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Abstract 

Efficient heterogeneous catalysis of hydrogen oxidation reaction (HOR) by platinum group metal 

(PGM)-free catalysts in proton-exchange membrane (PEM) fuel cells represents a significant 

challenge towards the development of a sustainable hydrogen economy. Here we show that 
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graphene acid can be used as electrode scaffold for the non-covalent immobilization of a bio-

inspired nickel bis-diphosphine HOR catalyst. The highly functionalized structure of this 

material and optimization of the electrode-catalyst assembly sets new benchmark electrocatalytic 

performances for heterogeneous molecular HOR, with current densities above 30 mA cm
-2

 at 

0.4V vs RHE in acidic aqueous conditions and at room temperature. This study also shows the 

great potential of graphene acid for catalyst loading improvement and porosity management 

within nanostructured electrodes towards achieving high current densities with noble-metal free 

molecular catalyst. 

Introduction 

The use of hydrogen as a sustainable energy vector requires the development of efficient, low-

cost but robust means to produce and oxidize H2 at the cathode of electrolyzers and anode of fuel 

cells, respectively.
1,2

 In state-of-the-art proton exchange membrane fuel cells (PEM-FC), the 

hydrogen oxidation reaction (HOR) is performed using scarce and expensive Pt- or Pt group 

metals (PGM) catalysts, which are critical raw materials, thus severely hampering their future 

deployment.
3–6

 In recent years, several studies have reported the use of PGM-free catalyst for 

HOR, in particular with Ni-based materials under alkaline conditions
7–9

 and metal-carbide based 

materials in acidic media.
10–14

 Although some of these non-PGM based materials could 

demonstrate good activities for HOR with good resistance to poisoning, they still suffer from 

limited stability under operation. 

Nature’s catalysts for reversible H2 production and oxidation, hydrogenases (H2ase), are able 

to perform these reactions with very high TOFs (up to 10000 s
-1

) using only cheap and widely 

available Fe and Ni metals at their catalytic site.
15–17

 Despite their sensitivity to a number of 
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inhibitors and their high molecular weight, these enzymes have been extensively used for their 

impressive electrocatalytic properties in H2-O2 biofuel cells over the past decade.
18–20

 Strategies 

involving the use of protecting redox polymer,
21–23

 protein-surface orientation
24–26

 or electrode 

nanostructuration
27,28

  have been developed to overcome H2ases intrinsic limitations. However, 

their fragility and sensitivity to various conditions and inhibitors combined with their large 

molecular footprint remain problematic for catalyst loading optimization and implementation in 

market-ready PEMFC setup.  

Nevertheless, H2ases have provided synthetic chemists with valuable blueprints that allowed 

synthesizing biomimetic and bio-inspired PGM-free compounds able to electrocatalytically 

generate and/or oxidize H2.
29–33

 In particular, the family of mononuclear Ni-based bis-

diphosphine [Ni(P2
R
N2

R’
)2]

2+
 complex first described by the DuBois’s group represents a unique 

class of bidirectional molecular catalysts for electrocatalytic H2/H
+
 interconversion.

34–36
 The 

1,5‐ diaza‐ 3,7‐ diphosphacyclooctane ligand (P2
R
N2

R’
) provides an electron rich environment 

to the metal center while mimicking the 2‐ azapropanedithiolate bridge found in [FeFe]-H2ases 

and acting as proton shuttle.
37–40

 Over the past decade, an extensive body of work has focused on 

the expansion of the outer coordination sphere beyond the cyclic tertiary amine, in particular 

through the incorporation of amino acid residues to the ligand.
41–44

 This allowed the design of an 

arginine containing derivative [Ni
II
(P2

Cy
N2

Arg
)2]

7+
 (NiArg) owing the strongest bias for HOR of 

the series, with reported TOFs up to 106 s
-1

 under 100 bar of H2 at 72°C, while also retaining 

catalytic reversibility for H2/H
+
 interconversion over a broad pH range (Figure 1a).

45–47
 

In order to reach technological relevance, molecular catalysts for fuel cells or solar fuels 

production need to be integrated onto electrode surfaces before being eventually implemented 

into functional devices.
48

 This relatively recent research field has been particularly active over 
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the past few years.
49–51

 Past developments of covalent or non-covalent grafting strategies for 

molecular catalyst have allowed great control over catalyst concentration at the material-

electrolyte interface,
52,53

 electrode-catalyst electron transfer rates and redox properties,
54–56

 

catalyst activity and stability
57–61

 as well as in some cases catalyst selectivity,
62–64

 through the 

possibility to tune its direct environment.  

In particular, over the last decade efforts have focused on interfacing this series of Ni-based 

molecular catalysts with carbon-based electrodes for the development of molecular HER 

cathodes and HOR anodes.
65–70

 Covalent or non-covalent modifications of carbon nanotube 

(CNT) electrodes with [Ni(P2
R
N2

R’
)2]

2+
 allowed to reach current densities of 1-2 mA cm

-2
 

measured at 0.3 V vs RHE and room temperature in 0.5 M H2SO4 for HOR.
65,66

 Recent works 

reported improved performances reaching current densities up to 16 mA cm
-2

, at 0.3 V vs RHE, 

through design and structuration of the CNT based electrodes.
68,69

 Importantly, such bio-inspired 

electrodes are tolerant to CO,
66

  compatible with proton-exchange membrane (PEM) technology
6
 

and they have been successfully integrated into fully functional proof-of-concept fuel cell 

devices.
69,71,72
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Figure 1: schematic representations of a) NiArg simplified chemical structure b) GA sheets 

bearing –CO2H anchoring functions and c) the GA|NiArg composite modified electrode  

In this context, graphene acid (GA) has recently appeared as a particularly appealing platform 

material for catalysis as it can be easily obtained from commercially available fluorographite. It 

yields material with high levels of carboxyl functionalization, about 10% (atomic content), 

directly grafted on the basal plane, allowing the graphene sheet to maintain excellent electron 

conduction properties (Figure 1b).
73

 These properties were very recently exploited in order to 

covalently incorporate redox centers through peptide coupling or bind metal nanoparticles in 

order to perform C-H bond insertion, C-C bond coupling or even alcohol oxidation through 

heterogeneous catalytic processes.
74–76

 

In here, we describe the use of GA nanosheets as an original electrode material for the non-

covalent grafting of NiArg through electrostatic interactions. The highly functionalized and 

conductive GA provided a large amount of anchoring sites for the catalyst while ensuring 

excellent electronic wiring of the molecular catalyst, thus allowing the development of an 

efficient molecular-based anode for HOR in PEM fuel cells (Figure 1c). 

Results and discussion 

GA synthesis was carried out as previously reported
73

 and the GA modified electrodes were 

prepared through vacuum filtration of a 0.05 mg mL
-1

 of GA dispersion in EtOH directly at the 

surface of a gas diffusion layer (GDL) coated with an hydrophobic microporous layer (MPL) 

(area = 10 cm
2
). The volume of GA dispersion filtrated was varied in order to obtain several GA 

loadings (from 0.05 to 0.8 mg cm
-2

 of GA, see experimental part). The obtained GDL|GA films 

were characterized before and after modification with NiArg using X-ray photoelectron 
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spectroscopy and scanning electron microscopy (SEM) coupled with energy dispersive X-ray 

spectroscopy (EDX) mapping (Figure 2). 

 

Figure 2: a) C 1s XPS region of GA sample b) SEM micrograph of a GA film deposited at the 

surface of a GDL 

The C 1s XPS region spectra of the GA sample shows an important contribution of the 

carboxylic groups (Figure 2a). This high content in –CO2H functions (9.9 % atomic content 

determined by XPS, see Table S1) is expected to lead to an efficient grafting of NiArg at the 

electrode surface through electrostatic interactions with the guanidinium moieties of the catalyst. 

SEM characterization depicted flake-type microstructures for the GA deposit, with sheets size 

reaching up to several µm (Figure 2b and S1). EDX mapping of the films clearly shows high 

oxygen content on the GA surface where much lower levels are observed on the MPL layer part 

(Figure S2). 

Catalyst deposition was carried out by drop casting 2 µL of a 5 mM concentration of NiArg in 

deionized water at the surface of the GDL|GA electrode surfaces of different thicknesses (area = 

0.125 cm
2
) (see SI for experimental details). The deposit was then dried for 10 min, before being 

rinsed with deionized water to remove unbound catalyst. The modified electrodes were 
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characterized using cyclic voltammetry (CV) in 0.5M H2SO4 with a constant flow of H2 (5 mL 

min
-1

) at the back of the GDL-based homemade working breathing electrode (Figure S3). For all 

modified electrodes, similar S-shape CV traces could be observed, characteristic of the catalytic 

behavior of NiArg for reversible H2 production and oxidation in aqueous conditions, with a 

strong bias for HOR, as previously reported (Figure 3a).
69

 During turnover and following the 

addition of H2, the catalyst is thought to be reduced from Ni
II
 to Ni

II
-H (with a protonated 

pendant amine) before being re-oxidized in a two-electrons process at the electrode, giving rise 

to the observed catalytic current.
45,46,69

 

 

Figure 3: a) CV traces of GDL|GA electrodes at different GA loadings (0; 0.05; 0.1; 0.2; 0.4 and 

0.8 mg cm
-2

) modified with 2 µL of NiArg (5 mM) and b) current densities for HER at -0.2 V vs 

RHE and HOR at 0.1 and 0.4 V vs RHE obtained from CVs in 0.5 M H2SO4 with a constant flow 

of H2 at the back of the GDL (5 mL min
-1

) (ν = 20 mV s
-1

) 

As expected, direct deposition of catalyst on an unmodified GDL electrode leads to the lowest 

electrocatalytic responses (9 ± 2 mA cm
-2

 at 0.4V vs RHE). For the GDL|GA|NiArg electrodes, 

catalytic current responses scaled up almost linearly with the GA loading GDL before levelling 
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off at 0.4 mg cm
-2

 of GA giving maximum current densities for HOR of 33 ± 6 mA cm
-2

 at 0.4 V 

vs RHE setting up a new benchmark for molecular HOR. (Figure 3b). Maximum HOR current 

densities of 37 ± 5 mA cm
-2

 were obtained at 0.4 V vs RHE with 0.8 mg cm
-2

 of GA films but 

they showed limited mechanical stability during catalyst deposition and electrochemical testing 

due to material leaching off the electrode surface. Bare GA electrode, as well as GA electrode 

modified with Ni nanoparticles did not show any HOR activity (Figure S4a). Although still not 

competing with low-loaded Pt electrodes (Figure S4b), GDL|GA|NiArg electrodes outperform 

all previously reported bioinspired nanomaterials for catalytic HOR under acidic conditions. 

In order to study the impact of the amount of catalyst deposited at the GDL|GA (0.4 mg cm
-2

) 

electrode surface on HOR catalysis, concentration of NiArg in the deposition solution was varied 

from 1.25 to 10 mM. CVs performed in neutral buffer conditions (0.2M potassium phosphate, 

pH7) and under argon allowed to observe the reversible redox signature of NiArg at E1/2 = 0.03 

V vs RHE corresponding to the 2e
-
/2H

+
 

 
Ni-centered redox process (Fig 4a) as previously 

reported.
69

 Integration of the oxidation wave allowed to estimate the catalyst loading (ΓNiArg) 

ranging from 9 nmol cm
-2

 to about 19 nmol cm
-2

, depending on the concentration of NiArg 

deposited for the GLD|GA with 0.4 mg cm
-2

 of GA deposited (Figure 4b). Higher amounts of Ni 

(from 14 ± 3 to 45 ± 3 nmol cm
-2

) were quantified from digested GDL|GA|NiArg films in nitric 

acid using inductively coupled plasma atomic emission spectroscopy (ICP-AES). These results 

indicate that only a part (~40%) of the overall grafted catalyst (detected by ICP) is 

electrochemically active (detected by CV). XPS measurements (Table S2) on the modified film 

confirmed the presence of Ni at the surface of the electrode and EDX mapping could show that 

NiArg was mainly grafted on the GA modified surface, as expected from the high surface 

concentration of –CO2H groups (Figure S2b). As a result of the drop cast and drying method 
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used to deposit the catalyst, some non-specific interactions can potentially be expected. Thus this 

would explain the presence of small amounts of Ni on the hydrophobic MPL as well as 

formation of aggregates as seen on Figure S2c (although uneven distribution shown by EDX 

could potentially be caused by degradation under the electron beam). Interestingly, the amount of 

Ni measured by ICP-AES after 10 cycles of CVs under electrocatalytic conditions (Figure 4b) is 

closer to the one measured by CV and thus indicates a slow leaching of the catalyst out of the 

GA film in the electrolyte over the course of time and operation. 

 

Figure 4: Electrochemical characterization of GDL|GA (0.4 mg cm
-2

) electrodes at different 

NiArg loadings (2 µL of 1.25; 2.5; 5 and 10 mM) a) CV traces in 0.2 M phosphate buffer pH7 

under argon (ν = 20 mV s
-1

) b) NiArg surface loadings determined from CV experiments (red 

dots) and from ICP-OES measurements before (black squares) and after (blue square) CV 
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measurements c) CV traces and d) corresponding current densities for HER at -0.2 V vs RHE 

and for HOR at 0.1 and 0.4 V vs RHE obtained from CVs in 0.5 M H2SO4 under argon and with 

a constant flow of H2 at the back of the GDL (5 mL min
-1

) (ν = 20 mV s
-1

) (See Figure S4 for 

other GA loadings.) 

The catalytic performances of the GDL|GA electrodes (0.4 mg cm
-2

) with different NiArg 

loading (Figure 4c) increase only slightly with the concentration of the NiArg deposition 

solution up to 5 mM, reaching 33 ± 6 mA cm
-2

 at 0.4V vs RHE.  

ΓNiArg on GDL|GA|NiArg with lower GA loadings were also obtained from CVs experiments 

in neutral pH (Figure S5). As expected, similar trends were extracted for thinner GA films of 

0.05, 0.1 and 0.2 mg cm
-2

 but with lower maximum ΓNiArg values of 4.8, 9.8 and 12.4 nmol cm
-2

, 

respectively (Figure 5). The surface loading ΓNiArg increases with solution concentration in 

NiArg following a simple Langmuir binding isotherm: 

           

              

           
 

Where A is the density of binding sites available the GA electrode (nmol mg
-1

), qGA the amount 

of GA deposited (mg cm
-2

), KNiArg the association constant between NiArg and the GA electrode 

surface (L mol
-1

) and [NiArg] the concentration of NiArg in the deposition solution (mol L
-1

). 

The data could be fitted with a single KNiArg affinity constant for all series, underlining the 

effective grafting of the molecular catalyst to the GA modified electrode (Figure 5a). The KNiArg 

value of 640 L mol
-1

 is a low affinity binding constant, in coherence with a non-specific 

electrostatic interactions between the guanidinium groups of NiArg and the carboxylate of the 

GA surface. It is also possible that π-cations interactions takes place between the guanidinium 

moieties and the π-conjugated parts of the GA surface as already suggested with CNTs.  



 11 

 

Figure 5: a) ΓNiArg determined from CV experiments for GDL|GA electrodes with 0.05 (black 

squares), 0.1 (red dots), 0.2 (blue triangles) and 0.4 (green triangles) mg cm
-2

 of GA as function 

of the [NiArg] in the soaking solution, the dashed traces correspond to the fitted binding 

isotherm for each electrode thickness b) evolution of the site density as function of the amount of 

GA at the surface of the GDL c) Evolution of the values of HOR and HER catalytic currents (see 

Figure S4) from CV at -0.2 (black squares); 0.1 (red dots) and 0.4V vs RHE (blue triangles) with 

the ΓNiArg extracted from CV at pH7 from GDL|GA electrodes with 0.05, 0.1, 0.2 and 0.4 mg cm
-

2
 of GA incubated with 10 mM NiArg. 

Interestingly, the A value, corresponding to the number of available anchoring sites per surface 

area, is decreasing with increasing GA loadings (Figure 5b). This indicates that anchoring site 

availability decreases with thicker GA deposits, which stems from a loss of porosity and 

clogging up of thicker GA deposit. Interestingly, the maximum catalytic current densities for 

both HER and HOR increase linearly with maximum ΓNiArg taken at individual GA loadings 

(Figure 5c and S6). However, in the present series, further increase of GA loading leads to a 

decrease of the relative grafting site availability (Figure 5b) preventing a linear improvement of 

the catalyst loading and thus of the obtained catalytic currents (Figure 3a).  
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The stability of the best performing and mechanically stable GDL|GA|NiArg electrodes (0.4 

mg cm
-2

 of GA and modified with a 5 mM solution of NiArg) was then studied in 

chronoamperometry (CA) for HOR at 0.1 and 0.3 V vs RHE (Figure 6a).  

 

Figure 6: a) Averaged current values of the CA triplicates of the GDL|GA|NiArg modified 

electrodes at 0.3V (black trace) and 0.1V (red trace) and b) CV traces of the GDL|GA|NiArg 

before (black trace) and after (red trace) CA at 0.3V vs RHE in 0.5M H2SO4 under argon and 

with a constant flow of H2 at the back of the GDL (5 mL min
-1

) (ν = 20 mV s
-1

) 

At both applied potentials, a steady decrease could be observed for the GDL|GA|NiArg 

electrodes over the course of 1 h experiment, going from 31 ± 6 to 22 ± 5 mA cm
-2

 at 0.3 V vs 

RHE and from 11 ± 1 to 7 ± 1 mA cm
-2

 at 0.1 V vs RHE, retaining respectively 71 and 64% of 

catalytic activity (Figure 6a and S7). As mentioned above, loss of the catalyst through solution 

leaching can partly explain this decay and is consistent with the low calculated KNiArg value. XPS 

spectra recorded after electrocatalytic experiments also show that some of the catalyst could have 

potentially been oxidized at the phosphine ligand (Figure S9) which is another possible reason 

for nickel releasing out of the electrode. On the other hand, minimal changes are observed in the 

Ni 2p core level spectra, consisting of a small broadening of the main Ni 2p3/2 peak on the high 
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binding energy side. In addition, CVs performed before and after CA measurements showed 

slight modification in the electrocatalytic response, with a decrease of the HOR contribution 

combined with an increase of HER (Figure 6b). This hints that the decrease in HOR performance 

could also be due to electrode flooding overtime, hampering H2 diffusion within the active layer 

rather than decomposition of NiArg. After 1h of electrolysis at 0.3V vs RHE, TOFHOR between 

3.3 and 11.9 s
-1

 can be estimated, taking the maximum and minimum values of ΓNiArg obtained 

through ICP measurements, respectively (see above).  

Conclusion 

We described the use of GA to prepare porous electrodes suitable for supported molecular 

electrocatalysis. The high degree of functionalization of GA allowed efficient incorporation of a 

bio-inspired nickel-based molecular catalyst through non-covalent electrostatic interactions. The 

high catalytic current densities, setting up new benchmark for molecular HOR, were achieved by 

optimization of the electrode design and catalyst loading. Further optimization of the catalytic 

layer is underway in order to (i) develop multivalent grafting to prevent leaching, (ii) maximize 

the number of available active sites through increased film thickness with retention of high 

porosity as well as (iii) rationalize formulation to prevent electrode flooding and increase the 

stability of the anode overtime. In the broader context of electrode nano-structuration, this work 

legitimates the use of GA as a versatile platform for supported molecular electrocatalysis with 

upscale potential similar to other graphene derivatives for preparation of large surface electrodes.  
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