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Abstract

We analyze the magnetic anisotropy of Ni nanowires with diameters smaller than 5 nm. The nanowires are vertically epitaxied in
a SrTiO3(001) matrix which generates huge tensile strains up to 3.6% along the nanowire axis. This leads to an unusual anisotropy,
characterized by an easy magnetization plane perpendicular to the nanowire axis. Hysteresis cycles M(H) unveil an overall in-plane
isotropy, while an opening of the M(H) cycles and thermal activation measurements indicate the presence of local energy barriers
inside the nanowires. Surprisingly, the coercive field H.(T) decays exponentially with increasing temperature, for both the easy
plane and the hard axis. Based on these findings, we provide an analysis of magnetoelastic effects in the nanowires. By considering
global averaging over the anisotropy distribution and local averaging according to the Random Magnetic Anisotropy model, we
find that the global anisotropy, with its hard axis and isotropic easy plane, is related to the mean strain, while coercivity arises
from local strain variations. We evidence that a thermally activated anisotropy softening occurs in the nanowires, in addition to
Sharrock’s law of thermal reduction of coercivity. Possible mechanisms responsible for this thermal softening of anisotropy are
proposed and discussed. Our study eventually allows to identify two major competing effects at play in the present system: an
increasing magnetic anisotropy with increasing strain and a reduction of the anisotropy with increasing local strain fluctuations.
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1. Introduction

Vertically aligned nanocomposites (VANSs), i.e. thin films
composed of arrays of vertically epitaxied nanopillars, have re-
cently emerged as a novel and promising category of materials
[1-11]. Thanks to the large interface between the matrix and
the nanopillars, and as a consequence of their epitaxial growth,
coupling effects can occur, thereby enhancing the properties of
the matrix and/or nanopillars. This paves the way for synthesis
of multifunctional materials and offers exciting perspectives for
applications in the fields of plasmonics [1-3], catalysis [4], ion
conductivity [5], ferroelectricity [6], multiferroic materials [7],
magnetotransport and spintronics [8, 9] and high density data
storage [10, 11].

Epitaxial strain constitutes an efficient lever to tune the phys-
ical properties of VANs. For example, the in-plane strain in
(BaSr)TiO; films can be varied by the content of vertical Sm;O3
nanopillars and enhanced ferroelectric properties were obtained
compared to pure (BaSr)TiO; films [6]. In-plane strain was
also exploited in self-assembled vertical (BaTiO3-CoFe,0O4 and
PbTiO3-CoFe,0y) thin films [7]. Another approach is to take
advantage of the vertical strain in nanopillars induced by the
vertical epitaxy [12—-14]. It was demonstrated that the strain
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state of CoFe,04 nanopillars and consequently their magnetic
behavior can be modulated by changing the matrix among
BiFeOs, PbTiO3, SrTiO3 and SrRuO; [14]. Even larger strains
can be achieved in metal/oxide systems, by exploiting the large
lattice mismatch and using sequential growth schemes, result-
ing in metastable nanopillar states [15]. Considering the bal-
ance between the interface energy and the volume elastic en-
ergy, the vertical strain of the nanopillars should increase as
their diameter decreases. We achieved this using ultrathin Ni
nanowires (NWs) in a SrTiO3 (STO) matrix with a vertical lat-
tice mismatch of 11%: the NW axial tensile strain is increased
from 2 to about 4%, when reducing the diameter of Ni NWs
from 6 towards 2 nm [16].

Here, we analyse the magnetic behavior of these highly
strained ultrathin Ni NWs. The paper is organized as follows.
The measurement methods used in the present work will be
given at first (§2). Morphological and structural key features
of Ni NWs will be described, and special attention will be paid
to the strain induced in NWs by vertical epitaxy (§3.1). Re-
sults on the magnetic anisotropy of Ni NWs will be shown and
the origin of local energy barriers analyzed (§3.2). The ther-
mal evolution of coercivity will be thoroughly investigated by
measurements and simulation (§3.3). We will discuss (§4) and
conclude (§5) on the interplay between the strain and the mag-
netic anisotropy in ultrathin Ni NWs.
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2. Experiments

Ni NWs were grown by sequential pulsed laser deposition
(PLD) in a STO matrix on STO(001) substrates, using proce-
dures already described in previous works [17-19]. A quadru-
pled Nd:YAG laser (wavelength 266 nm) operating at 10 Hz
with a fluence in the 1-3 J.cm™2 range was used. The pressure
during growth was of the order of 10~8 mbar for sample A and
107% mbar for samples B and C (Tab.1). The temperature of
the substrate was kept close to 650°C. The growth of the ver-
tically self-assembled STO-embedded Ni NWs was performed
by shooting alternatively on NiO and STO targets. The diame-
ter and density of Ni NWs was tuned by adjusting the number of
laser shots on each target, as illustrated in Fig.1(a). Each basic
sequence deposited an amount of the order of 0.1 nm of STO
matrix and of 0.01 nm of Ni, in terms of equivalent thickness of
a continuous STO or Ni layer respectively.
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Figure 1: (a) Schematics of the sequential deposition process alternating laser
ablation of STO and NiO targets. (b) Sketch of Ni NWs vertically epitaxied in a
STO matrix on a STO(001) substrate: the out-of-plane (OP or L) direction cor-
responds to the [001] or z-direction; an in-plane direction (IP or ||) corresponds
to one in the film plane.

The structure of the samples was studied using transmission
electron microscopy (TEM) and x-ray diffraction (XRD). High
resolution TEM (HRTEM) images were acquired using a JEOL
JEM 2100F microscope equipped with a field-emission gun op-
erated at 200 kV and a Gatan GIF spectrometer. XRD data
were collected on a laboratory 5-circle diffractometer (Rigaku
SmartLab) with Cu K, radiation. The Ni NW axial strain was
measured by XRD 26/w scans and out-of-plane (OP) reciprocal
space mapping (RSM). In the OP geometry, Cu K, radiation
was selected by a channel-cut Ge(220) 2 reflexion monochro-
mator. The radial strain was measured by in-plane (IP) 26, /¢
scans and IP-RSM at the grazing incidence of 0.5° without the
monochromator. Furthermore, a series of similar samples was
analyzed by XRD at the SixS beamline and x-ray absorption
spectroscopy at Ni K-edge at the SAMBA beamline of Syn-
chrotron SOLEIL [16].

Magnetic measurements were performed using a vibrating
sample magnetometer (VSM) option in a physical properties
measurement system (Quantum Design PPMS 9T) and a super-
conducting quantum interference device (SQUID) magnetome-
ter (Quantum Design MPMS XL). The longitudinal magnetiza-
tion (M) was measured as a function of the magnetic field (H)
in OP and IP geometry (Fig.1(b)). The magnetic hysteresis cy-
cles were corrected by removing the diamagnetic signal (linear
slope of the curves at large magnetic fields) in order to extract
the ferromagnetic part corresponding to the response of the NW
assembly. First-order reversal curves (FORCs) were collected
according to the protocol of Pike et al. [20] and processed with
the FORCinel software [21]. Magnetization measurements as
a function of the temperature were also performed using field
cooling (FC) and zero field cooling (ZFC) protocols.

3. Results and analysis

3.1. Structural features

The structural characteristics of ultrathin Ni NWs were de-
tailed previously [16]. The main features of the present sam-
ples are summarized in Table 1. A TEM plan view of Ni NWs
in sample C is presented in Fig.2(a) and the cube-on-cube epi-
taxy relationship can be seen in a HRTEM plan view (Fig.2(b))
where the alignement of Ni and STO crystalline axes becomes
apparent. Complementary cross-sectional TEM observation in-
dicates that NWs go through the whole thickness of the film. A
narrow distribution of NW diameters was found for all the sam-
ples with a relative deviation from the mean value in the range
of 10-16%.

Figure 2: (a) TEM plan views of Ni NWs in sample C, with (b) a detailed view
on one NW showing the alignment of the lattice planes of Ni with that of the
surrounding STO matrix.

XRD measurements confirmed the epitaxy of Ni NWs in the
STO matrix on a STO(001) substrate, as illustrated by the OP
and IP RSMs around Ni and STO 002 and 200 spots, respec-
tively (Fig.3). One can notice that the epitaxy of the STO ma-
trix on the substrate is pseudomorphic, since the IP matrix spot
200 overlaps that of the substrate (Fig.3(b)). The Bragg an-
gle of the matrix spot 002 is smaller than that of the substrate
which indicates that the matrix OP lattice parameter increases
from the bulk value (0.3905 nm) to the range of 0.393-0.398 nm
(Fig.3(a)). We stress that the vertical lattice mismatch between



Table 1: Structural characteristics of samples A-C determined by TEM and
XRD measurements: mean value (D) and standard deviation o-(D) of the diam-
eter distribution; (¢;;) and o (¢;;) of the Ni NW axial strain; mean radial strain
(€&); P: porosity, i.e. Ni volume fraction; #: film thickness.

(DY o) (&) ole) (&) P t

(mm) (@m) (%) (%) (%) (nm)
A 25 0.4 3.6 1.6 -1.0 019 77
B 41 0.5 3.0 1.5 -04 024 231
c 50 0.5 24 1.3 -03 0.10 106

Ni and STO is as high as 11%. The vertical epitaxy of embed-
ded Ni NWs leads to an OP NW lattice expansion (e;;) up to
3.6% with respect to the bulk (Fig.3(a)) and leaves a remaining
vertical lattice mismatch of ~8%. One remarkable fact is that
the axial strain (e;) is increasing with decreasing NW diameter
(D). The consequent IP lattice compression {¢,) of Ni NWs is
ranged from -0.3% to -1.0%, which is significantly lower than
(€;;) in terms of absolute value (Fig.3(b); Tab.1). It should be
underlined that the vertical strain (e,;) obtained here is much
higher than the reported values in other nanocomposites: for
instance, <1.5% for Ni NWs in CeO, matrix [15], <2.0% for
MgO and <0.5% for ZnO in (LaSr)MnO; [12], a compressive
vertical strain of -0.8% in BaTiO3; matrix [13] and -1.2% in
SrRuO; [14] for CoFe, 04 nanopillars.
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Figure 3: XRD RSMs of sample C: the Ni and STO bulk Bragg angles are
indicated by the vertical red and black dashed lines, respectively; the tensile
axial strain €,; and compressive radial strain €, are measured by the departure
of Ni NW Bragg angles from the bulk position. (a) OP RSM around Ni and
STO 002 spots. (b) IP RSM around Ni and STO 200 spots.

One main characteristic feature is the wide spreading of Ni
NW 002 and 200 spots in the RSMs. Detailed analysis of syn-
chrotron XRD and XAS measurements [16] showed that NWs
are composed of structurally coherent domains connected along
the NW axis.

The coherence lengths are estimated to range from 6 to 13

nm in samples B and C and to lie around 6 nm in the thinnest
and most strained sample A. Consequently, the OP profile of
of the 002 spot of the NWs (along the 26/w axis in Fig.3(a))
can be understood as the convolution of the axial strain €., and
the coherence length form factor. The axial strain ¢, displays a
large distribution with a deviation o(e,;) of about 50% of (¢,;)
(Tab.1). Furthermore, strain relaxation goes along with a 3-
4 degrees angular tilting around the [100] or [010] axis [16].
This mosaicity is visualized in the OP-RSM by the spreading
of the NW 002 spot along the sample rocking angle (Aw axis in
Fig.3(a)). In the last case, the rocking profile also results from
the convolution of the mosaicity and the NW diameter form fac-
tor. One important feature of strain relaxation is an increase in
coherence length with decreasing strain. Concerning the distri-
bution of the radial strain ¢,,, few details were obtained because
of the smallness of the NW diameters and low resolution of
the IP x-ray optics used. Nevertheless, synchrotron XRD re-
sults obtained on sample B indicated that the deviation o (€,,) is
larger than 0.1%.

We conclude from this structural analysis that Ni NWs are
composed of vertical domains with coherence length smaller
than 13 nm and with a highly dispersed strain between domains.
As will be shown in the following, this peculiar NW structure
and especially the broad strain distributions have an important
impact on the magnetic behavior of the NWs.

3.2. Origin of the magnetic anisotropy
3.2.1. Results at low temperature

The main magnetic characteristics of the samples obtained at
10 K are listed in Table 2, together with the blocking tempera-
tures (75). OP and IP hysteresis cycles M(H) of samples A and
B at 10 K are displayed in Figure 4. One can notice straight-
away: a) the NW axis is the magnetization hard axis and the
film plane the easy plane; b) the similarity of the cycles mea-
sured along the azimuthal [100] and [110] directions indicates
the overall isotropy in the easy plane; c) an opening of the cy-
cles occurs for both the hard axis and the easy plane.

Table 2: IP (]|) and OP (L) magnetic hysteresis characteristics of samples A-C.
T} (blocking temperature) and values at 10 K: H, (coercive field), H (satura-
tion field) and mg (remanence).

Tb lloHc /JoHs me

(K) (mT) (T)
Al 26+3 17£2  0.48+0.07 0.42+0.02
B | || 8010 47+2 0.83+0.09 0.54+0.02
C| |l 150+30 71+2 0.75+0.14 0.61+0.03
Al L 23+7 17+5 0.83+0.11 0.13+0.03
B| L 97+10 69+2 1.10+£0.10 0.36%0.02
C| L 200+£30 9510 0.85+0.10 0.40+0.05

The IP isotropy is intriguing. It cannot be related to misori-
ented Ni crystalline axes, since the mosaicity of the epitaxied
NWs is <4°, as established by our structural analysis. Experi-
ments and calculations on ultrathin Ni layers [22, 23] show that
a tetragonalization of the crystal goes along with a tetragonal



magnetic symmetry. For the present case, only slight differ-
ences might be distinguished between the IP [100] and [110]
directions when approaching saturation (Fig.4). This could be
due to the measurement uncertainty. No feature from the obser-
vations can be unambiguously linked to the magnetocrystalline
effect.

With increasing strain, the difference between the OP and IP
cycles M(H) is increased and the relative character of a hard
axis reinforced. If we take the ratio H; , /H;) as a criterion, we
observe that it increases from 1.1 to 1.7, with {¢,;) varying from
2.4% (sample C) to 3.6% (sample A). This is also reflected by
decreasing remanences myg ; with increasing strain. The satu-
ration fields along the hard axis (u,Hj, . ), between 0.83-1.10 T,
do not simply follow the mean strain.

Besides IP isotropy, another peculiar feature of the present
system is its tendency to display similar IP and OP coercive
fields. In both measurement configurations, H,. decreases with
increasing mean strain, which could however also be linked to
the decrease in NW diameter. Finally, it should be noticed that
H, is one order of magnitude smaller than H.
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Figure 4: Hysteresis cycles measured at 10 K along the OP (blue), IP [100]
(red) and IP [110] (green) directions in samples A (a) and B (b). Vertical scale:
normalized magnetization.

In summary, we find that in the present system, the magnetic
anisotropy is not dominated by the shape of the NWs, but by
tensile strain, which reaches large values around 3%. A first
analysis of the data unravels a variety of pecularities and two
main questions emerge: a) what is the origin of the IP and OP
coercivities observed? b) why is the easy plane isotropic? For
the analysis of the results, our approach will consist in identi-
fying the local energy barriers responsible for the unexpected
opening of the cycles as well as the corresponding activation
volumes, in order to understand the main magnetic characteris-
tics of this composite system.

3.2.2. Anisotropy within the Stoner-Wohlfarth model

We start this section by providing theoretical predictions
based on the Stoner-Wohlfarth (SW) model [24] for entirely
coherent magnetization reversal in Ni NWs. Due to the high
length/diameter aspect ratio, the shape effect leads to an easy
axis along the NWs which can be described by the uniaxial
magnetostatic anisotropy constant: K,,; = (i, /4)M§ with M,
the saturation magnetization density (5.1x 10° A/m at 0 K [25]).
K,..s is equal to 0.8x10° J.m~2 for Ni. Tensile strain in a Ni NW

plays against the shape effect, because of the negative magne-
tostriction constant gy (-5.5%x107° [26]). The magnetoelastic
anisotropy constant K, is then: K. = (3/2)Ago1(c11 —c12)(€:—
&) where ¢;; are the elastic constants. Compensation between
the two effects occurs for a strain (€, — €,,-) of 0.8%. For a strain
of about 3%, the total constant K,,, + K, is around -2.0x10°
J.m™3. Thus, for strains exceeding the critical value of 0.8%,
we expect an anisotropic behavior characterized by a hard axis
and an easy plane, without any coercivity (Fig.5(a)).
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Figure 5: Relative magnetization of a Ni NW according to the Stoner-Wohlfarth
model for a strain (¢;; — €,) of 3%. (a) Uniaxial case with K, and K,,;5;: OP
(blue) and IP (red) curves; insert: corresponding anisotropy energy E(6,¢) plot.
(b) Tetragonal case including K, at 0 K: OP (blue), IP along [100] (red) and
IP along [110] (green) curves; insert: E(6,¢).

The Ni cubic magnetocrystalline constant K, can be ne-
glected at 300 K (-0.05x10 J.m™?) and increases significantly
at 0 K (-1.2x10° J.m™3) [27]. If we additionally take K.
into consideration, the anisotropy adopts a tetragonal symme-
try. The anisotropy energy E per unit volume V as a function of
the magnetization orientation (6,¢) can be written as:

% = —K, cos? 0 — K. sin* 0 + % sint@sin*(2¢) (1)
where K| = K, + K5 + K. For the hard axis, the magne-
tocrystalline contribution induces a curvature in the magnetiza-
tion slope and increases the saturation field determined by |K;|.
In the easy plane, the cycles are now open (Fig.5(b)). It should
be underlined that the IP quadratic modulation of the anisotropy
energy density is independent of the strain and equal to |K,,.|/4.
At low temperature, |K,,|/4 is around 0.3x10° J.m™>, i.e. non-
negligible in comparison with K,,; and K,,.. The opening of
the IP cycles at 0 K varies from the minimal value along [100]
(4oH¢[100] = 0.13 T) to the maximal one along [110] (1, He 110
=0.49 T). However, no difference was observed along the [100]
or [110] direction in the samples (Fig.4). Furthermore, the IP
coercive fields observed (H, ) are too large to be attributed to
K, (Tab.2). These features indicate that coercitive character-
istics observed herein are not related to a magnetocrystalline
contribution. In the following, we will neglect K,,. and con-
sider strain as the main effect.

It appeared clearly that the mean tensile strain (€,, — €,.) im-
plies a mean negative value of (K;) and determines the general
anisotropy of the OP hard axis. However, a tensile strain even
with a broad distribution does not give rise to any IP coercivity.
In order to take into account local energy barriers in the easy



plane, it is thus necessary to introduce a second uniaxial con-
stant K,. Furthermore, the second anisotropy axes should be
randomly oriented in plane, yielding a locally anisotropic and
overall isotropic behavior. It is highly plausible that the strain
in the plane ¢;; (i, j = x or y) is not locally homogeneous along
a NW. It is then possible to define a local IP anisotropy by its
constant K, and axis orientation ¢, (§Appendix A). One re-
marks that all IP anisotropies are covered by positive values for
K, and in the range [0, n] for ¢,. The local anisotropy is thus
biaxial (Fig.6) and the energy density E/V can be written as:

E K, .
v =-K; cos’> 9 — > sin” @ cos[2(¢ — ¢,)] 2)

2
A |

Figure 6: Plot of the local anisotropy energy surface E(6, ¢) with K,/ K;=0.5/(-
1.5), where the easy axis is oriented in-plane at the azimuthal angle of ¢,.

It is likely that even a biaxial description with IP 2D ran-
domly oriented anisotropies might be too simplistic to provide
an exhaustive description of highly strained Ni NWs. Indeed,
the latter does not explain the origin of the OP coercivity. If
we consider all the strain components including the local axial
shear ones ¢; (i = (x or y) and j = z, and vice versa), the re-
sulting magnetoelastic effect leads to a local hard axis oriented
off the OP axis (§Appendix A), which means that the hard axis
or easy plane is wandering. Random ferromagnets with a wan-
dering easy axis were described by Chudnovsky et al. [28].
Analysis of a wandering hard axis or easy plane has not been
reported in the literature to our knowledge.

3.2.3. Activation lengths according to the RMA model

Considerations based on the SW coherent model rely on the
anisotropy constants, independently of the magnetic activation
volume. However, the activation volume is fundamental in
magnetization switching. To describe local magnetization cor-
relations, we take as the scale the width of a Bloch domain wall,
L, = nVAJ|K| where A is the exchange stiffness constant. The
exchange strength prevents the length of local magnetization
correlations to be shorter than the width of one domain wall.
For Ni, L, is equal to 29 nm for |K| of 10° J.m™3. For our ultra-
thin NWs, the magnetization is thus always coherent in an in-
plane section of a NW, given the smallness of the present NW
diameters with respect to L,. On the other side, it was estab-
lished that magnetization switching is in general localized along
a N'W, initiated by morphological, structural or anisotropy in-
homogeneities and nucleated over the length of a domain wall
[29-31].

It should be underlined that typical lengths of L, around 29
nm are larger than the structural coherence lengths ranging from
6 to 13 nm. It results that random magnetic anisotropy (RMA)
effects should be taken into account [28, 32]. According to
Herzer [33, 34], the effective local anisotropy should be aver-
aged or renormalized: the system finds equilibrium in a self-
consistent way with a local constant (K), which is averaged
over N neighboring domains, and a local magnetic correlation
length L = m vA/|(K)|. For the 3D case where K and the size L;
of the structural domains are fixed and only the anisotropy axis
orientations random, the RMA links the structural and magnetic
correlation lengths as follows: L/L, = (L, /L)?, which shows
that the magnetic correlation length increases with decreasing
size of the domains. This allowed to successfully explain the
coercivity reduction in soft magnetic nanocrystalline films [33—
35]. For the 1D case, a similar consideration leads to:

L/L, = (L,/Ly)'? A3)

It results from the RMA model that the measured anisotropy
constants are not directly those determined by the magnetoe-
lastic and magnetostatic effects, but those further softened by
local averaging. For instance, when taking structural domains
of Ly = 6 nm length and a magnetic correlation length of L, =
29 nm, about 8 structural domains of L = 49 nm total length act
magnetically together during magnetization switching, i.e. as a
macrospin. The transformation of the structurally determined K
to the magnetically measured (K) is complex and needs further
thorough theoretical analysis, as it depends on the neighboring
relationship between structural coherent domains along a NW.
Here, we checked that the RMA model fits with the case of the
present Ni NWs (§Appendix B).

3.2.4. Simulation of the IP hysteresis cycles

Based on the above considerations, we take a magnetically
correlated domain as a macrospin with given anisotropy con-
stants. By doing so, the local exchange effect between structural
coherent domains is implicitly included according to the RMA
model. Hysteresis cycles are then calculated, by adding the cy-
cles from an anisotropy constant distribution representing the
whole assembly of NWs. Differences between the modeling of
an assembly of non-interacting macrospins and the experiments
should then hint at lacking parameters: dipolar interactions be-
tween macrospins and exchange coupling between neighboring
macrospins.

The SW hysteresis cycles, with a rectangular shape for an
easy axis and linear relationship for a hard axis, are too ide-
alized. Approaches to include thermal agitation have been
proposed. For a hard axis, the thermal effect on the mag-
netization can be easily added, using Boltzmann distribution,
oc exp[—E/(kgT)], where E is the sum of the Zeeman and
anisotropy energies and kp the Boltzmann constant. Along an
easy axis, the thermal agitation should be considered, in addi-
tion to thermal activation. According to the Néel-Brown the-
ory [36] and for a typical measurement duration of one second,
25kgT is taken as the thermal activation threshold against an
energy barrier in the system. Here, we adopt the approach of



Franco and Conde [37]: the magnetization remains in its local
energy well and is Boltzmann distributed, as long as the height
of the well is above 25kzT. This procedure improves the shape
of the calculated cycles, especially in vicinity of the coercive
field.

As a consequence of thermal activation and according to
Sharrock’s law [38], the coercive field decreases as a function
of the temperature as T'/2. For real systems, an exponent of 2/3
has often been found [29, 39, 40]. When adding the cycles from
a given anisotropy distribution, we apply the thermal evolution
with the exponent of 2/3 for each subjacent cycle. When one
cycle is closed, reaching its blocking temperature, a Langevin
behavior is applied.

14 -~
(a) s (b)
N 5.0 nm -~
s’ |(sample C) IPat10 K §_
~ 04 ;
= EBxp. | 100 (c)
Calc. ’g k
S
-1 ~ 0
-400 0 400 0 1

K (10°J.m”)

Figure 7: IP hysteresis behavior at 10 K in sample C. (a) Measured and calcu-
lated IP cycles. (b) Distribution of the radial anisotropy constant f(K,) used in
the calculation. (c) Length L of 7 vVA/K,, limited by the physical NW length of
106 nm for this sample.

The model for the easy plane is based on an in-plane ran-
domly oriented uniaxial anisotropy with the constant K,, ir-
respective of the negative value of K| for the hard axis. The
IP hysteresis cycles are calculated considering a distribution
f(K,) and associating a length L equal to 7 VA/K, to each
value of K,. Figure 7 displays the case of sample C at 10 K.
The anisotropy distribution f(K,) used (Fig.7(b)) has the mean
value (K,) of 0.5x10° J.m™3. The length L associated to K,
(Fig.7(c)) increases from 33 nm for “hard” parts (K, ~ 0.8 10°
J.m73) to the NW physical length of 106 nm for “soft” parts
(K, < 0.08 x 10° J.m™?), while the mean length (L) is 43 nm.

Surprisingly, such a simplified model with non-interacting
macrospins fits quite well with the experiments. Only small de-
viations upon approaching saturation are observed. The model
fits also with the cycles at low temperature in samples A and B.
It suggests that remaining interactions between the macrospins
in the NWs are small. Additional evidence for the accuracy of
our 2D random model for the easy plane is also provided by an
analysis of the remanence mg ), which is found equal to 0.61 at
T = 10 K for sample C for instance. It should be recalled that
mg is equal to 0.50 for a 3D random assembly and 0.64 for a
2D one.

3.2.5. Behavior along the hard axis

IP local energy barriers analyzed until now do not give rise to
the OP coercivity. As discussed previously, a wandering of the
hard axis (Fig.8) leads to the opening of the OP cycles. This

means that the local axial shear strains should be taken into
account when considering the magnetoelastic effect. The prob-
lem involves multiple parameters and their distributions over
the NW assembly: K,, K;, the wandering angle 6, and the az-
imuthal angle ¢, of the easy axis IP projection. Fitting of the
OP measured cycles has not been performed, because of the
large number of adjustable parameters.

Hard axis

Hard axis

Easy axis

Figure 8: Sketch of local anisotropy energy surface E(6, ¢) where the hard axis
is tilted with respect to the z axis by an angle of 6,. (a) Definition of the axes
where the dashed cycle represents possible easy axes; (b) plot of E(6, ¢).

Table 3: Mean anisotropy values at 10 K of samples A-C: (K,) deduced from
the fitting of the measured IP cycles; (K) and the mean wandering angle (6,)
estimated from the value of (K,), the OP saturation field and the OP remanence.

Sample  (K,) SO
(10°Jm™3) A0°Im™>) (©
A 0.27 -1.8 8
B 0.41 -1.8 21
C 0.51 -1.2 24

The mean values of K; and 6, can be approximately evalu-
ated by using the OP remanence my ; and saturation field H , .
Within the SW model, the remanence along the OP axis is of
the order of sin(6,). The OP saturation field is given by the dif-
ference AK of the anisotropy constants between the hard and
easy axes: U,H;, = 2AK/M; and AK ~ |K| — K, /2|/c0s(26,).
From the measured values (Tab.2), the mean values of K| and 6,
are listed in Table 3, together with that of K, previously deter-
mined by the fitting of the IP cycles. The strain effect is clearly
reflected in (K;) and (6,). With decreasing axial tensile strain
from sample A to sample C, the absolute value of (K) is de-
creased, while the wandering angle (6, ) increases from 8 to 24°.
It should be noticed that the absolute values of (K;) are lower
by 22-47% in comparison to those calculated from the mean
strain and the shape effect, for the three samples. The lowering
of (K ) should be related to the RMA local averaging.

3.3. Thermal evolution of the anisotropy

3.3.1. Behavior in the easy plane

The typical thermal evolution of the coercivity is illustrated
in Figure 9 (sample A in IP configuration). The striking point
here is the evolution of H, as a function of the temperature
(Fig.9(b)). Along the easy plane or the hard axis, the decay of
H/(T) is exponential for all measured samples including those
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Figure 9: IP thermal evolution of the coercivity in sample A. (a) IP hysteresis
cycles from 5 to 30 K. (b) Coercive fields u,H,. ) extracted from the cycles and
exhibiting an exponential decay with increasing temperature. (c) Remanence
extracted from the cycles and fitted by the partition function of a volume distri-
bution of T, : Mg /Mgy o f; « g(Tp)dTy. Insert: corresponding distribution
g(Tp). (d) IP ZFC/FC measurements made with a bias field of 10 mT.

not shown here. This is a clear departure from the power law
predicted by Sharrock [38].

The blocking temperature 7} is the maximal value above
which the coercivity disappears, as shown by the closure of
the cycles (Fig.9(a)) or the convergence of ZFC/FC curves
(Fig.9(d)). The remanence as a function of the temperature re-
flects a broad distribution of blocking temperatures in the NWs
(Fig.9(b)). As a first estimate, the remanence could be under-
stood as the sum of the magnetization of all parts still blocked at
a given temperature in the SW model: o f;w g(Ty)dT), where
g(Tp) the volume distribution of T,. For sample A with the
maximum value of 7} around 26 K, this yields a mean value
(Tp) of 15.5 K and a variance o(T}) of 7.5 K (Inset in Fig.9(c)).
Broad distributions of 7}, were similarly found in all the sam-
ples along the NWs and in the plane.

The blocking temperature 7, increases with increasing NW
diameter, or approximately linearly with increasing NW section
area. This is a robust relationship verified also in other sam-
ples not shown here. T}, is proportional to the energy barrier in
the system which can be expressed by K, ;,V*, where V* is the
activation volume and K,y the associated effective anisotropy
constant. For NWs, V* = LS, with L the activation length and
S the NW section area. A T}, scaling with S would mean that
the product K, ¢rL is similar in all cases. This observation in-
dicates that the activation does not concern the whole physical
length of a NW, contrary to the SW model, but a length of a
NW correlated with the effective anisotropy constant.

3.3.2. Coercive field distribution in the easy plane
In order to detail the thermal evolution of the coercivity in
the easy plane, the anisotropy constant K, and the activation

length require closer analysis. If we take a distribution f(K,),
such as in Fig.7(b) for sample C, and apply the thermal activa-
tion according to Sharrock’s law, the exponentially decreasing
H.(T) as a function of the temperature cannot be reproduced.
It was claimed that different shapes of H.(T") could be retrieved
by changing the anisotropy distribution [41]. For the present
case, we have not found a suitable anisotropy distribution that
could lead to an exponentially decreasing H,(T') for all the sam-
ples and in both IP and OP configurations. Instead of a static,
i.e. temperature independent distribution f(K,), our modeling
suggests that the anisotropy distribution narrows and peaks at
lower values with increasing temperature, which implies that
H.(T) decreases more pronouncedly than suggested by Shar-
rock’s law. In other terms, an additional thermally activated
mechanism is at work in the NWs.
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Figure 10: IP FORCs of sample C. (a) Reversal curves measured at 5 K after
saturation at 800 mT prior to each reversal. (b) FORC map at 5 K. (c) Reversal
curves measured at 40K after saturation at 500 mT (every third measured curve
is plotted). (d) FORC map at 40 K. (e) Reversal curves measured at 80 K after
saturation at 300 mT (every fifth measured curve is plotted).

In order to gather additional information on such a mech-
anism, FORC measurements were performed at 5, 40 and 80
K in sample C (Fig.10). FORC measurements allowed to re-
trieve the coercive field distributions p(H,) at the three temper-
atures, by integrating the FORC intensities on the u,H, axis. In
the next section (§3.3.3), we will examine whether the thermal
evolution of p(H,) differs from Sharrock’s law, then check the
temperature dependency of the anisotropy distribution.

The FORC measurements provide also information on the
bias fields H,, reflecting the interaction between NWs. This
is especially visible at 5 K where the intensity is distributed
with a slight slope below the u,H, axis, i.e. the values of H),
are negative or subjacent hysteresis cycles biased towards neg-
ative fields due to the mutual interaction. It should be pointed
out that in easy-axis NW arrays, the bias fields are positive
[42, 43]. In the mean-field framework [20, 44, 45], the in-
teraction field H;, is proportional to the magnetization den-



sity: Hy, = kM/V = kPMym, where k is a constant, m the
reduced magnetization, P the film porosity and V the film vol-
ume. In the case of dipolar interactions, the demagnetizing field
felt by a NW from the film mean magnetization density leads
to k = +1/2 for the easy-plane case, instead of k = —1 for
the easy-axis case [46, 47]. The bias field is expected to be
smaller than kPM; (30 mT), as observed in the FORC maps.
We checked that the bias field Hj, in the map at 5 K can be
entirely substracted when replacing the applied field and rever-
sal field by the effective local fields: H.;y = H + Hj, with
k = +1/2. This leads to a small correction to p(H,). For sim-
plification, we do not take into account this last correction, es-
pecially since the bias effect becomes negligible at 40 and 80
K.

3.3.3. Analysis of the IP thermal evolution of anisotropy

IP hysteresis cycles M(H) in sample C were simulated by as-
suming a temperature-dependent anisotropy distribution, cho-
sen such that the calculated cycles and coercive fields H, fit
the measured data (Fig.11(a-c)). With this procedure, the vol-
ume distribution of anisotropy p(K,) was determined at differ-
ent temperatures: p(K,) « f(K,) X L(K,) x § with § the NW
area. Figure 11(d) shows p(K;) obtained at 5, 40 and 80 K and
illustrates the shift and narrowing of the distribution p(K,) to-
wards smaller values with increasing temperature, i.e. a thermal
softening of anisotropy. Sharrock’s thermal reduction of coer-
civity is expressed by the relationship between H, and K, for a
2D random assembly:

2K,
uochO.Slx—x[l—(
M

2/3
25kBT) @

K.LS

s

for 25kpT < K,.LS. Sharrock’s effect can be directly visualized
by comparison of Figures 11(d) and 11(e), i.e. the transforma-
tion of p(K,) to p(H,) according to Eq.4. A remarkable agree-
ment is observed between the calculated and FORC measured
coercive field distributions p(H,.). This validates the fact that
the exponential reduction of H.(T') in temperature is due to two
effects: thermally induced changes of the anisotropy distribu-
tion p(K,) and Sharrock’s thermal reduction of coercivity.

The calculation was performed for all measured IP M(H) cy-
cles and the aforementioned tendency confirmed in the samples.
It is instructive to analyze (K,) and (L) with respect to the di-
mensionless ratio T/T) (Fig.12). We would like to emphasize
the values extrapolated at O K and the temperature dependence
of (K,) and (L). The mean values (K,) at 0 K are close for
samples A, B and C: 0.49, 0.51 and 0.55 x10° J.m™3, respec-
tively. From these values, we estimate an inhomogeneity in ra-
dial strain ranged between 0.4% and 0.5%, to be compared with
the mean radial strain (¢,,) of -0.3% to -1.0% measured in the
samples (Tab.1). Correlatively, the mean lengths (L) at 0 K are
similar: 45, 43 and 42 nm are calculated for samples A, B and
C, respectively. This indicates that irrespective of the details of
the IP strain state in NWs, local RMA averaging leads to sim-
ilar magnetic correlation lengths. With increasing 7'/T) until
the blocking temperature, the reduction of (K, ) reaches 46-85%

(Fig.12(a)), while the mean magnetic correlation length (L) in-
crease (Fig.12(b)). The evolution of (K,) and (L) as a function
of T/T, follows a general and similar tendency in the samples,
despite the fact that T, varies significantly from one sample to
another.
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Figure 11: IP thermal evolution of the coercivity in sample C. (a) Selected
cycles M(H) measured at 5, 20, 40 and 80 K. (b) Selected cycles at 5, 20,
40 and 80 K calculated with an anisotropy distribution which is adjusted as a
function of temperature in such a way that the calculated coercive fields H.
fit the measured ones (c). (d) Volume distributions of anisotropy p(K;) at 5,
40 and 80 K deduced from the calculation: the arrow illustrates the shift of
p(K,) towards smaller values with increasing temperature. (e) Coercive field
distribution p(H,) deduced from p(K;) by applying Sharrock’s equation at 5, 40
and 80 K and comparison with p(H,) extracted from the FORC measurements.
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Figure 12: IP thermal evolution of (a) the mean anisotropy constant (K,) and
(b) the magnetic lengths (L), deduced from the fitting of all measured IP cy-
cles M(H) in samples A, B and C. The three values validated by the FORC
measurements in sample C are marked by blue solid circles in (a) and (b).



4. Discussion

4.1. Thermal softening of anisotropy

The unusual thermal softening of anisotropy constitutes a key
feature of the present NWs. Many studies reported on variations
of anisotropy with temperature, related to a variation of physi-
cal constants, such as magnetocrystalline constants [48]. In the
present work, the samples show a similar shift of the anisotropy
distribution, over different temperature ranges until 150 K. This
suggests a general thermally activated process and not the ther-
mal variation of a constant that would impact the samples dif-
ferently as a function of temperature. Intrinsic and extrinsic
mechanisms should be considered in order to understand the
thermal softening of anisotropy. As the magnetic correlation
lengths and the anisotropy constants are fully equivalent within
the RMA model, a thermally induced increase of the magnetic
length implies a reduction of the anisotropy constant and vice
versa.

One basic intrinsic mechanism that can be considered is the
thermal increase of the domain wall (DW) width L,(T). It can
be shown that the DW width increases linearly with temperature
(§Appendix B). This effect is important for the understanding
of the DW motion in nanostructures [49, 50]. It is a general
phenomenon for DWs, including ferroelectric ones [51]. For
sample C, the mean DW width L,(T) is estimated to 31 nm at 0
K and increases by 6% at T},. According to the RMA model, the
increase of L,(T) induces consequently that of the local effec-
tive L(T). This can be estimated using the scaling relationship
in Eq.(3) which leads to: L(T)/L(0) = [L,(T)/L,(0)]*?. Thus,
the total intrinsic thermal increase of L(T) from O K to T} is
evaluated to lie around 8% in the present case (§Appendix B).
The linear thermal increase of L(T) fits with an exponential de-
cay of H.(T), but the increase estimate of 8% of L(T") until T}
is still far from 44% observed (Fig.12(b)) and does not cover
the decay rate of H.(T).

An exponential decay of H.(T) has already been observed
in other types of random nanomagnets and composites [52-54]
and this behavior has been attributed to the pinning of DWs,
suggesting that DW pinning might be inherent to nanostruc-
tured magnets and the thermal softening of anisotropy a general
feature of RMA. Intrinsic DW pinning at lattice planes occurs
for narrow DWs and can be ruled out for the present large DWs.
Extrinsic pinning due to defects can be envisioned, but a de-
scription of this phenomenon requires an analysis going beyond
a phenomenological description of DW pinning [55]. Kirby et
al. proposed a mechanism of incoherent magnetization rever-
sal in thin films with a 1/H field dependence of energy barriers
[56]. This model predicts that the activation volume varies lin-
early with T at low temperature and as 72 at high temperature.

This quick review indicates that the thermal softening of
anisotropy observed in the present NWs might be qualitatively
related to intrinsic and/or extrinsic thermal activated process.
Further theoretical work will be needed to establish a quanti-
tative analysis, particularly with regard to possible defects re-
sponsible for DW pinning in vertically epitaxied NWs.

4.2. Sources of anisotropy

In the present paper, we focused on the magnetoelastic effect
due to the epitaxial strain experienced by Ni NWs epitaxied
in a STO matrix. To complement our analysis, other possible
causes of strain and anisotropy should be examined. Firstly,
it is intriguing that the magnetocrystalline effect is not observ-
able in the measurements, although |K,,|/4 is of the same order
of magnitude as K, at low temperature. Jorritsma and Mydosh
[57] reported Ni NWs horizontally aligned and strained on pat-
terned InP substrate where K, was also ignored for the whole
range of 5-300 K. Based on broad strain distributions measured
by XRD in our case, it is plausible that the strain distortion
in the NWs destroys locally the tetragonal symmetry and then
masks the K, effect.

Surface anisotropy [58] becomes important for nanosized ob-
jects. The energy density induced scales as the inverse of the
NW diameter. In the present case, we find no evidence for sur-
face anisotropy contributions. Contrary to the case of a film, the
cylindrical interface between the NWs and the matrix should
make the contribution of surface anisotropy to coercivity negli-
gible. Indeed, a uniform radial contribution does not contribute
to K, as a consequence of IP inhomogeneity. A surface contri-
bution is at least of second order: only the IP angular fluctuation
of surface anisotropy contributes to the IP coercivity.

A possible thermal origin of the strain might also be envi-
sioned. Indeed, the difference in the thermal expansion of the
Ni NWs and matrix may constitute a source of strain, as demon-
strated in Ni NWs electrodeposited on porous alumina tem-
plates [59, 60]. The thermal expansion coefficient is 13.4 for
Ni and around 9.5 for STO in 107%/K units. From the growth
temperature to the room temperature, the NWs would sustain a
radial dilatation from the matrix and consequently a NW axial
compression, contrary to the NW axial tensile strain observed.
The maximal thermal strain can be estimated as the product
of the temperature difference and the difference of the thermal
expansion coefficients of Ni and STO. The maximal thermal
strain is then <0.25%, one order of magnitude lower than the
measured strain.

It should be pointed out that absence of any coercivity is a
specificity of the mean anisotropy with a hard axis and an easy
plane (Fig.5(a)), contrasting with the case of an easy axis and
a hard plane. Any additional contribution of cylindrical sym-
metry does not give rise to coercivity. This means that other
sources of anisotropy, such as surface anisotropy or thermal
strain, do not change the anisotropy, but only modify the hard-
ness of the hard axis, i.e. the value of K;. The magnetoelastic
effect resulting from vertical epitaxial strain analyzed in this
paper appears to be the dominating effect.

5. Conclusion

The mean anisotropy of the Ni NWs assembly, i.e. the OP
hard axis and the mean isotropic IP easy plane, is induced by
the mean axial tensile strain. The IP coercivity is induced by in-
plane strain inhomogeneities. Similarly, the appearence of an
OP coercivity is interpreted by the wandering of the local hard



axis caused by fluctuations of the local axial shear strains. The
IP hysteresis cycles were simulated by macrospins of length
scaling with the local RMA magnetic correlation length. The
exponential decay of H.(T) with temperature is related to Shar-
rock’s effect and an additional thermally activated process of
anisotropy softening.

The possibility of strain induced magnetic anisotropy rever-
sal in NWs offers interesting perspectives to modulate their
properties along the NW axis. However, strain fluctuations in-
crease with the mean epitaxy strain. The strain fluctuations
at the nanoscale lead to a softening of anisotropy as a result
of local averaging and probably causes the additional thermal
softening evidenced in this study. When heading for a max-
imum increase of anisotropy, a compromise should be found
between average tensile strain and strain fluctuations. In the
case of Ni NWs, this would correspond to a tensile strain much
larger than 0.8% to overcome the shape effect and a low strain
fluctuation over a typical magnetic correlation length of about
40 nm. In this perspective, epitaxy of Ni NWs in a matrix
with a vertical mismatch of around 3% with Ni would be in-
teresting. Our analysis shows that the magnetic behavior of the
Ni NWs ensemble can be grasped by using macrospins. The
size of macrospins scales with the magnetic correlation length.
The results obtained call for further thorough experimental and
theoretical work in order to achieve an improved understand-
ing of the anisotropy softening mechanisms at play in ultrathin
NWs: a) local averaging of the magnetic anisotropy; b) intrinsic
and/or extrinsic thermal softening of anisotropy.
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Appendix A. Local strain field and energy barriers

The magnetoelastic and magnetostatic effects for a NW can
be described by using an anisotropy constant tensor K of sec-
ond rank. The anisotropy energy density E/V is written as:
E/V = -m.Km with m the magnetization unit vector. When
considering only the mean axial and radial strains, the only
non-zero element of K is: K = K,; = -Bi({e)-(€+)) + Ky,
where the magnetoelastic coupling constant B; is equal to
=(3/2)Ago1(c11 = c12).
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The mean anisotropy does not give rise to any IP coerciv-
ity. A second IP uniaxial constant K, is used in order to ac-
count for local IP energy barriers. Furthermore, the anisotropy
axes are IP randomly oriented. With this approach, the sys-
tem becomes locally anisotropic and overall isotropic, in ac-
cordance with the experiments. K, expresses the fact that the
in-plane strain ¢; (i, j = x or y) is not homogeneous along a
NW. When the minimal radial strain is €,, and the maximum
one €, the constant K, induced by the magnetoelastic effect
is: K, = Ky« — K, = —Bi(&x — €,). A similar relationship
is obtained for any IP orientation of the principal axes of ¢;
(i,j = x ory). Inincluding the IP shear strain €,, with the
associated magnetoelastic coupling constant By(= —31;1C44),
the easy axis is oriented at the azimuthal angle of ¢, and ap-
proximately aligned with one of the principal axes of €;. This
is due to the fact that B; and B, of Ni are close: B; = 9.38
and B, = 10 in 10° J.m™3 [61]. The corresponding anisotropy
energy is given in Eq.(2). Depending on the values of K; and
K., the landscape of the anisotropy energy of a biaxial system
can become rather complex. According to the XRD results, Ni
NWs are characterized by a broad distribution of K; centered
on negative K; values. It is expected that the OP axis acts as
a magnetization hard axis. K, values should be smaller than
that of K, considering the weak values of u,H, observed. A
typical case with K; < 0 and K, > O for the present NWs is
illustrated in Figure 6. For IP configurations and regardless of
the negative value of K, the mean magnetization is considered
to remain in the plane.

The previous picture is incomplete, in case of high local
strain distortion. When considering all strain components in-
cluding the axial shear ones €; (i = (r or 6) and j = z), the
tensor K is written as:

(K20 K.
K = 0 -K./2 K, (A.1)

Krz K(Jz Kl
whgge K,, = —Bye, and Ky, = —Byey,. The diagonalization

of K implies a local hard axis different from the OP axis. In
other terms, the hard axis is wandering around the OP axis, as
sketched in Figure 8.

The wandering angle 6, depends on the ratio between the
local axial shear strain and the tensile one. It follows that the
magnetoelastic effect becomes more complex with increasing
local strain distortion: a) the mean strain explains the existence
of the hard axis and easy plane, without any coercivity; b) a
biaxial anisotropy includes the local IP energy barriers; c) for
real cases, a full 3D description of the strain field is needed.
For highly strained Ni NWs, we show in this paper that the IP
behavior can be described by an IP 2D randomly oriented local
anisotropy and the OP one by including the wandering effect of
the hard axis.

Appendix B. Magnetic anisotropy softening

Appendix B.1. IP local softening according to the RMA model
The RMA model is usually applied to 3D nanostructured ma-
terials [33, 34], when the size L, of structural domains becomes



smaller than the magnetic correlation length L,, where L, is
taken to be equal to 7 VA/K for the uniaxial case. When the
anisotropy axis orientation is random, a magnetically correlated
domain of volume L? includes N structural domains of volume
L3, so that the anisotropy constant (K) averaged over the mag-
netic volume scales as K/ VN and the resulting magnetic length
L as 1 VA/{K).

The following specificities of the present NWs should be un-
derlined: a) contrary to nanocrystalline films, nanostructuration
here is induced by the strain; b) NWs are considered magneti-
cally as 1D chains, so that N scales as L/L, instead of (L/L;)>
for 3D; c) the anisotropy axis orientation is IP 2D random. Fur-
thermore, L, is not uniform along a NW and ranges from 6 to
13 nm, depending on the strain and the samples, as indicated by
XRD measurements. Also, the anisotropy constant K or equiv-
alently L, is not unique and presents a distribution. However, a
qualitative scaling consideration can be made with constant L
and L,, similarly to the 3D case (Tab.B.4).

Table B.4: 3D and 1D RMA characteristics in terms of L,/Lg, the ratio be-
tween the intrinsic magnetic length L, and the structural length L;: N, number
of structural domains within a magnetic volume; L, magnetic length from the
RMA anisotropy constant (K) which is averaged over the magnetic volume.

N L/L, (K)/K
3D (Lo/L9"™  (Lo/L)®  (Ly/Ly)™
ID  (L/L)*  (Lo/L)'?  (L,/Ly)™*

N increases slowly with decreasing L, in 1D. The averaged
magnetic length L scales as L}l/ 3 (Eq.3), instead of L;? in 3D.
The reduction of the coercivity (oc (K)) scales as Lg in 3D, as
demonstrated in Ni nanocrystalline films [35], and as Lf/ 3 in
1D. It is to be noticed that the anisotropy energy of a magnetic
domain is proportional to (K)L for the 1D case and scales as
L!. This means that fragmentation of the NWs into structural
domains smaller than the magnetic length lowers the blocking
temperature.

For sample C detailed in this study, the IP mean value of
(K) (= (K,)) measured at low temperature is about 0.55x10°
J.m™? and implies a magnetic length L of 42 nm. Following
the scaling rules in Table B.4 and taking L; = 13 nm (or N ~
3 — 4, number of structural domains in a magnetic domain), the
intrinsic magnetic length L, deduced is equal to ~31 nm and the
intrinsic anisotropy constant K to ~0.9x10° J.m~3. This means
that the anisotropy is reduced by (K)/K ~ 0.6, due to the RMA
local averaging for the present case.

Appendix B.2. Intrinsic thermal softening

The exchange energy of a DW of length £ within a NW
of area S scales as A(a/L)>LS and the anisotropy energy as
(K/2)LS, with « a constant. The total energy E can thus be
written as: E(L) = [L,/L+L/L,]/2xKL,S . Here, a is chosen
equal to 7/ \/E, so that L, fits with the usual Bloch DW width
mYA/K. Minimization of the total energy allows to calculate
the equilibrium DW length at O K which turns out to be L,. At
finite temperature, the mean DW width L,(T) is calculated by:

L,(T) = (L x exp{—E(L)/[kpT]}). The numerical resolution
of the equation yields: L,(T)/L, ~ 1 + kgT/[KL,S]x1.534.
Taking the nanowire area in sample C, S = 19.6 nm?, and the
values estimated previously, K = 0.9 x 10° J.m™3 and L, = 31
nm, the increase of L,(T) from 0 K to T}, of 150 K is about 6%.
The RMA averaged magnetic length L(T') scales as [L,(T)]*?3
(Tab.B.4) and increases consequently with L,(7T"). The total in-
crease of L(T') from 0 K to T} is estimated to be approximately
equal to 8%.

Appendix B.3. Behavior along the hard axis

For the 3D RMA model, the anisotropy tensor K is traceless,
so that the tensor describes the anisotropy fluctuation around
zero [33, 34]. For the present case, the mean strain as well as K
is persistent and determines the mean hard axis and easy plane.
The IP trace of the tensor X in Eq.(A.1) is null, reflecting the IP
anisotropy fluctuation. The mean values of K,, and Ky, are also
null, as a result of the local fluctuation of the axial shear strain.

For randomly distributed structural domains, (K;) should re-
main stable against a distribution of domains in strain: (K;) =
—B1({€;) — {€+)) + Kys. Only the variance o(K;) should re-
duce as 1/ VN with the local averaging over N domains. The
estimated values of (K;) listed in Table 3 do not follow this
sketch and are lower than those calculated from the mean strain
({€;;)—(€&rry) and the shape effect. This means that structural do-
mains are not fully random. Indeed, XRD measurements sug-
gest a correlation between neighboring domains, in the sense
that less strained domains possess larger coherence lengths.
This could explain the shift of (K;) towards small values. It
will be interesting and challenging to provide a full description
of the anisotropy of the NWs by averaging locally the tensor
K from the strain field and considering not only the distribu-
tion of domains, but also the correlation between neighboring
domains.
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