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Given a vector bundle of arbitrary rank with ample determinant line bundle on a projective manifold, we propose a new elliptic system of differential equations of Hermitian-Yang-Mills type for the curvature tensor. The system is designed so that solutions provide Hermitian metrics with positive curvature in the sense of Griffithsand even in the dual Nakano sense. As a consequence, if an existence result could be obtained for every ample vector bundle, the Griffiths conjecture on the equivalence between ampleness and positivity of vector bundles would be settled.

Introduction

Let X be a projective n-dimensional manifold. A conjecture due to Griffiths [START_REF] Griffiths | A: Hermitian differential geometry, Chern classes and positive vector bundles, Global Analysis[END_REF] stipulates that a holomorphic vector bundle E → X is ample in the sense of Hartshorne, meaning that the associated line bundle O P(E) (1) is ample, if and only if E possesses a Hermitian metric h such that the Chern curvature tensor Θ E,h = i∇ 2 E,h is Griffiths positive. In other words, if we let rank E = r and (1.1) Θ E,h = i 1≤j,k≤n, 1≤λ,µ≤r c jkλµ dz j ∧ dz k ⊗ e * λ ⊗ e µ in terms of holomorphic coordinates (z 1 , . . . , z n ) on X and of an orthonormal frame (e λ ) 1≤λ≤r of E, the associated quadratic form

(1.2) Θ E,h (ξ ⊗ v) := Θ E,h (ξ, ξ) • v, v h = 1≤j,k≤n, 1≤λ,µ≤r c jkλµ ξ j ξ k v λ v µ
should take positive values on non zero tensors ξ ⊗v ∈ T X ⊗E. A stronger concept is Nakano positivity (cf. [START_REF] Nakano | On complex analytic vector bundles[END_REF]), asserting that (1.3) Θ E,h (τ ) := 1≤j,k≤n, 1≤λ,µ≤r c jkλµ τ jλ τ kµ > 0 for all non zero tensors τ = j,λ τ jλ ∂ ∂z j ⊗ e λ ∈ T X ⊗ E. It is in fact interesting to consider also the curvature tensor of the dual bundle E * , which happens to be given by the opposite of the transpose of Θ E,h , i.e.

(1.4) Θ E * ,h * = -T Θ E,h = -1≤j,k≤n, 1≤λ,µ≤r c jkµλ dz j ∧ dz k ⊗ (e * λ ) * ⊗ e * µ .

This leads to the concept of dual Nakano positivity, stipulating that (1.5) -Θ E * ,h * (τ ) = 1≤j,k≤n, 1≤λ,µ≤r c jkµλ τ jλ τ kµ > 0 for all non zero tensors τ = j,λ τ jλ ∂ ∂z j ⊗ e * λ ∈ T X ⊗ E * . On the other hand, Griffiths positivity of Θ E,h is equivalent to Griffiths negativity of Θ E * ,h * , and implies the positivity of the induced metric on the tautological line bundle O P(E)(1) . By the Kodaira embedding theorem [START_REF] Kodaira | On Kähler varieties of restricted type[END_REF], the positivity of O P(E)(1) is equivalent to its ampleness, hence we see immediately from the definitions that (1.6) Θ E,h dual Nakano positive ⇒ Θ E,h Griffiths positive ⇒ E ample.

In this short note, we consider the following converse problem:

1.7. Basic question. Does it hold that E ample ⇒ Θ E,h dual Nakano positive ?

A positive answer would clearly settle the Griffiths conjecture, in an even stronger form. One should observe that Nakano positivity implies Griffiths positivity, but is in general a more restrictive condition. As a consequence, one cannot expect ampleness to imply Nakano positivity. For instance, T P n is easily shown to be ample (and Nakano semi-positive for the Fubini-Study metric), but it is not Nakano positive, as the Nakano vanishing theorem [START_REF] Nakano | On complex analytic vector bundles[END_REF] would then yield (1.8) H n-1,n-1 (P n , C) = H n-1 (P n , Ω n-1

P n ) = H n-1 (P n , K P n ⊗ T P n ) = 0.
On the other hand, it does not seem that there are any examples of ample vector bundles that are not dual Nakano positive, thus the above basic question is still legitimate, even though it might look very optimistic. We should mention here that subtle relations between ampleness, Griffiths and Nakano positivity are known to hold -for instance, B. Berndtsson [START_REF] Berndtsson | Curvature of vector bundles associated to holomorphic fibrations[END_REF] has proved that the ampleness of E implies the Nakano positivity of S m E ⊗ det E for every m ∈ N. See also [START_REF] Demailly | Relations entre les notions de positivité de P[END_REF] for an earlier direct and elementary proof of the much weaker result that the Griffiths positivity of E implies the Nakano positivity of E ⊗ det E, and [START_REF] Mourougane | Hodge metrics and positivity of direct images[END_REF] for further results analogue to those of [START_REF] Berndtsson | Curvature of vector bundles associated to holomorphic fibrations[END_REF].

So far, the Griffiths conjecture is known to hold when n = dim X = 1 or r = rank E = 1 (in which cases, Nakano and dual Nakano positivity coincide with Griffiths positivity). Proofs can be found in [Ume73, Theorem 2.6] and [START_REF] Campana | A characterization of ample vector bundles on a curve[END_REF]. In both cases, the proof is based on the existence of Harder-Narasimhan filtrations and on the Narasimhan-Seshadri theorem [START_REF] Narasimhan | Stable and unitary vector bundles on a compact Riemann surface[END_REF] for stable vector bundles -the 1-dimensional case of the Donaldson-Uhlenbeck-Yau theorem [START_REF] Donaldson | Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles[END_REF], [START_REF] Uhlenbeck | On the existence of Hermitian-Yang-Mills connections in stable vector bundles[END_REF]. It is tempting to investigate whether techniques of gauge theory could be used to approach the Griffiths conjecture. In this direction, P. Naumann [Nau17] proposed a Kähler-Ricci flow method that starts with a given Finsler metric of positive curvature, and converges to a Hermitian metric. It is however unclear whether the flow introduced in [Nau17] preserves positivity, so it might very well produce in the limit a Hermitian metric that does not have positive curvature. Another related suggestion is V. Pingali's proposal made in [START_REF] Pingali | A vector bundle version of the Monge-Ampère equation[END_REF] to study the vector bundle Monge-Ampère equation (Θ E,h ) n = η Id E , where η is a positive volume form on X. Solving such an equation requires polystability in dimension n = 1, and, in general, a positivity property of (E, h) that is even stronger than Nakano positivity (and thus much stronger than ampleness).

In section 2, we describe a more flexible differential system based on a combination of a huge determinantal equation and a trace free Hermite-Einstein condition. It relies on the well known continuity method, and is designed to enforce positivity of the curvature, actually in the dual Nakano sense -a condition that could eventually still be equivalent to ampleness. We show that it is possible to design a non linear differential system that is elliptic and invertible, at least near the origin of time. It would however remain to check whether one can obtain long time existence of the solution for the said equation or one of its variants. Section 3 is devoted to the discussion of a related extremal problem, and a concept of volume for vector bundles.

Approach via a combination of Monge-Ampère and

Hermitian-Yang-Mills equations

Let E → X be a holomorphic vector bundle equipped with a smooth Hermitian metric h. If the Chern curvature tensor Θ E,h is dual Nakano positive, then the 1 r -power of the (n × r)dimensional determinant of the corresponding Hermitian quadratic form on T X ⊗ E * can be seen as a positive (n, n)-form

(2.1) det T X ⊗E * ( T Θ E,h ) 1/r := det(c jkµλ )
1/r (j,λ),(k,µ) idz 1 ∧ dz 1 ∧ . . . ∧ idz n ∧ dz n . Moreover, this (n, n)-form does not depend on the choice of coordinates (z j ) on X, nor on the choice of the orthonormal frame (e λ ) on E (but the orthonormality of (e λ ) is required). Conversely, given a Kähler metric ω 0 on X, the basic idea is that assigning a "matrix Monge-Ampère equation"

(2.2) det T X ⊗E * ( T Θ E,h ) 1/r = f ω n 0 ,
where f is a smooth positive function, may enforce the dual Nakano positivity of Θ E,h if that assignment is combined with a continuity technique from an initial starting point where positivity is known. For r = 1, we have T Θ E,h = Θ E,h = -i∂∂ log h, and equation (2.2) is a standard Monge-Ampère equation. If f is given and independent of h, Yau's theorem [START_REF] Yau | On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I[END_REF] guarantees the existence of a unique solution θ = Θ E,h > 0, provided E is an ample line bundle and X f ω n 0 = c 1 (E) n . One then gets a smoothly varying solution θ t = Θ E,h t > 0 when the right hand side f t of (2.2) varies smoothly with respect to some parameter t. Now, assuming E to be ample of rank r > 1, equation (2.2) becomes underdetermined, since the real rank of the space of hermitian matrices h on E is equal to r 2 , while (2.2) provides only one scalar equation. If E = 1≤j≤r E j splits as a direct sum of ample line bundles and we take a diagonal Hermitian structure h = h j on E, the nr ×nr determinant splits as a product of blocks, and equation (2.2) reduces to

(2.2 s ) 1≤j≤r Θ n E j ,h j 1/r = f ω n 0 .
This "split equation" can be solved for any f = f 1/r j with X f j ω n 0 = c 1 (E j ) n , just by solving the individual equations Θ n E j ,h j = f j ω n 0 , f j > 0, but the decomposition need not be unique. In this case, the Hölder inequality requires X f ω n 0 ≤ ( c 1 (E j ) n ) 1/r , and the equality can be reached by taking all f j 's to be proportional to f . In general, solutions might still exist, but the lack of uniqueness prevents us from getting a priori bounds. In order to recover a well determined system of equations, one needs to introduce (r 2 -1) additional scalar equations, or rather a matrix equation of real rank (r 2 -1). If E is ample, the determinant line bundle det E is also ample. By the Kodaira embedding theorem, we can find a smooth Hermitian metric η 0 on det E so that ω 0 := Θ det E,η 0 > 0 is a Kähler metric on X. In case E is ω 0 -stable or ω 0 -polystable, we know by the Donaldson-Uhlenbeck-Yau theorem that there exists a Hermitian metric h on E satisfying the Hermite-Einstein condition

(2.3) ω n-1 0 ∧ Θ E,h = 1 r ω n 0 ⊗ Id E ,
since the slope of E with respect to ω 0 ∈ c 1 (E) is equal to 1 r . In general, one cannot expect E to be ω 0 -polystable, but Uhlenbeck-Yau have shown that there always exist smooth solutions to a certain "cushioned" Hermite-Einstein equation. To make things more precise, let Herm(E) be the space of Hermitian (non necessarily positive) forms on E, and given a Hermitian metric h > 0, let Herm h (E, E) be the space of h-Hermitian endomorphisms u ∈ Hom(E, E); we denote by

(2.4) Herm(E) → Herm h (E, E), q → q such that q(v, w) = v, w q = q (v), w h
the natural isomorphism between Hermitian quadratic forms and Hermitian endomorphisms, which depends of course on h. We also let

(2.5) Herm • h (E, E) = u ∈ Herm h (E, E) ; tr u = 0
be the subspace of "trace free" Hermitian endomorphisms. In the sequel, we fix a reference Hermitian metric H 0 on E such that det H 0 = η 0 , so that Θ det E,det H 0 = ω 0 > 0. By [UhY86, Theorem 3.1], for every ε > 0, there exists a smooth Hermitian metric q ε on E such that

(2.6) ω n-1 0 ∧ Θ E,q ε = ω n 0 ⊗ 1 r Id E -ε log q ε ,
where q ε is computed with respect to H 0 , and log u denotes the logarithm of a positive Hermitian endomorphism u. The intuitive reason is that the term log q ε introduces sufficient "friction" to avoid any explosion of approximating solutions when using a standard continuity method (see sections 2,3 in [START_REF] Uhlenbeck | On the existence of Hermitian-Yang-Mills connections in stable vector bundles[END_REF]). On the other hand, when ε → 0, the metrics q ε become "more and more distorted" and yield asymptotically a splitting of E in weakly holomorphic subbundles corresponding to the Harder-Narasimhan filtration of E with respect to ω 0 . If we write det q ε = e -ϕ det H 0 and take the trace in (2.6), we find

ω n-1 0 ∧(ω 0 +i∂∂ϕ) = ω n 0 (1+εϕ), hence ω n-1 0 ∧ i∂∂ϕ -εϕ ω n 0 = 0.
A standard application of the maximum principle shows that ϕ = 0, thus (2.6) implies det q ε = det H 0 and log q ε ∈ Herm • H 0 (E, E). In general, for an arbitrary Hermitian metric h, we let

(2.7) Θ • E,h = Θ E,h - 1 r Θ det E,det h ⊗ Id E ∈ C ∞ (X, Λ 1,1 R T * X ⊗ Herm • h (E, E))
be the curvature tensor of E ⊗ (det E) -1/r with respect to the trivial determinant metric h • := h ⊗ (det h) -1/r . Equation (2.6) is equivalent to prescribing det q ε = det H 0 and

(2.8)

ω n-1 0 ∧ Θ • E,q ε = -ε ω n 0 ⊗ log q ε .
This is a matrix equation of rank (r 2 -1) that involves only q • ε and does not depend on det q ε . Notice that we have here log q ε ∈ Herm • H 0 (E, E), but also log q ε ∈ Herm • q ε (E, E). In this context, given α > 0 large enough, it seems natural to search for a time dependent family of metrics h t (z) on the fibers E z of E, t ∈ [0, 1], satisfying a generalized Monge-Ampère equation

(2.9) det T X ⊗E * T Θ E,h t + (1 -t)α ω 0 ⊗ Id E * 1/r = f t ω n 0 , f t > 0,
and trace free Hermite-Einstein conditions

(2.9 • ) ω n-1 t ∧ Θ • E,h t = g t ,
with smoothly varying families of functions

f t ∈ C ∞ (X, R), Hermitian metrics ω t > 0 on X and sections g t ∈ C ∞ (X, Λ n,n R T * X ⊗ Herm • h t (E, E)), t ∈ [0, 1].
Here, we start e.g. with the Yau-Uhlenbeck solution h 0 = q ε of (2.6) (so that det h 0 = det H 0 ), and take α > 0 so large that T Θ E,h 0 + α ω 0 ⊗ Id E * > 0 in the sense of Nakano. If these conditions can be met for all t ∈ [0, 1] without any explosion of the solutions h t , we infer from (2.9) that (2.9

+ ) T Θ E,h t + (1 -t)α ω 0 ⊗ Id E * > 0 in the sense of Nakano for all t ∈ [0, 1]
. At time t = 1, we will then get a Hermitian metric h 1 on E such that Θ E,h 1 is dual Nakano positive. We still have the freedom of adjusting f t , ω t and g t in equations (2.9) and (2.9 • ). We have a system of differential equations of order 2, and any choice of the right hand sides of the form

f t (z) = F (t, z, h t (z), D z h t (z), D 2 z h t (z)) > 0, (2.10) g t (z) = G(t, z, h t (z), D z h t (z), D 2 z h t (z)) ∈ C ∞ (X, Λ 1,1 R T * X ⊗ Herm • (E, E)) (2.10 • )
is a priori acceptable for the sake of enforcing the positivity condition (2.9 + ), although the presence of second order terms D 2 z h t (z)) might affect the principal symbol of the equations. In equation (2.9 • ), the metrics ω t could possibly be taken to depend on t, but unless some commodity reason would appear in next stages of the analysis, it seems simpler to set ω t = ω 0 independent of t. At this stage, we have the following 2.11. Theorem. Let (E, H 0 ) be a smooth Hermitian holomorphic vector bundle such that E is ample and ω t = ω 0 = Θ det E,det H 0 > 0. Then the system of equations (2.9, 2.9 • ) is a well determined (essentially non linear) elliptic system of equations for all choices of smooth right hand sides

f t = F (t, z, h t , D z h t ) > 0, g t = G(t, z, h t , D z h t , D 2 z h t ) ∈ Herm • (E, E),
provided that the symbol η h of the linearized operator u → DG D 2 h (t, z, h, Dh, D 2 h) • D 2 u has an Hilbert-Schmidt norm sup ξ∈T * X ,|ξ| ω 0 =1 η h (ξ) h ≤ (r 2 + 1) -1/2 n -1 for any of the metrics h = h t involved. If a smooth solution h t exists on the whole time interval [0, 1], then E is dual Nakano positive.

Proof. If we write a hermitian metric h on E under the form h(v, w) = h(v), w H 0 with h ∈ Herm h 0 (E, E), we have h = H 0 h in terms of matrices. The curvature tensor is given by the usual formula Θ

E,h = i∂(h -1 ∂h) = i∂( h -1 ∂ H 0 h), where ∂ H 0 s = H -1 0 ∂(H 0 s
) is the (1, 0)component of the Chern connection associated with H 0 on E. For simplicity of notation, we put M := Herm(E),

M h = Herm h (E, E), M • h = Herm • h (E, E).
The system of equations (2.9, 2.9 • ) is associated with the non linear differential operator

P : C ∞ (X, M ) → C ∞ (X, R ⊕ M • h ), h → P (h)
defined by

P (h) = ω -n 0 det T X ⊗E * T Θ E,h +(1 -t)α ω 0 ⊗Id E * 1/r , ω n-1 0 ∧Θ E • ,h -G(t, z, h, Dh, D 2 h) .
It is by definition elliptic at h if its linearization u → (dP ) h (u) is an elliptic linear operator, a crucial fact being that M and R ⊕ M • h have the same rank r 2 over the field R. Our goal is to compute the symbol

σ dP ∈ C ∞ (X, S 2 T R X ⊗ Hom(M, R ⊕ M • h ))
of dP , and to check that u → σ dP (ξ) • u is invertible for every non zero vector ξ ∈ T * X . We pick an infinitesimal variation δh of h in C ∞ (X, M ), and represent it as

δh = u •, • h with u ∈ M h = Herm h (E, E).
In terms of matrices, we have δh = hu, i.e. u = (u λµ ) = h -1 δh is the "logarithmic variation of h". In this setting, we evaluate (dP ) h (u) in orthonormal coordinates (z j ) 1≤j≤n on X relatively to ω 0 . We have h

+ δh = h(Id + u) and (h + δh) -1 = (Id -u)h -1 modulo O(u 2 ), thus dΘ E,h (u) = i∂(h -1 ∂(hu)) -i∂(uh -1 ∂h) = i∂∂u + i∂(h -1 ∂h u) -i∂(uh -1 ∂h) = i∂∂ h * ⊗h u = -i∂ h * ⊗h ∂u, (2.12)
where ∂ h * ⊗h denotes here the (1, 0)-component of the Chern connection on the holomorphic vector bundle Hom(E, E) = E * ⊗ E induced by the metric h * ⊗ h. As a consequence, the order 2 term of the linearized operator is just dΘ E,h (u) [2] = -i∂∂u, and the logarithmic differential of the first scalar component P R (h) of P (h) has order 2 terms given by (2.13)

P R (h) -1 dP R,h (u) [2] = 1 r tr(-θ -1 • T i∂∂u) = - 1 r (det θ) -1 j,k,λ,µ θ jkλµ ∂ 2 u λµ ∂z j ∂z k ,
where θ is the (n × r)-matrix of θ = θ(t, h) = T Θ E,h + (1 -t)αω 0 ⊗ Id E * > 0, θ its co-adjoint and θ -1 = (det θ) -1 T θ, so that P R (h) = ω -n 0 (det θ) 1/r . We also have to compute the order 2 terms in the differential of the second component

h → P • (h) = ω -n 0 ω n-1 0 ∧ Θ • E,h -G(t, z, h, Dh, D 2 h) . Let us set u = 1 r tr u ⊗ Id E + u • , u • ∈ M • , and tr u = λ u λλ ∈ R. Putting τ = 1 r tr u, this actually gives an isomorphism M h → R ⊕ M • h , u → (τ, u • ). Since u • is the logarithmic variation of h • = h(det h) -1/r , we get (2.14) (dP • ) h (u) [2] = ω -n 0 -ω n-1 0 ∧ i∂∂u • -DG D 2 h • D 2 u .
If we fix a Hermitian metric h and take a non zero cotangent vector 0 = ξ ∈ T * X , the symbol σ dP is given by an expression of the form (2.15)

σ (dP ) h (ξ) • u = - (det θ) -1+1/r r ω n 0 j,k,λ,µ θjkλ mu ξ j ξ k u λµ , 1 n |ξ| 2 u • + σ G (ξ) • u
where σ G is the principal symbol of the operator DG D 2 h • D 2 . If g t = G(t, z, h t , Dh t ) is independent of D 2 h t , the latter symbol σ G is equal to 0 and it is easy to see from (2.13) that u → σ (dP ) h (ξ) • u is an isomorphism in Hom(M h , R ⊕ M • h ). In fact, the first summation yields

j,k,λ,µ θjkλµ ξ j ξ k u λµ = j,k,λ,µ θjkλµ ξ j ξ k u • λµ + 1 r j,k,λ θjkλλ ξ j ξ k tr u.
By an easy calculation, we get an inverse operator

R ⊕ M • h → M h , (τ, v) → u where -r ω n 0 (det θ) 1-1/r τ = j,k,λ,µ θjkλµ ξ j ξ k u • λµ + 1 r j,k,λ θjkλλ ξ j ξ k tr u, -v = 1 n |ξ| 2 u • , hence u • = -n |ξ| 2 v and σ (dP ) h (ξ) -1 • (τ, v) = n |ξ| 2 j,k,λ,µ θjkλµ ξ j ξ k v λµ -r ω n 0 (det θ) 1-1/r τ j,k,λ θjkλλ ξ j ξ k Id E - n |ξ| 2 v.
Let us take the Hilbert-Schmidt norms |u| 2 = λ,µ |u λµ | 2 on M h = Herm h (E, E), and c|τ | 2 +|v| 2 on R ⊕M • h (h being the reference metric, and C > 0 a constant). By homogeneity, we can also assume |ξ| = |ξ| ω 0 = 1. Since ( j,k θjkλµ ξ j ξ k ) 1≤λ,µ≤r is a positive Hermitian matrix by the Nakano positivity property, its trace is a strict upper bound for the largest eigenvalue, and we get

j,k,λ θjkλµ ξ j ξ k v λµ 2 ≤ (1 -δ) j,k,λ θjkλλ ξ j ξ k 2 λ |v λµ | 2 .
The Cauchy-Schwarz inequality yields

j,k,λ,µ θjkλµ ξ j ξ k v λµ 2 ≤ r(1 -δ) j,k,λ θjkλλ ξ j ξ k 2 λ,µ |v λµ | 2 . For |ξ| = 1, as Id E ⊥ M • and |Id E | 2 = r, this implies σ (dP ) h (ξ) -1 • (τ, v) 2 ≤ nr 1/2 (1 -δ) 1/2 |v| + r ω n 0 (det θ) 1-1/r j,k,λ θjkλλ ξ j ξ k |τ | 2 r + n 2 |v| 2 < (n 2 r 2 + n 2 )(C|τ | 2 + |v| 2 )
for C large enough. By a standard pertubation argument, (2.13) remains bijective if | σ G (ξ)| h is less than the inverse of the norm of σ (dP ) h (ξ) -1 , i.e. (r 2 + 1) -1/2 n -1 . Similarly, one could also allow the scalar right hand side F to have a "small dependence" on D 2 h t , but this seems less useful.

Our next concern is to ensure that the existence of solutions holds on an open interval of time [0, t 0 [ (and hopefully on the whole interval [0, 1]). In the case of a rank one metric h = e -ϕ , it is well-known that the Kähler-Einstein equation (ω 0 +i∂∂ϕ t ) n = e tf +λϕ t ω n 0 more easily results in getting openness and closedness of solutions when applying the continuity method for λ > 0, as the linearized operator ψ → ∆ ω ϕ t ψ -λψ is always invertible. One way to generalize the Kähler-Einstein condition to the case of higher ranks r ≥ 1 is to take

(2.16) f t (z) = (det H 0 (z)/ det h t (z)) λ a 0 (z), λ ≥ 0,
where a 0 (z) = ω -n 0 det( T Θ E,h 0 + αω 0 ⊗ Id E * ) 1/r > 0 is chosen so that the equation is satisfied by h 0 at t = 0 (the choice λ > 0 has the interest that f t gets automatically rescaled by multiplying h t by a constant, thus ensuring strict invertibility). For the trace free part, what is needed is to introduce a friction term g t that helps again in getting invertibility of the linearized operator, and could possibly avoid the explosion of solutions when t grows to 1. A choice compatible with the Yau-Uhlenbeck solution (2.8) at t = 0 is to take

(2.16 • ) g t = -ε (det H 0 (z)/ det h t (z)) µ ω n 0 ⊗ log h • t , ε > 0, µ ∈ R,
if one remembers that det h 0 = det H 0 . These right hand sides do not depend on higher derivatives of h t , so Theorem 2.11 ensures the ellipticity of the differential system. Moreover:

2.17. Theorem. For ε ≥ ε 0 (h t ) and λ ≥ λ 0 (h t )(1 + µ 2 ) with ε 0 (h t ) and λ 0 (h t ) large enough, the elliptic differential system defined by (2.9, 2.9 • ) and (2.16, 2.16 • ), namely

ω -n 0 det T X ⊗E * T Θ E,h t + (1 -t)α ω 0 ⊗ Id E * 1/r = det H 0 (z) det h t (z) λ a 0 (z) ω -n 0 ω n-1 0 ∧ Θ • E,h t = -ε det H 0 (z) det h t (z) µ log h • t ,
possesses an invertible elliptic linearization. As a consequence, for such values of ε and λ, there exists an open interval [0, t 0 ) ⊂ [0, 1] on which the solution h t exists.

Proof. We replace the operator P :

C ∞ (X, M ) → C ∞ (X, R ⊕ M • h
) used in the proof of Theorem 2.9 by P = ( P R , P • ) defined by

P R (h) = ω -n 0 (det h(z)/ det H 0 (z)) λ det T X ⊗E * T Θ E,h + (1 -t)α ω 0 ⊗ Id E * 1/r , P • (h) = ω -n 0 ω n-1 0 ∧ Θ • E,h + ε (det h(z)/ det H 0 (z)) -µ log h • .
Here, we have to care about the linearized operator dP itself, and not just with its principal symbol. We let again u = h -1 δh ∈ Herm h (E, E) and use formula (2.12) for dΘ E,h (u). This implies

P R (h) -1 d P R,h (u) = λ tr u - 1 r tr T X ⊗E * θ -1 • T i∂ h * ⊗h ∂u .
We need the fact that h • = h • (det h) -1/r possesses, when viewed as a Hermitian endomorphism, a logarithmic variation

( h • ) -1 δ h • = u • = u - 1 r tr u • Id E .
By the classical formula expressing the differential of the logarithm of a matrix, we have

d log g(δg) = 1 0 (1 -t)Id + tg -1 δg (1 -t)Id + tg -1 dt, which implies d log h • (u) = 1 0 (1 -t)Id + t h • -1 h • u • (1 -t)Id + t h • -1 dt.
In the end, we obtain

(d P • ) h (u) = -ω -n 0 ω n-1 0 ∧ i∂ h * ⊗h ∂u • + ε det h(z) det H 0 (z) -µ 1 0 (1 -t)Id + t h • -1 h • u • (1 -t)Id + t h • -1 dt -µ tr u log h • .
In order to check the invertibility, we use the norm |τ | 2 + C|v| 2 on R ⊕ M • h and compute the L 2 inner product (d P ) h (u), (τ, u • ) over X, where τ = 1 r tr u. The ellipticity of operators -i∂ H ∂ implies that it has a discrete sequence of eigenvalues converging to +∞, and that we get Gårding type inequalities of the form

-i∂ H ∂v, v H ≥ c 1 ∇v 2 H -c 2 v 2 H where c 1 , c 2 > 0 depend on H. We apply such inequalities to v = τ , H = 1, and v = u • , H = h * ⊗ h, replacing u with u = τ Id + u • .
From this, we infer

(d P ) h (u), (τ, u • ) ≥ c 1 dτ 2 -c 2 τ 2 + λr τ 2 - 1 r tr T X ⊗E * θ -1 • T i∂ h * ⊗h ∂u • , τ + C c • 1 ∇u • 2 -c • 2 u • 2 + c 3 ε u • 2 -c 4 ε |µ| τ u •
where all constants c j may possibly depend on h. An integration by parts yields

1 r tr T X ⊗E * θ -1 • T i∂ h * ⊗h ∂u • , τ ≤ c 5 ∇u • ( dτ + τ ) ≤ 1 2 c 1 dτ 2 + τ 2 + c 6 ∇u • 2
and we have

c 4 ε |µ| τ u • ≤ 1 2 c 3 ε u • 2 + c 7 εµ 2 τ 2 . If we choose ε ≥ 2c • 2 /c 3 + 1, C ≥ c 6 /c • 1 + 1 and λr ≥ c 2 + 1 2 c 1 + Cc 7 εµ 2 + 1, we finally get (d P ) h (u), (τ, u • ) ≥ 1 2 c 1 dτ 2 + τ 2 + c • 1 ∇u • 2 + 1 2 Cc 3 ε u • 2
and conclude that (d P ) h is an invertible elliptic operator. The openness property at t = 0 then follows from standard results on elliptic PDE's.

2.18. Remarks. (a) Theorem 2.17 is not very satisfactory since the constants ε 0 (h t ) and λ 0 (h t ) depend on the solution h t . It would be important to know if one can get sufficiently uniform estimates to make these constants independent of h t , thereby guaranteeing the long time existence of solutions. This might require modifying somewhat the right hand side of our equations, especially the trace free part, while taking a similar determinantal Monge-Ampère equation that still enforces the dual Nakano positivity of the curvature tensor. The Yau iteration technique used in [START_REF] Yau | On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I[END_REF] to get 0 order estimates for Monge-Ampère equations will probably have to be adapted to this situation.

(b) The non explosion of solutions when t → 1 does not come for free, since this property cannot hold when det E is ample, but E is not. One possibility would be to show that an explosion at time t 0 < 1 produces a "destabilizing subsheaf" S contradicting the ampleness of E/S, similarly to what was done in [START_REF] Uhlenbeck | On the existence of Hermitian-Yang-Mills connections in stable vector bundles[END_REF] to contradict the stability hypothesis.

2.19. Variants. (a) The determinantal equation always yields a Kähler metric

β t := tr E Θ E,h t + (1 -t)α ω 0 ⊗ Id E = Θ det E,det h t + r(1 -t)α ω 0 > 0.
An interesting variant of the trace free equation is

( * ) ω -n 0 ω n-1 t ∧ Θ • E,h t = -ε det H 0 (z) det h t (z) µ log h • t
with ω t = 1 rα+1 β t (notice that β 0 = (rα + 1)ω 0 ). It is then important to know whether the corresponding differential system is still elliptic with an invertible linearization. According to equation ( * ), the Herm(E, E) • part of the differential system depends on the functional

P • (h) = ω -n 0 ω n-1 t ∧ Θ • E,h + ε (det h(z)/ det H 0 (z)) -µ log h • ,
and, with respect to the functional used in Theorem 2.17, the differential d P • h (u) acquires one additional term coming from the variation of ω n-1 t . With the same notation as in our previous calculations, we have Θ det E,det h t = -i∂∂ log det(h t ) and δ(β t ) h (u) = -i∂∂ tr u, hence

(d P • ) h (u) = -ω -n 0 ω n-1 t ∧ i∂ h * ⊗h ∂u • + n-1 rα+1 ω n-2 t ∧ i∂∂ tr u ∧ Θ • E,h + ε det h(z) det H 0 (z) -µ 1 0 (1 -t)Id + t h • -1 h • u • (1 -t)Id + t h • -1 dt -µ tr u log h • .
Putting again τ = tr u, this requires to estimate one extra term appearing in the L 2 inner product (d P ) h (u), (τ, u • ) , namely

(ω n 0 ) -1 ω n-2 t ∧ i∂∂τ ∧ Θ • E,h , u • .
We can apply the same integration by part argument as before to conclude that (d P ) h is again invertible, under a similar hypothesis λ ≥ λ 0 (h t )(1 + µ 2 ), at least for t small. A very recent note posted by V.P. Pingali [START_REF] Pingali | A note on Demailly's approach towards a conjecture of Griffiths[END_REF] shows that when E is ω 0 -stable and h 0 is taken to be the Hermite-Einstein metric, the trace free part of the differential system used in Theorem 2.17 has a solution of the form h t = h 0 e -ψ t , thus always "conformal" to h 0 . There are cases where the dual Nakano positivity of h 0 is doubtful. As a consequence, even in that favorable case, it is unclear whether a long time existence result can hold for the total system, unless stronger restrictions on the Chern classes are made. Equation ( * ) does not seem to entail such contraints, and may thus be better suited to the investigated problem.

(b) In a first step towards solving (2.6), [START_REF] Uhlenbeck | On the existence of Hermitian-Yang-Mills connections in stable vector bundles[END_REF] consider equations that have even stronger friction terms, taking the right hand side to be of the form

ω n-1 0 ∧ Θ E,h = ω n 0 ⊗ -ε log h + σ h -1/2 Γ 0 h 1/2 -Γ 0 ), σ > 0,
and letting σ → 0 at the end of the analysis. Here we can do just the same, for instance by adding a term equal to a multiple of ( h • t ) -1/2 Γ t ( h • t ) 1/2 -Γ t in the trace free equation, as such terms are precisely trace free for any Γ t ∈ C ∞ (X, Hom(E, E)).

A concept of Monge-Ampère volume for vector bundles

If E → X is an ample vector bundle of rank r, the associated line bundle

O P(E) (1) → Y = P(E)
is ample, and one can consider its volume c 1 (O P(E) (1)) n+r-1 . It is well known that this number (which is an integer) coincides with the Segre number X (-1) n s n (E), where (-1) n s n (E) is the n-th Segre class of E. Let us assume further that E is dual Nakano positive (if the solution of the Hermitian-Yangs-Mills differential system of §2 is unobstructed, this would follow from the ampleness of E). One can then introduce the following more involved concept of volume, which we will call the Monge-Ampère volume of E :

(3.1) MAVol(E) = sup h X det T X ⊗E * (2π) -1 T Θ E,h 1/r ,
where the supremum is taken over all smooth metrics h on E such that T Θ E,h is Nakano positive. This supremum is always finite, and in fact we have 3.2. Proposition. For any dual Nakano positive vector bundle E, one has

MAVol(E) ≤ r -n c 1 (E) n .
Proof. We take h to be a hermitian metric on E such that T Θ E,h is Nakano positive, and consider the Kähler metric

ω = (2π) -1 Θ det E,det h = (2π) -1 tr E * T Θ E,h ∈ c 1 (E).
If (λ j ) 1≤j≤nr are the eigenvalues of the associated hermitian form (2π) -1T Θ E,h with respect to ω ⊗ h, we have

det T X ⊗E * (2π) -1 T Θ E,h 1/r = j λ j 1/r
ω n and j λ j 1/nr ≤ 1 nr j λ j by the inequality between geometric and arithmetic means. Since

j λ j = tr ω tr E * (2π) -1 T Θ E,h = tr ω ω = n, we conclude X det T X ⊗E * (2π) -1 T Θ E,h 1/r ≤ X 1 nr j λ j n ω n = r -n X ω n = r -n c 1 (E) n .
The proposition follows.

Remarks. (a)

In case E = 1≤j≤r E j and h = 1≤j≤r h j are split, with all metrics h j normalized to have proportional volume forms ((2π) -1 Θ E j ,h j ) n = β j ω n with suitable constants β j > 0, we get β j = c 1 (E j ) n /c 1 (E) n , and the inequality reads

1≤j≤r c 1 (E j ) n 1/r ≤ r -n c 1 (E) n .
It is an equality when E 1 = • • • = E r , thus Proposition 3.2 is optimal as far as the constant r -n is concerned. For E = 1≤j≤r E j split with distinct ample factors, it seems natural to conjecture that

MAVol(E) = 1≤j≤r c 1 (E j ) n 1/r , i.e. that the supremum is reached for split metrics h = h j . In case E is a non split extension 0 → A → E → A → 0 with A an ample line bundle -this is possible if H 1 (X, O X ) = 0, e.g. on an abelian variety -we strongly suspect that MAVol(E) = c 1 (A) n but that the supremum is not reached by any smooth metric, as we have E semi-stable but not polystable.

(b) It would be interesting to characterize the "extremal metrics" h achieving the supremum in (3.1) when they exist. The calculations made in §2 show that they satisfy some Euler-Lagrange equation

X (det θ) 1/r • tr T X ⊗E * θ -1 • T i∂ h * ⊗h ∂u = 0 ∀u ∈ C ∞ (X, Herm(E)),
where θ is the (n × r)-matrix representing T Θ E,h . After performing two integration by parts that free u from any differentiation, we get a fourth order non linear differential system that h has to satisfy. Remark 3.3 (a) leads us to suspect that this system is not always solvable, but the addition of adequate lower order "friction terms" might make it universally solvable. This could possibly yield a better alternative to the more naive order 2 differential system we proposed in §2 to study the Griffiths conjecture.

(c) When r > 1, one may wonder what is the infimum inf h X det T X ⊗E * (2π) -1 T Θ E,h 1/r .

In the split case (E, h) = (E j , h j ), we can normalize Θ E j ,h j to satisfy Θ n E j ,h j = f j ω n with X f j ω n = c 1 (E j ) n , f j > 0. Then

X det T X ⊗E * (2π) -1 T Θ E,h 1/r = X (f 1 • • • f r ) 1/r ω n
and this integral becomes arbitray small if we take the f j 's to be large on disjoint open sets, and very small elsewhere. This example leads us to suspect that one always has inf h X det T X ⊗E * (2π) -1 T Θ E,h 1/r = 0 for r > 1. The "friction terms" used in our differential systems should be chosen so as to prevent any such shrinking of the volume.
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