Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles

Jean-Pierre Demailly

To cite this version:

Jean-Pierre Demailly. Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles. 2020. hal-02468559v1

HAL Id: hal-02468559
https://hal.science/hal-02468559v1
Preprint submitted on 5 Feb 2020 (v1), last revised 12 Feb 2021 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles

Jean-Pierre Demailly *
Université Grenoble Alpes, Institut Fourier
February 5, 2020

Abstract

Given a vector bundle of arbitrary rank with ample determinant line bundle on a projective manifold, we propose a new elliptic system of differential equations of Hermitian-Yang-Mills type for the curvature tensor. The system is designed so that solutions provide Hermitian metrics with positive curvature in the sense of Griffiths - and even in the dual Nakano sense. As a consequence, if an existence result could be obtained for every ample vector bundle, the Griffiths conjecture on the equivalence between ampleness and positivity of vector bundles would be settled.

Keywords. Ample vector bundle, Hermitian metric, Griffths positivity, Nakano positivity, Hermitian-Yang-Mills equation, Monge-Ampère equation, elliptic operator.

MSC Classification 2020. 32J25, 53C07

1. Introduction

Let X be a projective n-dimensional manifold. A conjecture due to Griffiths [Gri69] stipulates that a holomorphic vector bundle $E \rightarrow X$ is ample in the sense of Hartshorne, meaning that the associated line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ is ample, if and only if E possesses a Hermitian metric h such that the Chern curvature tensor $\Theta_{E, h}=i \nabla_{E, h}^{2}$ is Griffiths positive. In other words, if we let $\operatorname{rank} E=r$ and

$$
\begin{equation*}
\Theta_{E, h}=i \sum_{1 \leq j, k \leq n, 1 \leq \lambda, \mu \leq r} c_{j k \lambda \mu} d z_{j} \wedge d \bar{z}_{k} \otimes e_{\lambda}^{*} \otimes e_{\mu} \tag{1.1}
\end{equation*}
$$

in terms of holomorphic coordinates $\left(z_{1}, \ldots, z_{n}\right)$ on X and of an orthonormal frame $\left(e_{\lambda}\right)_{1 \leq \lambda \leq r}$ of E, the associated quadratic form

$$
\begin{equation*}
\widetilde{\Theta}_{E, h}(\xi \otimes v):=\left\langle\Theta_{E, h}(\xi, \bar{\xi}) \cdot v, v\right\rangle_{h}=\sum_{1 \leq j, k \leq n, 1 \leq \lambda, \mu \leq r} c_{j k \lambda \mu} \xi_{j} \bar{\xi}_{k} v_{\lambda} \bar{v}_{\mu} \tag{1.2}
\end{equation*}
$$

should take positive values on non zero tensors $\xi \otimes v \in T_{X} \otimes E$. A stronger concept is Nakano positivity (cf. [Nak55]), asserting that

$$
\begin{equation*}
\widetilde{\Theta}_{E, h}(\tau):=\sum_{1 \leq j, k \leq n, 1 \leq \lambda, \mu \leq r} c_{j k \lambda \mu} \tau_{j \lambda} \bar{\tau}_{k \mu}>0 \tag{1.3}
\end{equation*}
$$

for all non zero tensors $\tau=\sum_{j, \lambda} \tau_{j \lambda} \frac{\partial}{\partial z_{j}} \otimes e_{\lambda} \in T_{X} \otimes E$. It is in fact interesting to consider also the curvature tensor of the dual bundle E^{*}, which happens to be given by the opposite of the transpose of $\Theta_{E, h}$, i.e.

$$
\begin{equation*}
\Theta_{E^{*}, h}=-{ }^{T} \Theta_{E, h}=\sum_{1 \leq j, k \leq n, 1 \leq \lambda, \mu \leq r} c_{j k \mu \lambda} d z_{j} \wedge d \bar{z}_{k} \otimes\left(e_{\lambda}^{*}\right)^{*} \otimes e_{\mu}^{*} . \tag{1.4}
\end{equation*}
$$

[^0]This leads to the concept of dual Nakano positivity, stipulating that

$$
\begin{equation*}
-\widetilde{\Theta}_{E^{*}, h}(\tau)=\sum_{1 \leq j, k \leq n, 1 \leq \lambda, \mu \leq r} c_{j k \mu \lambda} \tau_{j \lambda} \bar{\tau}_{k \mu}>0 \tag{1.5}
\end{equation*}
$$

for all non zero tensors $\tau=\sum_{j, \lambda} \tau_{j \lambda} \frac{\partial}{\partial z_{j}} \otimes e_{\lambda}^{*} \in T_{X} \otimes E^{*}$. On the other hand, Griffiths positivity of $\Theta_{E, h}$ is equivalent to Griffiths negativity of $\Theta_{E^{*}, h}$, and implies the positivity of the induced metric on the tautological line bundle $\mathcal{O}_{\mathbb{P}(E)(1)}$. By the Kodaira embedding theorem [Kod54], the positivity of $\mathcal{O}_{\mathbb{P}(E)(1)}$ is equivalent to its ampleness, hence we see immediately from the definitions that

$$
\begin{equation*}
\widetilde{\Theta}_{E, h} \text { dual Nakano positive } \Rightarrow \widetilde{\Theta}_{E, h} \text { Griffiths positive } \Rightarrow E \text { ample. } \tag{1.6}
\end{equation*}
$$

In this short note, we consider the following converse problem:

1.7. Basic question. Does it hold that

$$
E \text { ample } \Rightarrow \widetilde{\Theta}_{E, h} \text { dual Nakano positive? }
$$

A positive answer would clearly settle the Griffiths conjecture, in an even stronger form. One should observe that Nakano positivity implies Griffiths positivity, but is in general a more restrictive condition. As a consequence, one cannot expect ampleness to imply Nakano positivity. For instance, $T_{\mathbb{P}} n$ is easy shown to be ample (and Nakano semi-positive for the Fubini-Study metric), but it is not Nakano positive, as the Nakano vanishing theorem [Nak55] would then yield

$$
\begin{equation*}
H^{n-1, n-1}\left(\mathbb{P}^{n}, \mathbb{C}\right)=H^{n-1}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{n-1}\right)=H^{n-1}\left(\mathbb{P}^{n}, K_{\mathbb{P}^{n}} \otimes T_{\mathbb{P}^{n}}\right)=0 \tag{1.8}
\end{equation*}
$$

On the other hand, it does not seem that there are any examples of ample vector bundles that are not dual Nakano positive, thus the above basic question is still legitimate, even though it might look very optimistic. We should mention here that subtle relations between ampleness, Griffiths and Nakano positivity are known to hold - for instance, B. Berndtsson[Ber09] has proved that the ampleness of E implies the Nakano positivity of $S^{m} E \otimes \operatorname{det} E$ for every $m \in \mathbb{N}$. See also [DeS79] for an earlier direct and elementary proof of the much weaker result that the Griffiths positivity of E implies the Nakano positivity of $E \otimes \operatorname{det} E$, and [MoT07] for further results analogue to those of [Ber09].

So far, the Griffiths conjecture is known to hold when $n=\operatorname{dim} X=1$ or $r=\operatorname{rank} E=1$ (in which cases, Nakano and dual Nakano positivity coincide with Griffiths positivity). Proofs can be found in [Ume73, Theorem 2.6] and [CaF90]. In both cases, the proof is based on the existence of Harder-Narasimhan filtrations and on the Narasimhan-Seshadri theorem [NaS65] for stable vector bundles - the 1-dimensional case of the Donaldson-Uhlenbeck-Yau theorem [Don85], [UhY86]. It is tempting to investigate whether techniques of gauge theory could be used to approach the Griffiths conjecture. In this direction, P. Naumann [Nau17] proposed a Kähler-Ricci flow method that starts with a given Finsler metric of positive curvature, and converges to a Hermitian metric. It is however unclear whether the flow introduced in [Nau17] preserves positivity, so it might very well produce in the limit a Hermitian metric that does not have positive curvature.

Here, we describe a different continuity method based on a natural determinantal equation, that is designed to enforce positivity of the curvature, actually in the dual Nakano sense. It would however remain to check whether one can obtain long time existence of the flow for the said equation or one of its variants.

2. Approach via a combination of Monge-Ampère and Hermitian-Yang-Mills equations

Let $E \rightarrow X$ be a holomorphic vector bundle equipped with a smooth Hermitian metric h. If the Chern curvature tensor $\Theta_{E, h}$ is dual Nakano positive, then the $\frac{1}{r}$-power of the $(n \times r)$ dimensional determinant of the corresponding Hermitian quadratic form on $T_{X} \otimes E^{*}$ can be seen as a positive (n, n)-form

$$
\begin{equation*}
\operatorname{det}_{T_{X} \otimes E^{*}}\left({ }^{T} \Theta_{E, h}\right)^{1 / r}:=\operatorname{det}\left(c_{j k \mu \lambda}\right)_{(j, \lambda),(k, \mu)}^{1 / r} i d z_{1} \wedge d \bar{z}_{1} \wedge \ldots \wedge i d z_{n} \wedge d \bar{z}_{n} \tag{2.1}
\end{equation*}
$$

Moreover, this (n, n)-form does not depend on the choice of coordinates $\left(z_{j}\right)$ on X, nor on the choice of the orthonormal frame $\left(e_{\lambda}\right)$ on E (but the orthonormality of $\left(e_{\lambda}\right)$ is required). Conversely, the basic idea is that assigning a "matrix Monge-Ampère equation"

$$
\begin{equation*}
\operatorname{det}_{T_{X} \otimes E^{*}}\left({ }^{T} \Theta_{E, h}\right)^{1 / r}=f>0 \tag{2.2}
\end{equation*}
$$

where f is a positive (n, n)-form, may enforce the dual Nakano positivity of $\Theta_{E, h}$ if that assignment is combined with a continuity technique from an initial starting point where positivity is known. For $r=1$, we have ${ }^{T} \Theta_{E, h}=\Theta_{E, h}=-i \partial \bar{\partial} \log h$, and equation (2.2) is a standard Monge-Ampère equation. If f is given and independent of h, Yau's theorem [Yau78] guarantees the existence of a unique solution $\theta=\Theta_{E, h}>0$, provided E is an ample line bundle and $\int_{X} f=c_{1}(E)^{n}$. One then gets a smoothly varying solution $\theta_{t}=\Theta_{E, h_{t}}>0$ when the right hand side f_{t} of (2.2) varies smoothly with respect to some parameter t.

Now, assuming E to be ample of rank $r>1$, equation (2.2) becomes underdetermined, since the real rank of the space of hermitian matrices h on E is equal to r^{2}, while (2.2) provides only one scalar equation. Solutions might still exist, but the lack of uniqueness prevents us from getting a priori bounds. In order to recover a well determined system of equations, one needs to introduce ($r^{2}-1$) additional scalar equations, or rather a matrix equation of real rank $\left(r^{2}-1\right)$. In this circumstance, the determinant line bundle $\operatorname{det} E$ is also ample. By the Kodaira embedding theorem, we can find a smooth Hermitian metric η_{0} on $\operatorname{det} E$ so that $\omega_{0}:=\Theta_{\operatorname{det} E, \eta_{0}}>0$ is a Kähler metric on X. In case E is ω_{0}-stable or ω_{0}-polystable, we know by the Donaldson-Uhlenbeck-Yau theorem that there exists a Hermitian metric h on E satisfying the Hermite-Einstein condition

$$
\begin{equation*}
\omega_{0}^{n-1} \wedge \Theta_{E, h}=\frac{1}{r} \omega_{0}^{n} \otimes \operatorname{Id}_{E} \tag{2.3}
\end{equation*}
$$

since the slope of E with respect to $\omega_{0} \in c_{1}(E)$ is equal to $\frac{1}{r}$.
In general, one cannot expect E to be ω_{0}-polystable, but Uhlenbeck-Yau have shown that there always exists a smooth solution q_{ε} to a certain "cushioned" Hermite-Einstein equation. To make things more precise, let $\operatorname{Herm}(E)$ be the space of Hermitian (non necessarily positive) forms on E, and given a Hermitian metric $h>0$, let $\operatorname{Herm}_{h}(E, E)$ be the space of h-Hermitian endomorphisms $u \in \operatorname{Hom}(E, E)$; we denote by

$$
\begin{equation*}
\operatorname{Herm}(E) \rightarrow \operatorname{Herm}_{h}(E, E), \quad q \mapsto \widetilde{q} \text { such that } q(v, w)=\langle v, w\rangle_{q}=\langle\widetilde{q}(v), w\rangle_{h} \tag{2.4}
\end{equation*}
$$

the natural isomorphism, which depends of course on h. We also let

$$
\begin{equation*}
\operatorname{Herm}_{h}^{\circ}(E, E)=\left\{u \in \operatorname{Herm}_{h}(E, E) ; \operatorname{tr} u=0\right\} \tag{2.5}
\end{equation*}
$$

be the subspace of "trace free" Hermitian endomorphisms. In the sequel, we fix a reference Hermitian metric H_{0} on E such that det $H_{0}=\eta_{0}$, so that $\Theta_{\operatorname{det} E \text {, det } H_{0}}=\omega_{0}>0$. By [UhY86, Theorem 3.1], for every $\varepsilon>0$, there exists a smooth Hermitian metric q_{ε} on E such that

$$
\begin{equation*}
\omega_{0}^{n-1} \wedge \Theta_{E, q_{\varepsilon}}=\omega_{0}^{n} \otimes\left(\frac{1}{r} \operatorname{Id}_{E}-\varepsilon \log \widetilde{q}_{\varepsilon}\right) \tag{2.6}
\end{equation*}
$$

where $\widetilde{q}_{\varepsilon}$ is computed with respect to H_{0}, and $\log s$ denotes the logarithm of a positive Hermitian endomorphism s. The intuitive reason is that the term $\log \widetilde{q}_{\varepsilon}$ introduces sufficient "friction" to avoid any explosion of approximating solutions when using a standard continuity method (see sections 2,3 in [UhY86]). On the other hand, when $\varepsilon \rightarrow 0$, the metrics q_{ε} become "more and more distorted" and yield asymptotically a splitting of E in weakly holomorphic subbundles corresponding to the Harder-Narasimhan filtration of E with respect to ω_{0}. If we write $\operatorname{det} q_{\varepsilon}=e^{-\varphi} \operatorname{det} H_{0}$ and take the trace in (2.6), we find $\omega_{0}^{n-1} \wedge\left(\omega_{0}+i \partial \bar{\partial} \varphi\right)=\omega_{0}^{n}(1+\varepsilon \varphi)$, hence $\omega_{0}^{n-1} \wedge i \partial \bar{\partial} \varphi-\varepsilon \varphi \omega_{0}^{n}=0$. A standard application of the maximum principle shows that $\varphi=0$, thus (2.6) implies $\operatorname{det} q_{\varepsilon}=\operatorname{det} H_{0}$ and $\log \widetilde{q}_{\varepsilon} \in \operatorname{Herm}_{H_{0}}^{\circ}(E, E)$. In general, for an arbitrary Hermitian metric h, we let

$$
\begin{equation*}
\Theta_{E, h}^{\circ}=\Theta_{E, h}-\frac{1}{r} \Theta_{\operatorname{det} E, \operatorname{det} h} \otimes \operatorname{Id}_{E} \in C^{\infty}\left(X, \Lambda_{\mathbb{R}}^{1,1} T_{X}^{*} \otimes \operatorname{Herm}_{h}^{\circ}(E, E)\right) \tag{2.7}
\end{equation*}
$$

be the curvature tensor of $E \otimes(\operatorname{det} E)^{-1 / r}$ with respect to the trivial determinant metric $h^{\circ}:=h \otimes(\operatorname{det} h)^{-1 / r}$. Equation (2.6) is equivalent to prescribing $\operatorname{det} q_{\varepsilon}=\operatorname{det} H_{0}$ and

$$
\begin{equation*}
\omega_{0}^{n-1} \wedge \Theta_{E, q_{\varepsilon}}^{\circ}=-\varepsilon \omega_{0}^{n} \otimes \log \widetilde{q}_{\varepsilon} . \tag{2.8}
\end{equation*}
$$

This is a matrix equation of rank $\left(r^{2}-1\right)$ that involves only q_{ε}° and does not depend on $\operatorname{det} q_{\varepsilon}$. Notice that we have here $\log \widetilde{q}_{\varepsilon} \in \operatorname{Herm}_{H_{0}}^{\circ}(E, E)$, but also $\log \widetilde{q}_{\varepsilon} \in \operatorname{Herm}_{q_{\varepsilon}}^{\circ}(E, E)$.

In this context, given $\alpha>0$ large enough, it seems natural to search for a time dependent family of metrics $h_{t}(z)$ on the fibers E_{z} of $E, t \in[0,1]$, satisfying a generalized Monge-Ampère equation

$$
\begin{equation*}
\operatorname{det}_{T_{X} \otimes E^{*}}\left({ }^{T} \Theta_{E, h_{t}}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E^{*}}\right)^{1 / r}=f_{t} \omega_{0}^{n}, \quad f_{t}>0, \tag{2.9}
\end{equation*}
$$

and trace free Hermite-Einstein conditions

$$
\omega_{t}^{n-1} \wedge \Theta_{E, h_{t}}^{\circ}=g_{t}
$$

with smoothly varying families of functions $f_{t} \in C^{\infty}(X, \mathbb{R})$, Hermitian metrics $\omega_{t}>0$ on X and sections $g_{t} \in C^{\infty}\left(X, \Lambda_{\mathbb{R}}^{n, n} T_{X}^{*} \otimes \operatorname{Herm}_{h_{t}}^{\circ}(E, E)\right), t \in[0,1]$. Here, we start e.g. with the Yau-Uhlenbeck solution $h_{0}=q_{\varepsilon}$ of (2.6) (so that $\operatorname{det} h_{0}=\operatorname{det} H_{0}$), and take $\alpha>0$ so large that ${ }^{T} \Theta_{E, h_{0}}+\alpha \omega_{0} \otimes \operatorname{Id}_{E^{*}}>0$ in the sense of Nakano. If these conditions can be met for all $t \in[0,1]$ without any explosion of the solutions h_{t}, we infer from (2.9) that

$$
\begin{equation*}
{ }^{T} \Theta_{E, h_{t}}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E^{*}}>0 \quad \text { in the sense of Nakano } \tag{+}
\end{equation*}
$$

for all $t \in[0,1]$. At time $t=1$, we will then get a Hermitian metric h_{1} on E such that $\Theta_{E, h_{1}}$ is dual Nakano positive. We still have the freedom of adjusting f_{t}, ω_{t} and g_{t} in equations (2.9)
and $\left(2.9^{\circ}\right)$. We have a system of differential equations of order 2 , and any choice of the right hand sides of the form

$$
\begin{align*}
& f_{t}(z)=F\left(t, z, h_{t}(z), D_{z} h_{t}(z), D_{z}^{2} h_{t}(z)\right)>0 \tag{2.10}\\
& g_{t}(z)=G\left(t, z, h_{t}(z), D_{z} h_{t}(z), D_{z}^{2} h_{t}(z)\right) \in C^{\infty}\left(X, \Lambda_{\mathbb{R}}^{1,1} T_{X}^{*} \otimes \operatorname{Herm}^{\circ}(E, E)\right)
\end{align*}
$$

is a priori acceptable for the sake of enforcing the positivity condition $\left(2.9^{+}\right)$, although the presence of second order terms $\left.D_{z}^{2} h_{t}(z)\right)$ might affect the principal symbol of the equations. In equation $\left(2.9^{\circ}\right)$, the metrics ω_{t} could possibly be taken to depend on t, but unless some commodity reason would appear in next stages of the analysis, it seems simpler to set $\omega_{t}=\omega_{0}$ independent of t. At this stage, we have the following
2.11. Theorem. Let $\left(E, H_{0}\right)$ be a smooth Hermitian holomorphic vector bundle such that E is ample and $\omega_{t}=\omega_{0}=\Theta_{\operatorname{det} E, \operatorname{det} H_{0}}>0$. Then the system of equations $\left(2.7,2.7^{\circ}\right)$ is a well determined (essentially non linear) elliptic system of equations for all choices of smooth right hand sides

$$
f_{t}=F\left(t, z, h_{t}, D_{z} h_{t}\right)>0, \quad g_{t}=G\left(t, z, h_{t}, D_{z} h_{t}, D_{z}^{2} h_{t}\right) \in \operatorname{Herm}^{\circ}(E, E),
$$

provided that the symbol η_{h} of the linearized operator $u \mapsto D G_{D^{2} h}\left(t, z, h, D h, D^{2} h\right) \cdot D^{2} u$ has an Hilbert-Schmidt norm $\sup _{\xi \in T_{X}^{*},|\xi|_{\omega_{0}}=1}\left\|\eta_{h}(\xi)\right\|_{h} \leq\left(r^{2}+1\right)^{-1 / 2} n^{-1}$ for any of the metrics $h=h_{t}$ involved. If a smooth solution h_{t} exists on the whole time interval $[0,1]$, then E is dual Nakano positive.
 $\widetilde{h} \in \operatorname{Herm}_{h_{0}}(E, E)$, we have $h=H_{0} \widetilde{h}$ in terms of matrices. The curvature tensor is given by the usual formula $\Theta_{E, h}=i \bar{\partial}\left(h^{-1} \partial h\right)=i \bar{\partial}\left(\widetilde{h}^{-1} \partial_{H_{0}} \widetilde{h}\right)$, where $\partial_{H_{0}} s=H_{0}^{-1} \partial\left(H_{0} s\right)$ is the (1,0)component of the Chern connection associated with H_{0} on E. For simplicity of notation, we put

$$
M:=\operatorname{Herm}(E), \quad M_{h}=\operatorname{Herm}_{h}(E, E), \quad M_{h}^{\circ}=\operatorname{Herm}_{h}^{\circ}(E, E)
$$

The system of equations $\left(2.9,2.9^{\circ}\right)$ is associated with the non linear differential operator

$$
P: C^{\infty}(X, M) \rightarrow C^{\infty}\left(X, \mathbb{R} \oplus M_{h}^{\circ}\right), \quad h \mapsto P(h)
$$

defined by
$P(h)=\omega_{0}^{-n}\left(\operatorname{det}_{T_{X} \otimes E^{*}}\left({ }^{T} \Theta_{E, h}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E^{*}}\right)^{1 / r}, \omega_{0}^{n-1} \wedge \Theta_{E^{\circ}, h}-G\left(t, z, h, D h, D^{2} h\right)\right)$.
It is by definition elliptic at h if its linearization $u \mapsto(d P)_{h}(u)$ is an elliptic linear operator, a crucial fact being that M and $\mathbb{R} \oplus M_{h}^{\circ}$ have the same rank r^{2} over the field \mathbb{R}. Our goal is to compute the symbol $\sigma_{d P} \in C^{\infty}\left(X, S^{2} T_{X}^{\mathbb{R}} \otimes \operatorname{Hom}\left(M, \mathbb{R} \oplus M_{h}^{\circ}\right)\right)$ of $d P$, and to check that $u \mapsto \sigma_{d P}(\xi) \cdot u$ is invertible for every non zero vector $\xi \in T_{X}^{*}$. We pick an infinitesimal variation δh of h in $C^{\infty}(X, M)$, and represent it as $\delta h=\langle u \bullet, \bullet\rangle_{h}$ with $u \in M_{h}=\operatorname{Herm}_{h}(E, E)$. In terms of matrices, we have $\delta h=h u$, i.e. $u=\left(u_{\lambda \mu}\right)=h^{-1} \delta h$ is the "logarithmic variation of h ". In this setting, we evaluate $(d P)_{h}(u)$ in orthonormal coordinates $\left(z_{j}\right)_{1 \leq j \leq n}$ on X relatively to ω_{0}. We have $h+\delta h=h(\operatorname{Id}+u)$ and $(h+\delta h)^{-1}=(\operatorname{Id}-u) h^{-1}$ modulo $O\left(u^{2}\right)$, thus

$$
\begin{align*}
d \Theta_{E, h}(u) & =i \bar{\partial}\left(h^{-1} \partial(h u)\right)-i \bar{\partial}\left(u h^{-1} \partial h\right)=i \bar{\partial} \partial u+i \bar{\partial}\left(h^{-1} \partial h u\right)-i \bar{\partial}\left(u h^{-1} \partial h\right) \\
& =i \bar{\partial} \partial_{h^{*} \otimes h} u=-i \partial_{h^{*} \otimes h} \bar{\partial} u \tag{2.12}
\end{align*}
$$

where $\partial_{h^{*} \otimes h}$ denotes here the (1,0)-component of the Chern connection on the holomorphic vector bundle $\operatorname{Hom}(E, E)=E^{*} \otimes E$ induced by the metric $h^{*} \otimes h$. As a consequence, the order 2 term of the linearized operator is just

$$
d \Theta_{E, h}(u)^{[2]}=-i \partial \bar{\partial} u
$$

and the logarithmic differential of the first scalar component $P_{\mathbb{R}}(h)$ of $P(h)$ has order 2 terms given by

$$
\begin{equation*}
P_{\mathbb{R}}(h)^{-1} d P_{\mathbb{R}, h}(u)^{[2]}=\frac{1}{r} \operatorname{tr}\left(-\theta^{-1} \cdot{ }^{T} i \partial \bar{\partial} u\right)=-\frac{1}{r}(\operatorname{det} \theta)^{-1} \sum_{j, k, \lambda, \mu} \widetilde{\theta}_{j k \lambda \mu} \frac{\partial^{2} u_{\lambda \mu}}{\partial z_{j} \partial \bar{z}_{k}}, \tag{2.13}
\end{equation*}
$$

where θ is the $(n \times r)$-matrix of $\theta=\theta(t, h)={ }^{T} \Theta_{E, h}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E^{*}}>0, \widetilde{\theta}$ its co-adjoint and $\theta^{-1}=(\operatorname{det} \theta)^{-1 T} \widetilde{\theta}$, so that $P_{\mathbb{R}}(h)=\omega_{0}^{-n}(\operatorname{det} \theta)^{1 / r}$. We also have to compute the order 2 terms in the differential of the second component

$$
h \mapsto P^{\circ}(h)=\omega_{0}^{-n}\left(\omega_{0}^{n-1} \wedge \Theta_{E, h}^{\circ}-G\left(t, z, h, D h, D^{2} h\right)\right)
$$

Let us set $u=\frac{1}{r} \operatorname{tr} u \otimes \operatorname{Id}_{E}+u^{\circ}, u^{\circ} \in M^{\circ}$, and $\operatorname{tr} u=\sum_{\lambda} u_{\lambda \lambda} \in \mathbb{R}$. Putting $\tau=\frac{1}{r} \operatorname{tr} u$, this actually gives an isomorphism $M_{h} \rightarrow \mathbb{R} \oplus M_{h}^{\circ}, u \mapsto\left(\tau, u^{\circ}\right)$. Since u° is the logarithmic variation of $h^{\circ}=h(\operatorname{det} h)^{-1 / r}$, we get

$$
\begin{equation*}
\left(d P^{\circ}\right)_{h}(u)^{[2]}=\omega_{0}^{-n}\left(-\omega_{0}^{n-1} \wedge i \partial \bar{\partial} u^{\circ}-D G_{D^{2} h} \cdot D^{2} u\right) . \tag{2.14}
\end{equation*}
$$

If we fix a Hermitian metric h and take a non zero cotangent vector $0 \neq \xi \in T_{X}^{*}$, the symbol $\sigma_{d P}$ is given by an expression of the form

$$
\begin{equation*}
\sigma_{(d P)_{h}}(\xi) \cdot u=-\left(\frac{(\operatorname{det} \theta)^{-1+1 / r}}{r \omega_{0}^{n}} \sum_{j, k, \lambda, \mu} \tilde{\theta}_{j k \lambda m u} \xi_{j} \bar{\xi}_{k} u_{\lambda \mu}, \frac{1}{n}|\xi|^{2} u^{\circ}+\widetilde{\sigma}_{G}(\xi) \cdot u\right) \tag{2.15}
\end{equation*}
$$

where $\widetilde{\sigma}_{G}$ is the principal symbol of the operator $D G_{D^{2} h} \cdot D^{2}$. If $g_{t}=G\left(t, z, h_{t}, D h_{t}\right)$ is independent of $D^{2} h_{t}$, the latter symbol $\widetilde{\sigma}_{G}$ is equal to 0 and it is easy to see from (2.13) that $u \mapsto \sigma_{(d P)_{h}}(\xi) \cdot u$ is an isomorphism in $\operatorname{Hom}\left(M_{h}, \mathbb{R} \oplus M_{h}^{\circ}\right)$. In fact, the first summation yields

$$
\sum_{j, k, \lambda, \mu} \tilde{\theta}_{j k \lambda \mu} \xi_{j} \bar{\xi}_{k} u_{\lambda \mu}=\sum_{j, k, \lambda, \mu} \tilde{\theta}_{j k \lambda \mu} \xi_{j} \bar{\xi}_{k} u_{\lambda \mu}^{\circ}+\frac{1}{r} \sum_{j, k, \lambda} \tilde{\theta}_{j k \lambda \lambda} \xi_{j} \bar{\xi}_{k} \operatorname{tr} u
$$

By an easy calculation, we get an inverse operator $\mathbb{R} \oplus M_{h}^{\circ} \rightarrow M_{h},(\tau, v) \mapsto u$ where

$$
-r \omega_{0}^{n}(\operatorname{det} \theta)^{1-1 / r} \tau=\sum_{j, k, \lambda, \mu} \tilde{\theta}_{j k \lambda \mu} \xi_{j} \bar{\xi}_{k} u_{\lambda \mu}^{\circ}+\frac{1}{r} \sum_{j, k, \lambda} \tilde{\theta}_{j k \lambda \lambda} \xi_{j} \bar{\xi}_{k} \operatorname{tr} u, \quad-v=\frac{1}{n}|\xi|^{2} u^{\circ},
$$

hence $u^{\circ}=-\frac{n}{|\xi|^{2}} v$ and

$$
\sigma_{(d P)_{h}}(\xi)^{-1} \cdot(\tau, v)=\frac{\frac{n}{|\xi|^{2}} \sum_{j, k, \lambda, \mu} \tilde{\theta}_{j k \lambda \mu} \xi_{j} \bar{\xi}_{k} v_{\lambda \mu}-r \omega_{0}^{n}(\operatorname{det} \theta)^{1-1 / r} \tau}{\sum_{j, k, \lambda} \tilde{\theta}_{j k \lambda \lambda} \xi_{j} \bar{\xi}_{k}} \operatorname{Id}_{E}-\frac{n}{|\xi|^{2}} v .
$$

Let us take the Hilbert-Schmidt norms $|u|^{2}=\sum_{\lambda, \mu}\left|u_{\lambda \mu}\right|^{2}$ on $M_{h}=\operatorname{Herm}_{h}(E, E)$, and $c|\tau|^{2}+|v|^{2}$ on $\mathbb{R} \oplus M_{h}^{\circ}$ (h being the reference metric, and $C>0$ a constant). By homogeneity, we can also assume $|\xi|=|\xi|_{\omega_{0}}=1$. Since $\left(\sum_{j, k} \tilde{\theta}_{j k \lambda \mu} \xi_{j} \bar{\xi}_{k}\right)_{1 \leq \lambda, \mu \leq r}$ is a positive Hermitian matrix by the Nakano positivity property, its trace is a strict upper bound for the largest eigenvalue, and we get

$$
\left|\sum_{j, k, \lambda} \tilde{\theta}_{j k \lambda \mu} \xi_{j} \bar{\xi}_{k} v_{\lambda \mu}\right|^{2} \leq(1-\delta)\left(\sum_{j, k, \lambda} \tilde{\theta}_{j k \lambda \lambda} \xi_{j} \bar{\xi}_{k}\right)^{2} \sum_{\lambda}\left|v_{\lambda \mu}\right|^{2}
$$

The Cauchy-Schwarz inequality yields

$$
\left|\sum_{j, k, \lambda, \mu} \tilde{\theta}_{j k \lambda \mu} \xi_{j} \bar{\xi}_{k} v_{\lambda \mu}\right|^{2} \leq r(1-\delta)\left(\sum_{j, k, \lambda} \tilde{\theta}_{j k \lambda \lambda} \xi_{j} \bar{\xi}_{k}\right)^{2} \sum_{\lambda, \mu}\left|v_{\lambda \mu}\right|^{2}
$$

For $|\xi|=1$, as $\operatorname{Id}_{E} \perp M^{\circ}$ and $\left|\operatorname{Id}_{E}\right|^{2}=r$, this implies

$$
\begin{aligned}
\left|\sigma_{(d P)_{h}}(\xi)^{-1} \cdot(\tau, v)\right|^{2} & \leq\left(n r^{1 / 2}(1-\delta)^{1 / 2}|v|+\frac{r \omega_{0}^{n}(\operatorname{det} \theta)^{1-1 / r}}{\sum_{j, k, \lambda} \tilde{\theta}_{j k \lambda \lambda} \xi_{j} \bar{\xi}_{k}}|\tau|\right)^{2} r+n^{2}|v|^{2} \\
& <\left(n^{2} r^{2}+n^{2}\right)\left(C|\tau|^{2}+|v|^{2}\right)
\end{aligned}
$$

for C large enough. By a standard pertubation argument, (2.13) remains bijective if $\left|\widetilde{\sigma}_{G}(\xi)\right|_{h}$ is less than the inverse of the norm of $\sigma_{(d P)_{h}}(\xi)^{-1}$, i.e. $\left(r^{2}+1\right)^{-1 / 2} n^{-1}$. Similarly, one could also allow the scalar right hand side F to have a "small dependence" on $D^{2} h_{t}$, but this seems less useful.

Our next concern is to ensure that the existence of solutions holds on an open interval of time $\left[0, t_{0}[\right.$ (and hopefully on the whole interval $[0,1]$). In the case of a rank one metric $h=e^{-\varphi}$, it is well-known that the Kähler-Einstein equation $\left(\omega_{0}+i \partial \bar{\partial} \varphi_{t}\right)^{n}=e^{t f+\lambda \varphi_{t}} \omega_{0}^{n}$ more easily results in getting openness and closedness of solutions when applying the continuity method for $\lambda>0$, as the linearized operator $\psi \mapsto \Delta_{\omega_{\varphi_{t}}} \psi-\lambda \psi$ is always invertible. One way to generalize the Kähler-Einstein condition to the case of higher ranks $r \geq 1$ is to take

$$
\begin{equation*}
f_{t}(z)=\left(\operatorname{det} H_{0}(z) / \operatorname{det} h_{t}(z)\right)^{\lambda} a_{0}(z), \quad \lambda \geq 0 \tag{2.16}
\end{equation*}
$$

where $a_{0}(z)=\omega_{0}^{-n} \operatorname{det}\left({ }^{T} \Theta_{E, h_{0}}+\alpha \omega_{0} \otimes \operatorname{Id}_{E^{*}}\right)^{1 / r}>0$ is chosen so that the equation is satisfied by h_{0} at $t=0$ (the choice $\lambda>0$ has the interest that f_{t} gets automatically rescaled by multiplying h_{t} by a constant, thus ensuring strict invertibility). For the trace free part, what is a needed is to introduce a "friction term" g_{t} that helps again in getting invertibility of the linearized operator, and could possibly avoid the explosion of solutions when t grows to 1 . A choice compatible with the Yau-Uhlenbeck solution (2.8) at $t=0$ is to take

$$
g_{t}=-\varepsilon\left(\operatorname{det} H_{0}(z) / \operatorname{det} h_{t}(z)\right)^{\mu} \omega_{0}^{n} \otimes \log \widetilde{h}_{t}^{\circ}, \quad \varepsilon>0, \mu \in \mathbb{R}
$$

if one remembers that $\operatorname{det} h_{0}=\operatorname{det} H_{0}$. These right hand sides do not depend on higher derivatives of h_{t}, so Theorem 2.11 ensures the ellipticity of the differential system. Moreover:
2.17. Theorem. For $\varepsilon \geq \varepsilon_{0}\left(h_{t}\right)$ and $\lambda \geq \lambda_{0}\left(h_{t}\right)\left(1+\mu^{2}\right)$ with $\varepsilon_{0}\left(h_{t}\right)$ and $\lambda_{0}\left(h_{t}\right)$ large enough, the elliptic differential system defined by $\left(2.9,2.9^{\circ}\right)$ and $\left(2.16,2.16^{\circ}\right)$, namely

$$
\begin{aligned}
& \omega_{0}^{-n} \operatorname{det}_{T_{X} \otimes E^{*}}\left({ }^{T} \Theta_{E, h}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E^{*}}\right)^{1 / r}=\left(\frac{\operatorname{det} H_{0}(z)}{\operatorname{det} h_{t}(z)}\right)^{\lambda} a_{0}(z) \\
& \omega_{0}^{-n}\left(\omega_{0}^{n-1} \wedge \Theta_{E^{\circ}, h}\right)=-\varepsilon\left(\frac{\operatorname{det} H_{0}(z)}{\operatorname{det} h_{t}(z)}\right)^{\mu} \log \widetilde{h}^{\circ}
\end{aligned}
$$

possesses an invertible elliptic linearization. As a consequence, for such values of ε and λ, there exists an open interval $\left[0, t_{0}\right) \subset[0,1]$ on which the solution h_{t} exists.

Proof. We replace the operator $P: C^{\infty}(X, M) \rightarrow C^{\infty}\left(X, \mathbb{R} \oplus M_{h}^{\circ}\right)$ used in the proof of Theorem 2.9 by $\widetilde{P}=\left(\widetilde{P}_{\mathbb{R}}, \widetilde{P}^{\circ}\right)$ defined by

$$
\begin{aligned}
& \widetilde{P}_{\mathbb{R}}(h)=\omega_{0}^{-n}\left(\operatorname{det} h(z) / \operatorname{det} H_{0}(z)\right)^{\lambda} \operatorname{det}_{T_{X} \otimes E^{*}}\left({ }^{T} \Theta_{E, h}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E^{*}}\right)^{1 / r}, \\
& \widetilde{P}^{\circ}(h)=\omega_{0}^{-n}\left(\omega_{0}^{n-1} \wedge \Theta_{E^{\circ}, h}\right)+\varepsilon\left(\operatorname{det} h(z) / \operatorname{det} H_{0}(z)\right)^{-\mu} \log \widetilde{h}^{\circ} .
\end{aligned}
$$

Here, we have to care about the linearized operator $d P$ itself, and not just with its principal symbol. We let again $u=h^{-1} \delta h \in \operatorname{Herm}_{h}(E, E)$ and use formula (2.12) for $d \Theta_{E, h}(u)$. This implies

$$
\widetilde{P}_{\mathbb{R}}(h)^{-1} d \widetilde{P}_{\mathbb{R}, h}(u)=\lambda \operatorname{tr} u-\frac{1}{r} \operatorname{tr}_{T_{X} \otimes E^{*}}\left(\theta^{-1} \cdot{ }^{T}\left(i \partial_{h^{*} \otimes h} \bar{\partial} u\right)\right)
$$

We need the fact that $h^{\circ}=h \cdot(\operatorname{det} h)^{-1 / r}$ possesses, when viewed as a Hermitian endomorphism, a logarithmic variation

$$
\left(\widetilde{h}^{\circ}\right)^{-1} \delta \widetilde{h}^{\circ}=u^{\circ}=u-\frac{1}{r} \operatorname{tr} u \cdot \operatorname{Id}_{E}
$$

By the classical formula expressing the differential of the logarithm of a matrix, we have

$$
d \log g(\delta g)=\int_{0}^{1}((1-t) \operatorname{Id}+t g)^{-1} \delta g((1-t) \operatorname{Id}+t g)^{-1} d t
$$

which implies

$$
d \log \widetilde{h}^{\circ}(u)=\int_{0}^{1}\left((1-t) \operatorname{Id}+t \widetilde{h}^{\circ}\right)^{-1} \widetilde{h}^{\circ} u^{\circ}\left((1-t) \operatorname{Id}+t \widetilde{h}^{\circ}\right)^{-1} d t
$$

In the end, we obtain

$$
\begin{aligned}
& \left(d \widetilde{P}^{\circ}\right)_{h}(u)=-\omega_{0}^{-n}\left(\omega_{0}^{n-1} \wedge i \partial_{h^{*} \otimes h} \bar{\partial} u u^{\circ}\right)+ \\
& \varepsilon\left(\frac{\operatorname{det} h(z)}{\operatorname{det} H_{0}(z)}\right)^{-\mu}\left(\int_{0}^{1}\left((1-t) \operatorname{Id}+t \widetilde{h}^{\circ}\right)^{-1} \widetilde{h}^{\circ} u^{\circ}\left((1-t) \operatorname{Id}+t \widetilde{h}^{\circ}\right)^{-1} d t-\mu \operatorname{tr} u \log \widetilde{h}^{\circ}\right)
\end{aligned}
$$

In order to check the invertibility, we use the norm $|\tau|^{2}+C|v|^{2}$ on $\mathbb{R} \oplus M_{h}^{\circ}$ and compute the L^{2} inner product $\left\langle\left\langle(d \widetilde{P})_{h}(u),\left(\tau, u^{\circ}\right)\right\rangle\right\rangle$ over X, where $\tau=\frac{1}{r} \operatorname{tr} u$. The ellipticity of operators $-i \partial_{H} \bar{\partial}$ implies that it has a discrete sequence of eigenvalues converging to $+\infty$, and that
we get Gårding type inequalities of the form $\left\langle\left\langle-i \partial_{H} \bar{\partial} v, v\right\rangle\right\rangle_{H} \geq c_{1}\|\nabla v\|_{H}^{2}-c_{2}\|v\|_{H}^{2}$ where $c_{1}, c_{2}>0$ depend on H. We apply such inequalities to $v=\tau, H=1$, and $v=u^{\circ}$, $H=h^{*} \otimes h$, replacing u with $u=\tau \operatorname{Id}+u^{\circ}$. From this, we infer

$$
\begin{gathered}
\left\langle\left\langle(d \widetilde{P})_{h}(u),\left(\tau, u^{\circ}\right)\right\rangle\right\rangle \geq c_{1}\|d \tau\|^{2}-c_{2}\|\tau\|^{2}+\lambda r\|\tau\|^{2}-\frac{1}{r}\left\langle\left\langle\operatorname{tr}_{T_{X} \otimes E^{*}}\left(\theta^{-1} \cdot T\left(i \partial_{h^{*} \otimes h} \bar{\partial} u^{\circ}\right)\right), \tau\right\rangle\right\rangle \\
+C\left(c_{1}^{\circ}\left\|\nabla u^{\circ}\right\|^{2}-c_{2}^{\circ}\left\|u^{\circ}\right\|^{2}+c_{3} \varepsilon\left\|u^{\circ}\right\|^{2}-c_{4} \varepsilon|\mu|\|\tau\|\left\|u^{\circ}\right\|\right)
\end{gathered}
$$

where all constants c_{j} may possibly depend on h. An integration by parts yields

$$
\begin{aligned}
\left|\frac{1}{r}\left\langle\left\langle\operatorname{tr}_{T_{X} \otimes E^{*}}\left(\theta^{-1} \cdot T\left(i \partial_{h^{*} \otimes h} \bar{\partial} u^{\circ}\right)\right), \tau\right\rangle\right\rangle\right| & \leq c_{5}\left\|\nabla u^{\circ}\right\|(\|d \tau\|+\|\tau\|) \\
& \leq \frac{1}{2} c_{1}\left(\|d \tau\|^{2}+\|\tau\|^{2}\right)+c_{6}\left\|\nabla u^{\circ}\right\|^{2}
\end{aligned}
$$

and we have

$$
c_{4} \varepsilon|\mu|\|\tau\|\left\|u^{\circ}\right\| \leq \frac{1}{2} c_{3} \varepsilon\left\|u^{\circ}\right\|^{2}+c_{7} \varepsilon \mu^{2}\|\tau\|^{2} .
$$

If we choose $\varepsilon \geq 2 c_{2}^{\circ} / c_{3}+1, C \geq c_{6} / c_{1}^{\circ}+1$ and $\lambda r \geq c_{2}+\frac{1}{2} c_{1}+C c_{7} \varepsilon \mu^{2}+1$, we finally get

$$
\left\langle\left\langle(d \widetilde{P})_{h}(u),\left(\tau, u^{\circ}\right)\right\rangle\right\rangle \geq \frac{1}{2} c_{1}\|d \tau\|^{2}+\|\tau\|^{2}+c_{1}^{\circ}\left\|\nabla u^{\circ}\right\|^{2}+\frac{1}{2} C c_{3} \varepsilon\left\|u^{\circ}\right\|^{2}
$$

and conclude that $(d \widetilde{P})_{h}$ is an invertible elliptic operator. The openness property at $t=0$ then follows from standard results on elliptic PDE's.
2.18. Remark. (a) Theorem 2.17 is not very satisfactory since the constants $\varepsilon_{0}\left(h_{t}\right)$ and $\lambda_{0}\left(h_{t}\right)$ depend on the solution h_{t}. It would be important to know if one can get sufficiently uniform estimates to make these constants independent of h_{t}, therefy guaranteeing the long time existence of solutions. This might require modifying somewhat the right hand side of our equations, especially the trace free part, while taking a similar determinantal MongeAmpère equation that still enforces the dual Nakano positivity of the curvature tensor. The Yau iteration technique used in [Yau78] to get 0 order estimates for Monge-Ampère equations will probably have to be adapted to this situation.
(b) The non explosion of solutions when $t \rightarrow 1$ does not come for free, since this property cannot hold when $\operatorname{det} E$ is ample, but E is not. One possibility would be to show that an explosion at time $t_{0}<1$ produces a "destabilizing subsheaf" \mathcal{S} contradicting the ampleness of E / \mathcal{S}, similarly to what was done in [UhY86] to contradict the stability hypothesis.
2.19. Variant. The determinantal equation always yields a Kähler metric

$$
\beta_{t}:=\operatorname{tr}_{E}\left(\Theta_{E, h_{t}}+(1-t) \alpha \omega_{0} \otimes \operatorname{Id}_{E}\right)=\Theta_{\operatorname{det} E, \operatorname{det} h_{t}}+r(1-t) \alpha \omega_{0}>0
$$

An interesting variant of the trace free equation is

$$
\omega_{t}^{-n}\left(\omega_{t}^{n-1} \wedge \Theta_{E^{\circ}, h}\right)=-\varepsilon\left(\frac{\operatorname{det} H_{0}(z)}{\operatorname{det} h_{t}(z)}\right)^{\mu} \log \widetilde{h}^{\circ}
$$

with $\omega_{t}=\beta_{t}$, although the ellipticity of the differential system is less obvious in that case. However, it can be shown that the ellipticity is preserved, at least near $t=0$, for $\omega_{t}=\omega_{0}+\delta \beta_{t}$ with $\delta>0$ small.

References

[Ber09] Berndtsson B.: Curvature of vector bundles associated to holomorphic fibrations, Annals of Math. 169 (2009), 531-560.
[CaF90] Campana F., Flenner, H.: A characterization of ample vector bundles on a curve, Math. Ann. 287 (1990), 571-575.
[DeS79] Demailly, J.-P., Skoda, H.: Relations entre les notions de positivité de P.A. Griffiths et de S. Nakano, Séminaire P. Lelong-H. Skoda (Analyse), année 1978/79, Lecture notes in Math., no 822, Springer-Verlag, Berlin (1980), 304-309.
[Don85] Donaldson, S.: Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985), 1-26.
[Gri69] Griffiths, P.A: Hermitian differential geometry, Chern classes and positive vector bundles, Global Analysis, papers in honor of K. Kodaira, Princeton Univ. Press, Princeton (1969), 181-251.
[Kod54] Kodaira, K.: On Kähler varieties of restricted type, Ann. of Math. 60 (1954) 28-48.
[MoT07] Mourougane, C., Takayama, S.: Hodge metrics and positivity of direct images, J. reine angew. Math. 606 (2007), 167-179.
[Nak55] Nakano, S.: On complex analytic vector bundles, J. Math. Soc. Japan 7 (1955) 1-12.
[NaS65] Narasimhan, M. S., Seshadri, C. S.: Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540-567.
[Nau18] Naumann, P.: An approach to Griffiths conjecture, arXiv:1710.10034, math.AG.
[UhY86] Uhlenbeck, K., Yau, S.T.: On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure and Appl. Math. 39 (1986) 258-293.
[Ume73] Umemura, H.: Some results in the theory of vector bundles, Nagoya Math. J. 52 (1973), 97-128.
[Yau78] Yau, S.T.: On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure and Appl. Math. 31 (1978) 339-411.

Jean-Pierre Demailly
Université Grenoble Alpes, Institut Fourier (Mathématiques)
UMR 5582 du C.N.R.S., 100 rue des Maths, 38610 Gières, France
e-mail: jean-pierre.demailly@univ-grenoble-alpes.fr

[^0]: * This work is supported by the European Research Consortium, grant ERC ALKAGE nr. 670846.

