of

(
v
(n)
max

)
n≥0

) such that

ES

[
sup

0≤t≤T
|V J(n)

t − V C
t |

]
≤ K

v
(n)
max

.
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2. SWAPTION PRICING WITH GRAM-CHARLIER EXPANSION

Proof. The proof is built as in [34]: the authors proved a weak convergence of order 1 for
numerical schemes approximating solutions of stochastic differential equations under proper
assumptions. Consider uC as defined in Proposition 7; in particular, uC(T, x) = f(x). We have

E[f(V C
T )]− E[f(V J(n)

T )] = E[uC(T, V C
T )]− E[uC(T, V J(n)

T )]

Thanks to Proposition 7, we have uC(0, v0) = E
[
uC(T, V C

T )
]

and thus:

E[f(V C
T )]− E[f(V J(n)

T )] = −
(
E[uC(T, V J(n)

T )− uC(0, v0)]
)
.

Ito’s formula gives:

uC(T, V
J(n)
T )− uC(0, v0)

a.s.
=

∫ T

0

{
∂tu

C(s, V J(n)
s ) + κ(θ − ξ0V J(n)

s ) ∂xu
C(s, V J(n)

s )

+
ϵ2Q(V

J(n)
s )

2
∂2xu

C(s, V J(n)
s )

}
ds+ ϵ

∫ T

0

√
Q(V

J(n)
s ) ∂xu

C(s, V J(n)
s )dWs.

Using Proposition 7 and that the moments of the Jacobi process are all finite (see Lemma 5),
we deduce that the expectation of Ito’s integral is zero. With Fubini’s theorem, we get

E[uC(T, V J(n)
T )− uC(0, v0)] =

∫ T

0
E[gC(s, V J(n)

s )]ds

where gC(t, x) = ∂tu
C(t, x) + κ(θ − ξ0x) ∂xu

C(t, x) + ϵ2Q(x)
2 ∂2xu

C(t, x). Since uC is solution of
(P ), we obtain

gC(t, V
J(n)
t ) =

ϵ2(Q(V
J(n)
t )− V

J(n)
t )

2
∂2xu

C(t, V
J(n)
t )

= − ϵ2

2v
(n)
max

(V
J(n)
t )2 ∂2xu

C(t, V
J(n)
t ),

where we recall that we set vmin = 0 in the bounding function Q defined in (7). Hence finally

E[f(V C
T )]− E[f(V J(n)

T )] =
ϵ2

2v
(n)
max

∫ T

0
E[(V J(n)

s )2 ∂2xu
C(s, V J(n)

s )]ds.

Using that the derivatives of uC are all of polynomial growth for a proper terminal condition
f and that the moments of the Jacobi process can be bounded independently from v

(n)
max (see

Lemma 5), we obtain the claimed result.

2.4.4 Pricing error

We study in this section the error made on swaption prices when using Jacobi dynamics for
the volatility process compared to the standard model. The following proposition outlines the
result for exotic options whose payoff depends on a path of the swap rate process. We focus
on payoff φ that is Lipschitz in the following sense: given two continuous processes (x(t))t∈[0,T ]

and (y(t))t∈[0,T ], there exists a constant CLip > 0 such that:∣∣∣φ((x(t))t∈[0,T ]

)
− φ

(
(y(t))t∈[0,T ]

)∣∣∣ ≤ CLip sup
0≤t≤T

|x(t)− y(t)| .

The pricing error is defined by:

ϵmodel :=

∣∣∣∣ES

[
φ

((
Sm,n,ref
t

)
t≤T

)]
− ES

[
φ

((
Sm,n,J
t

)
t≤T

)]∣∣∣∣ .
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2. SWAPTION PRICING WITH GRAM-CHARLIER EXPANSION

Proposition 9. There exists constants K1 and K2 ∈ R such that

ϵmodel ≤

√
K1

log(vmax/v0)
+

K2

vmax/v0
.

Proof. Similarly to the preceding proof, we will use successively triangle inequality, the
Burkholder-Davis-Gundy inequality, 1

2 -Hölder regularity of the square-root function (|
√
x −

√
y| ≤

√
|x− y|, for x, y ≥ 0), the fact that for all t ≤ T , ρ(t)2Q(v) ≤ ρ(t)2v ≤ v since

ρ(t)2 ≤ 1 and that the square-root function is concave to get the following:

ϵmodel ≤ CLipES

[
sup

0≤t≤T
|Sm,n,ref

t − Sm,n,J
t |

]

= CLipES

[
sup

0≤t≤T

∣∣∣ ∫ t

0
ρ(s)

(√
V C
s −

√
Q(V J

s )
)
∥λm,n(s)∥dWs

+

∫ t

0

(√
V C
s − ρ(s)2V C

s −
√
V J
s − ρ(s)2Q(V J

s )
)
λm,n(s) · dW S,∗

s

∣∣∣]

≤ CLipCBDG

{
ES

[√∫ T

0
ρ(s)2

(√
V C
s −

√
Q(V J

s )
)2

∥λm,n(s)∥2ds

]

+ES

[√∫ T

0

(√
V C
s − ρ(s)2V C

s −
√
V J
s − ρ(s)2Q(V J

s )

)2

∥λm,n(s)∥2ds

]}

≤ CLipCBDGλmax

(
ES

[√∫ T

0
ρ(s)2|V C

s −Q(V J
s )|ds

]

+ES

[√∫ T

0
|V C

s − V J
s + ρ(s)2

(
Q(V J

s )− V C
s

)
|ds

])

≤ C

(√∫ T

0
ρ(s)2ES [|V C

s −Q(V J
s )|] ds

+

√∫ T

0
ES
[
|V C

s − V J
s + ρ(s)2

(
Q(V J

s )− V C
s

)
|
]
ds

)
=: C(I1 + I2)

where C is a non-negative number. Observing that

I1 =

(∫ T

0
ρ(s)2ES

[
|V C

s − V J
s + V J

s −Q(V J
s )|
]
ds

)1/2

≤
(∫ T

0

(
ES
[
|V C

s − V J
s |
]
+ ES

[
|V J

s −Q(V J
s )|
] )

ds

)1/2

and that

I2 =

(∫ T

0
ES
[
|V C

s − V J
s + ρ(s)2

(
Q(V J

s )− V C
s

)
|
]
ds

)1/2

≤
(∫ T

0

(
(1 + ρ(s)2)ES

[
|V C

s − V J
s |
]
+ ρ(s)2ES

[
|Q(V J

s )− V J
s |
] )

ds

)1/2

≤
(∫ T

0

(
2ES

[
|V C

s − V J
s |
]
+ ES

[
|Q(V J

s )− V J
s |
] )

ds

)1/2

,
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we are led to study the quantities ES
[
|V C

s − V J
s |
]

and ES
[
|Q(V J

s )− V J
s |
]
. Recall that v −

Q(v) = v2

vmax
for vmin = 0. Regarding the results of Lemma 5 and Theorem 6, we can find some

constants c1, c2 such that

I1 ≤
√
T

√
c1

log(vmax/v0)
+

c2
vmax/v0

and I2 ≤
√
T

√
2c1

log(vmax/v0)
+

c2
vmax/v0

and thus for some constants K1 and K2,

ϵmodel ≤ C ′

√
K1

log(vmax/v0)
+

K2

vmax/v0
.

where C ′ ≥ 0.

3 Numerical analysis

3.1 Matrix exponential computation

To perform Gram-Charlier type expansion at an arbitrary order k ∈ N, we need to represent the
action of the infinitesimal generator through a matrix before taking its exponential. Consider
the standard basis of Pk(R2) composed of monomial functions:

(
(v, s) 7→ vpsq

)
p+q≤k

. Given an
enumeration Λ : Ek → N of the set of exponents Ek =

{
(p, q) ∈ N2 : p+ q ≤ k

}
, the non-zero

elements of the matrix A(k) representing the action of At on Pk(R2) are given by:

A
(k)
Λ(p,q),Λ(p,q) = −

(
p(p− 1)ϵ2

2(
√
vmax −

√
vmin)2

+ pκξ0(t)

)
,

A
(k)
Λ(p−1,q),Λ(p,q) = κpθ +

p(p− 1)ϵ2(vmin + vmax)

2(
√
vmax −

√
vmin)2

,

A
(k)
Λ(p−2,q),Λ(p,q) = − p(p− 1)ϵ2vminvmax

2(
√
vmax −

√
vmin)2

,

A
(k)
Λ(p+1,q−2),Λ(p,q) =

q(q − 1)∥λm,n(t)∥2

2
,

A
(k)
Λ(p+1,q−1),Λ(p,q) = − pqϵρ(t)∥λm,n(t)∥

(
√
vmax −

√
vmin)2

,

A
(k)
Λ(p−1,q−1),Λ(p,q) = −pqϵvminvmaxρ(t)∥λm,n(t)∥

(
√
vmax −

√
vmin)2

,

A
(k)
Λ(p,q−1),Λ(p,q) =

pqϵρ(t)∥λm,n(t)∥(vmin + vmax)

(
√
vmax −

√
vmin)2

.

3.2 Specification of the Jacobi version of the DDSVLMM

In our modelling framework, the vectors and multi-dimensional Brownian motions are of length
2. We consider a piecewise constant parametrization of the time dependency. This set-up
corresponds to a freezed approximation of the Libor Market Model as motivated in [8], [10] or
[35]. The coefficients appearing in dynamics (11) and (12) are defined as:

ξ0(t) = 1 +
ϵ

κ

n−1∑
j=m

αj(0)ξ
0
j (t), ξ0j (t) =

j∑
k=1

∆Tk
(
Fk(0) + δ

)
1 + ∆TkFk(0)

ρk(t)∥γk(t)∥, (29)
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and

λm,n(t) =

n−1∑
j=m

ωj(0)γj(t), ρ(t) =
1

∥λm,n(t)∥

n−1∑
j=m

ωj(0) ∥γj(t)∥ ρj(t). (30)

The quantities (Fj(0))j=m,...,n are forward rates quoted on markets and the coefficients ωj

defined for m ≤ j ≤ n− 1, by

ωj(0) :=
∆TjP (0, Tj+1)

BS(0)

(
1 +

∆Tj
1 + ∆TjFj(0)

j−1∑
l=m

(
Fl(0)− Sm,n

0

))
(Fj(0) + δ),

δ ∈ R is a parameter often named shift. The volatility vectors are specified as γj(Ti) =

g(Tj − Ti)βj−i+1 over the interval [Ti, Ti+1[. The βk are 2−dimensional vectors with unitary
Euclidian norm, while g(u) = (bu+ a)e−cu + d, where a, b, c and d are non-negative constants.
Finally, the coefficients ρj are parametrized thanks to a coefficient ρ ∈ [−1, 1] as

ρj(t) =
ρ√
2

γ
(1)
j (t) + γ

(2)
j (t)

∥γj(t)∥
.

Theoretical assumptions for Gram-Charlier convergence
We rewrite the theoretical assumptions made in Section 2. First about assumption (B): we
assume that ρ2 < 1. In view of the form of the correlation coefficients ρk, we have that

ρ(t) =
1

∥λm,n(t)∥

n−1∑
j=m

ωj(0) ∥γj(t)∥ ρj(t)

=
ρ√

2∥λm,n(t)∥

n−1∑
j=m

ωj(0)
(
γ
(1)
j (t) + γ

(2)
j (t)

)
.

Observe that for any time t,

1

ρ(t)2
=

2∥λm,n(t)∥2

ρ2
(∑n−1

j=m ωj(0)
(
γ
(1)
j (t) + γ

(2)
j (t)

))2

=
2

ρ2

(∑n−1
j=m ωj(0)γ

(1)
j (t)

)2

+

(∑n−1
j=m ωj(0)γ

(2)
j (t)

)2

(∑n−1
j=m ωj(0)γ

(1)
j (t) +

∑n−1
j=m ωj(0)γ

(2)
j (t)

)2 ≥ 1

ρ2
,

and thus Assumption (B) is satisfied. Assumption (A), that is 4κθ > ϵ2 and 2κ(vmax− θ) ≥ ϵ2,
is straightforward to check.
Besides assumptions (A) and (B), the following has to hold in order to ensure the convergence
of the Gram-Charlier expansion (see Theorem 3 and assumption in Equation (18)):

σ2r >
Tvmax

2
λ2max ⇔ 2σ2r

Tvmax
> λ2max

where we recall that T is the maturity of the priced derivative and λ2max = max{t ≥ 0 :

∥λm,n(t)∥ =
∑n−1

j=m ωj(0)γj(t)}. This constraint can be numerically checked.
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3.3 Convergence illustration

Convergence of the Jacobi process toward the CIR process
The L1 convergence of the Jacobi process toward the CIR has been discussed in Section 2.4.
It is illustrated here. Firstly, we describe the discretization schemes used to simulate volatility
processes. We chose to adapt the scheme presented in [28]. More elaborated schemes can be
found in [6] for the CIR process. The discretized Jacobi process we used writes

Vti+1 = Vti + κ
(
θ − ξ0(ti)min

(
(Vti)+, vmax

))
(ti+1 − ti) + ϵ

√
Q
(
min(Vti)+, vmax

)
(Wti+1 −Wti),

(31)
with x+ = max(x, 0). CIR process is simulated by putting vmax = ∞ (and thus Q(v) = v) in
this scheme.

The quantity ES
[
sup0≤t≤T |V J,vmax

s − V C
s |
]

is estimated by Monte-Carlo samples and plot-
ted in Figure 1 as a function of vmax with 105 Monte-Carlo samples. The upper volatility bound
vmax takes values in

{0.5, 0.7, 1.0, 1.2, 1.5, 1.8, 2, 3, 4, 5, 10, 102, 103, 104, 105}.

All our results are obtained with vmin = 0: this choice is justified by the fact that theoretical
results are of particular interest when vmin = 0. The time horizon is fixed to T = 5 years
and the volatility processes are discretized with a time step ∆t = 0.05. The parameters are
κ = 1, θ = 0.3, ϵ = 0.6, V C

0 = V J,vmax
0 = v0 = 0.2. We set ξ0(t) ≡ 1 for simplicity. We

recall that Theorem 6 gives the following bounds sup0≤t≤T ES
[
|V J(n)

t − V C
t |
]
≤ C/ log

(
v
(n)
max
v0

)
and ES

[
sup0≤t≤T |V J(n)

t − V C
t |
]
≤ K/

√
log
(
v
(n)
max
v0

)
. In Figure 1, the theoretical upper bound

1/
√

log(vmax/v0) is also plotted. It clearly overestimates realized error, especially for small
values of vmax.

To complete, the Figure 2 provides the L1 convergence of marginal moments as a function
of the upper bound parameter. Namely, ES

[
|V J,vmax

T − V C
T |
]

is plotted for maturities T =

1, 10. The theoretical upper bound obtained for this error is 1/ log(vmax), and again it clearly
overestimates the empirical quantities, notably for small values of vmax.

In Figure 3 the logarithms of previous estimated errors are plotted, that is
log
(
ES [sup0≤s≤5 |V

J,vmax
s −V C

s |]
)

and log
(
ES [|V J,vmax

T −V C
T |]
)

, T = 1 and T = 10 with respect

to log
(
log
(
vmax
v0

))
.

Remark 8. We can distinguish between two regimes in the curves: log (log (vmax/v0)) ∈ [0.0, 1.5]

and log (log (vmax/v0)) ≥ 1.5. A linear regression applied on each part of the curve give sat-
isfactory results, as illustrated in Figure 4 for the quantity log

(
ES [sup0≤s≤5 |V

J,vmax
s − V C

s |]
)

.
The obtained slopes of each line are respectively −1.88 and −7.51 (with R2 coefficients of, resp.,
0.966 and 9.969). From these results, it appears that the convergence rate estimated in The-
orem 6, although not optimal, can be used to estimate the marginal convergence gain to the
original model when increasing vmax.

Finally, we investigate if the optimal convergence rate can be assimilated to a (negative)
power of vmax. By analyzing the dependency of the logarithms of the empirical errors toward
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s |] as a function of
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T |] as a function of log(vmax/v0). ”Theoretical bound”:

1/ log(vmax/v0); Circles: ES [|V J,vmax
1 − V C

1 |]; Squares: ES [|V J,vmax
10 − V C
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s |].

log
(
vmax
v0

)
in Figure 5, we observe now an (almost) perfect linear behaviour. Linear regression

performed indicate a slope of around −1.0 for all errors considered (respectively, in order of
the mentioned errors in legend of Figure 5, slopes are −1.0084, −1.0096 and −1.0014), with
very high accuracy for each (R2 ≥ 0.999). These numerical results lead to conjecture that the
optimal rate would be such that Error ∝ 1

vmax
.
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, T = 1 and T = 10, as
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Figure 4: log
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s − V C

s |]
)

as a function of log(vmax/v0) and fitted lines on
each subinterval.

Convergence of Gram-Charlier approximating series
We illustrate the approximating pricing of swaptions with the Gram-Charlier method under
the model (12). A swaption is a call option on the swap rate: its discounted payoff writes
φ(x) = BS(0) × (x − K)+ where K denotes the strike of the swaption (recall that BS is
annuity of the swap). In the following, parameters of the model (12) change from plot to
plot. References prices are computed thanks to Monte-Carlo simulations and compared with
approximating prices coming from series expansion. The volatility scheme has been introduced
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above in Equation (31); the numerical scheme used for the swap rate is

Sm,n
ti+1

= Sm,n
ti

+
√
Q
(
min(Vti)+, vmax

)
ρ(ti)∥λm,n(ti)∥(Wti+1 −Wti)

+
√
min

(
(Vti)+, vmax

)
− ρ(ti)2Q

(
min(Vti)+, vmax

)
λm,n(ti) · (W S,∗

ti+1
−W S,∗

ti
).

Except for Figure 8 in which a narrow confidence interval was required, Monte-Carlo prices
were computed using 105 paths and a time-step of 0.001.

The choice of auxiliary density gr used to build the space L2
r is now specified. As discussed

in [21], [3] or [2], the parameters of the auxiliary density should be chosen so that a maximum
number of moments of this auxiliary density match that of the unknown one. This is not always
possible due to the number of constraints imposed to the model parameters, and notably (18)
ensuring the convergence of the Gram-Charlier approximation. The value of σ2r is indicated for
each experiment and whether it matches VarS(Sm,n

T ) or not. For the parameter µr, there is no
condition on it and it is always chosen so that µr = ES [Sm,n

T ] = Sm,n
0 .

Example 1
We first chose parameters so that σ2r = VarS(Sm,n

T ) = 8.726 · 10−8 but condition (18) is not
satisfied. We observe in Figure 6 the divergence of the Gram-Charlier expansion.
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Figure 6: Divergence of Gram-Charlier expansion in case where condition (2) is
not satisfied (auxiliary Gaussian of variance σr = VarS(Sm,n

T )).
sm,n
0 = 0, v0 = 0.025, vmax = 0.5,

a = b = c = 0, d = κ = 1, θ = 0.25, ϵ = 0.6,
ρ = δ = 0, K = 0, σr = 0.000295403.

Tenor of the swaption: T = Tm = 1 and Tn − Tm = 1.

Example 2
The parameter σr is now slightly modified: we chose to take σr =

√
VarS(Sm,n

T ) + 10−4 so
that the sufficient condition (18) is now satisfied. We observe in Figure 7 that the Gram-
Charlier expansion is stable and now converge. In [3], the authors observed, in their framework,
that the approximating implied volatilities are within 10 basis points of their reference implied
volatilities from expansion order N = 10. In [?], the authors proved the numerical efficiency
for calibration purposes of approximating swaptions prices using only skewness and kurtosis
adjustments (N=4). We see here that the approximating error may be significantly reduced by
increasing the expansion order, provided that convergence has been theoretically established
here.
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Figure 7: Gram-Charlier convergence with auxiliary Gaussian of variance
σ2r ̸= VarS(Sm,n

T ).
sm,n
0 = 0, v0 = 0.025, vmax = 0.25, a = b = c = 0,

d = κ = 1, θ = 0.12, ϵ = 0.4, ρ = δ = 0.0

σr = 3.203183 · 10−4, K = 0.
Maturity and tenor of the swaption: T = Tm = 1 and Tn − Tm = 1.

Example 3
The parameters are selected such that the first two moments of approximated density are
matched and condition (18) is satisfied. From the first orders in the Gram-Charlier expansion,
the approximated prices are really close to the reference one. Moreover, Gram-Charlier series
is very stable: it remains in the confidence interval as the expansion order increases. This
is illustrated in Figure 8. In this particular case, the convergence is excellent and the kurto-
sis/skewness adjustments proposed in [?] are satisfactory. However, this is a very special case,
hard to establish. Indeed, condition (18) prompts us to chose a small vmax. But a small vmax

leads to a small VarS(Sm,n
T ). Then, choosing σ2r = VarS(Sm,n

T ) while satisfying (18) is unlikely.
We are thus lead to boost the volatility in the model, for instance by reducing κ or increasing ϵ.
However, Feller condition restricts the choice of acceptable parameters. Thus, parameters that
satisfy all required constraints while allowing to match moments of the unknown density must
be carefully chosen, if possible.

30



3. NUMERICAL ANALYSIS

5 10 15 20

7.
56

e−
05

7.
58

e−
05

7.
60

e−
05

7.
62

e−
05

7.
64

e−
05

GC expansion order

Sw
ap

tio
n 

pr
ic

es

GC prices

MC price

CI +/−

Figure 8: Gram-Charlier convergence with auxiliary Gaussian of variance
σ2r = VarS(Sm,n

T ).
sm,n
0 = 0, v0 = 0.025, vmax = 0.089, a = b = c = 0, d = 1,

κ = 2, θ = 0.06, ϵ = 0.1, ρ = δ = 0.0,
σr = 1.906037 · 10−4, K = 0.

Maturity and tenor of the swaption: T = Tm = 1 and Tn − Tm = 1.

Example 4
On the contrary, the more the parameter σr is chosen ”far” from VarS(Sm,n

T ), the more the
Gram-Charlier series will converge slowly (and sometimes may diverge). This is illustrated in
Figure 9. This case is more sophisticated since all the parameters are non-zero and Tn−Tm > 1.
In particular, the correlation structure between swap rate and its volatility plays a notable role.
The maturity of the swaption is Tm = 2. The mean of the auxiliary Gaussian density is no
longer zero, and σr =

√
VarS(Sm,n

T ) + 0.002 (note that in this case, 0.002√
VarS(Sm,n

T )
≈ 0.63). We

observe that the approximating prices do not reach the confidence interval by the expansion
order N = 50.
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Figure 9: Gram-Charlier convergence with auxiliary Gaussian of variance
σ2r ̸= VarS(Sm,n

T ).
sm,n
0 = 0.008982445, v0 = 0.025, vmax = 0.089, a = 10−4, b = 10−1,

c = 2.5, d = 10−1, κ = 1.5, θ = 0.06, ϵ = 0.13,
ρ = 0.4, and δ = 0.1. σr = 0.005183955. K = Sm,n

0 .
Maturity and tenor of the swaption: T = Tm = 2 and Tn − Tm = 8.

Concluding comments

This work is based on and extends two works: [3] motivated the use of Jacobi dynamics as
approximation of the famous Cox-Ingersoll-Ross one used to build the DDSVLMM while [?]
proved the numerical efficiency of the use of Gram-Charlier expansions for pricing under the
DDSVLMM. In this paper, we first discuss the fact that Gram-Charlier technique is not jus-
tified in most of stochastic volatility models. Introducing the Jacobi process in the standard
DDSVLMM framework after some approximations allows to circumvent this difficulty. A strong
convergence of the proposed dynamic towards the standard one along with a convergence rate
justify the use of this approximating model to price some swap rate derivatives. Numerical inves-
tigations suggest that this rate could be theoretically improved, supported by the convergence
rate obtained in a weak sense; it is left for further research.

Under the suggested model pricing is done by means of Gram-Charlier expansion. The poly-
nomial property of the proposed dynamics offers (semi) analytical tractability of the marginal
moments computations of the modelled underlying. As a result, it fully justifies the use of
such density approximation techniques under some parametric conditions. Numerical experi-
ments provide satisfactory results as Gram-Charlier prices do converge to empirical ones rather
quickly. By carefully choosing the auxiliary density used to perform the density approximation,
the convergence can be hastened: as of the very first order expansion, Gram-Charlier prices
are very close to the target. These satisfactory results pave the way to the calibration of the
DDSVLMM using expansions techniques as in [?] with ensured convergence here.
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