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 

Abstract— This paper presents an application of a modified 

field-to-transmission-line-model inspired from Agrawal’s model. 

In this model the field applied as a source term includes the 

tangential incident electric field as well as surrounding tangential 

scattered electric fields due to the current induced on the 

transmission-line. This weak domain decomposition approach 

allows one to calculate currents accounting for the reaction of 

those currents on the EM incident fields. The theoretical 

development is made on the basis of a two-wire transmission line; 

it is then extended to any transmission-line geometry. A 

numerical validation is made on several configurations of 

excitations of single wire transmission line networks. Particularly 

the results show that this model is able to predict the EM 

radiation of the cable. The paper concludes on future possible 

applications of this modified field-to-transmission-line approach 

in real applications of cable bundles in 3D structures of industrial 

complexity.  

 
Index Terms— Transmission-lines, Multiconductor, Thin wire 

model, Field-to-Transmission-Line, Cable bundles, Cable 

networks 

I. INTRODUCTION 

ield-to-Transmission-Line (FTL) [1] is a well-known 

approach to model cables in 3D structures. The main 

interest of this model is to be easily extended to 

Multiconductor Transmission Line Network (MTLN) models 

[2] and to make possible MTLN calculations separately from 

3D calculations. Nowadays, in the related numerical 

modelling process, the incident EM fields are collected on the 

routes of cable bundles (but in the absence of the bundles in 

the 3D model) and are then introduced as source terms for the 

MTLN model. The calculation time for the MTLN models is 

significantly smaller compared to the 3D full-wave calculation 

for determining the MTLN incident field source terms. Several 

formulations of FTL exist but Agrawal’s formulation [3] 
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based on incident electric tangential fields is the most 

appropriate for 3D numerical applications. The main interest 

of Agrawal’s model is that the source terms are tangent to the 

cable routes which avoids the constraint of having to define 

transverse field components like in the two other FTL models, 

Taylor [4] and Rachidi [5]. This approach has been the subject 

of several applications of EM-coupling-on bundles in 3D 

structures ([6], [7], [8]). It is now well generalized in 

laboratories and industry for system-level modelling and has 

been successfully demonstrated on many complex wiring 

configurations ([6], [7], [8]). This approach is suitable for 

cable bundle design and installation, to optimize parameters 

such as cable types, cable shields, segregation distances, etc… 

This is particularly true in the perspective of the certification 

regulation on wiring installation [9].  

Nevertheless, one of the main limitations of the FTL model is 

that it does not take into account the reaction of the currents 

induced by transmission-lines (TLs) onto the incident EM 

fields. EM coupling thereby results of incident fields only but 

coupling with scattered fields is not made. Several TL models 

have been proposed to overcome this limitation ([10], [11]) 

but their implementation for real complex cable bundle 

configurations in 3D structures does not seem yet to be as 

operatory as regular FTL models. 

Of course such a current reaction can be obtained with meshed 

models of multiconductor wires or MTL models embedded in 

3D full-wave models [12] but again those models are not 

mature enough to offer the same level of flexibility as FTL for 

system level modelling. Besides wire models currently applied 

in 3D models are generally limited to single thin wire models 

[13] or their derived-oblique models [14]-[16]. The idea of 

this paper is therefore to investigate how both MTL and thin-

wire 3D-modeling approaches can be combined in order to 

solve this current-on-scattered EM-field reaction issue. 

Section II of this paper establishes an analogy between a usual 

TL model made of two wires illuminated by an incident EM 

field and the thin wire model as currently used in 3D 

modelling; the modified FTL model is then obtained. In 

Section III, numerical verifications of the modified MTL 

model are made on several configurations of single-wire 

networks for both EM field illumination and lumped voltage 

source application. Finally Section IV concludes on the 

relevance of the modified FTL model for future applications 

on complex and realistic cable-bundle configurations.  
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II. ANALOGY BETWEEN TRANSMISSION-LINE AND HOLLAND’S 

THIN WIRE FORMALISMS 

A. Problem to solve 

Our theoretical development starts from a reminder of the 

demonstration of the first TL equation applied on the same 

two-wire transmission line geometry as in [1]. We call the two 

parallel wires of the TL, “signal wire” and “return wire”, each 

of them having a length ℓ and radiuses as and ar respectively 

(Fig. 1). The distance between the two wires is d. In this 

paper, we do not make any restriction on as and ar with respect 

to d since we do not explicitly need to calculate the per unit 

length (p.u.l.) inductance and capacitance parameters of the 

TL. The signal wire has a p.u.l. resistance Rsignal and the return 

wire has a resistance p.u.l. Rreturn. x represents the longitudinal 

direction of the wires, y represents their transverse direction 

and z represents the direction normal to x and y passing by the 

two wires. The electrical current in the wires, I(x), is in the x 

direction and is supposed to be uniformly distributed around 

the cross-section of the two wires.  xV tot

TL
 is the voltage 

between the wires. We will see later in this paper that the “tot” 

subscript accounts for the total electromagnetic fields. The 

objective of the problem is to calculate I(x) on the signal wire. 

 
Fig. 1. Geometry of the two-wires TL problem 

B. Notations for the application of the Faraday law 

The theoretical developments presented in this paper all start 

from the Faraday Law on an open surface S. In homogeneous 

free space medium, we have in the frequency domain: 

 
SCS

dSHjdlEdsErot


0 , (1)   

where S is the open surface bounded by a contour C. 

We classically decompose the total EM fields {E
tot

, H
tot

} as 

the sum of the incident EM fields {E
inc

, H
inc

} (fields in the 

absence of the signal wire but in the presence of the return 

wire) and the EM scattered fields {E
sca

, H
sca

} (fields due to the 

induced currents on the signal wire). We can thereby 

respectively write the electric and magnetic fields as: 

𝐸𝑡𝑜𝑡 = 𝐸𝑖𝑛𝑐 + 𝐸𝑠𝑐𝑎 

𝐻𝑡𝑜𝑡 = 𝐻𝑖𝑛𝑐 + 𝐻𝑠𝑐𝑎 
(2)   

The EM field notations will be generalized as 𝐸
(𝑥, 𝑦) 

 and 𝐻
(𝑥, 𝑦) for the electric and magnetic fields respectively, 

in which the subscript  stands either for “tot”, “sca” or “inc” 

and  for either x, y or z. In Fig. 1’s geometry we remind the 

incident problem includes the return wire. In the following, we 

choose the integration surface S with a rectangular contour 

along the x axis, between x and x+x, and the z axis, between 

positions z1 and z2 (Fig. 2). Then, the limit x  0 is 

considered. 

 

With those conditions, the Faraday law in (2) applies either on 

total, incident or scattered EM fields writes as: 
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In which we define an equivalent voltage by: 

    dzzxExV
z

z
zzz  

2

1
21

,,

  (4)   

 
Fig. 2. Surface contour of integration in the x, z plane for the application of 

the Faraday law 

C. Formulation of the TL equations 

The application of (3) for the total fields gives the first TL 

equation based on Taylor’s model [1]. According to Fig. 2 we 

take z1 = 0 and z2 = d. The voltage to be considered is the total 

voltage and the source term is expressed in terms of the 

incident transverse magnetic field in S: 
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(5)   

where 

      dxdzzxHxIL
xx

x

d
sca

yxTL .,lim
0

0  


 




   (6)   

and RTL represents the p.u.l. resistance of the transmission line, 

classically equal to the sum of the p.u.l. resistances of the 

signal wire and the return wire. We have: 

returnsignalTL RRR   (7)   

where 

   dxExIR tot

xsignal , , (8)   

   0,xExIR tot

xreturn  , (9)   

    dzzxExV
d

tot

z

tot

TL  
0

, . (10)   

The application of (3) for the incident fields gives: 
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with 

    dzzxExV
d

inc

z

inc

TL  
0

, . (12)   

The application of (3) for the scattered fields gives: 

 
 

   0,, xEdxE
dx

xdV
xILj sca

x

sca

x

sca

TL
TL  , (13)   

with 

    dzzxExV
d

sca

z

sca

TL  
0

, , (14)   

generally defined as the “scattered voltage” [1].  

In (5) we can introduce the following property: 

     xVxVxV sca

TL

inc

TL

tot

TL  . (15)   

Then combining (5) and (11), we find the well-known 

Agrawal-formulation for which we remind that the voltage to 

be considered is the scattered voltage and the source term is 

expressed in terms of tangential incident electric fields at the 

level of the signal and return wires: 

   
 

   0,, xEdxE
dx

xdV
xILjR inc

x

inc

x

sca

TL
TLTL    (16)   

The 2
nd

 transmission line equation is obtained in a way 

entirely similar to the one presented in [1]. The introduction of 

the scattered voltage in the 2
nd

 transmission line equation 

formulated according to Taylor’s model provides an equation 

without any right hand-side. We have then: 

   
 

0
dx

xdI
xVCjG sca

TLTLTL   (17)   

where: 

- GTL is the TL p.u.l. conductance, 

- CTL is the TL p.u.l. capacitance 

The demonstration will not be reported in this paper since the 

focus is on the 1
st
 TL.  

From an application point of view, it is important to remember 

that even if the Agrawal-formulation involves only a scattered 

voltage which has no real existence, the current I(x) remains 

the “real” electrical current and the real voltages (total 

voltage) at the ends can always be obtained by applying the 

Ohm-law as far as end impedance loads are known, which is 

the case for EM simulation applications. 

D. Signal wire in fictitious enveloping return contour 

We consider the same geometry as the one in Fig. 1 with the 

signal wire parallel to the return wire and a separation distance 

d between the wires. Now we as well consider a small 

fictitious cylinder with an arbitrary cross-section surface of 

contour C, extending in the x direction around the whole 

signal wire path (Fig. 3). Similarly to the way to generate a 

unified TL model of a shielded cable with respect to a 

common reference conductor [17], we define three different 

TLs. We call: 

- “Inner TL”, the TL made of the signal wire with respect 

to the cylinder.  

- “Outer TL”, the TL made by the cylinder with respect to 

the return wire.  

-  “Reference TL”, the TL made by the signal wire with 

respect to the return wire (the TL defined in the previous 

paragraph). 

The TL model of the Inner TL is of particular interest in real 

3D geometrical configurations since it is independent from a 

reference taken on the 3D structure. 

As for (16), we start the derivation from the application of 

Faraday’s law in its infinitesimal formulation (3). For this we 

define 3 reference points: a point of origin Os on the signal 

wire and a point Or on the return wire, both of them at the 

position x and a point M taken on the contour C of the cylinder 

at the same x position of Os; the 𝑂𝑠𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑂𝑟𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗ vectors are 

perpendicular to the x direction. 

We then define a cylindrical coordinate system local to the 

signal wire with an origin in Os. In this system the  

coordinate defining the position of M on the contour C varies 

between 0 and d. 

The line between point M taken at position x and point M’ 

taken at position x+x allows us to decompose the surface of 

integration in two plane surfaces: one inner surface, Sint(M), 

and one outer surface, Sout(M). The inner surface is defined by 

the x direction and the 𝑒⃗⃗  ⃗ direction passing through Os and M. 

The outer surface is defined by the x direction and the 𝑒ℎ⃗⃗  ⃗ 
direction passing by Os and M. The h coordinate with respect 

to 𝑒ℎ⃗⃗  ⃗ varies between 0 and dh. 𝑛
⃗⃗  ⃗ and ℎ𝑛

⃗⃗  ⃗ vectors define the 

normal vectors to Sint(M) and Sout(M) respectively (the reader 

will pay attention not to make confusion with 𝑒⃗⃗  ⃗ and 𝑒ℎ⃗⃗  ⃗  
definitions). 

The application of (3) is made on the total EM fields marching 

on the integration contours made by the two Sint(M) and 

Sout(M) surfaces. Similarly to the derivation of (16), we find: 
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(18)   

where two specific voltages terms can be defined: 

      
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the p.u.l. variation of the scattered voltage in the outer TL. 
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the p.u.l. variation of the scattered voltage in the inner TL. 

From (3), we have also:  
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Fig. 3. The modified TL model made by the signal wire inside the fictitious 

cylinder together with its local cylindrical system 

By introducing (21) in (18), we finally obtain: 
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(22)   

Now the last step is to integrate (22) over the whole contour C. 

For this, we introduce a curvilinear coordinate u allowing 

positioning point M anywhere over the contour. We note that: 

 

 
C

Pdu  (23)   

where P is the perimeter of C. A particular application is when 

the cylinder has a circular section of radius Rc. In this case, the 

u variable becomes: du  Rc.dΦ and P  2πRc. 
We obtain: 
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In which we can introduce the definitions: 

- The average scattered voltage in the inner TL defined by: 
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- The p.u.l. inductance of the inner TL defined by: 
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(26)   

- The average scattered field on the C contour: 

 
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xE C
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

,
 (27)   

In (24) we can also define an “equivalent total tangential 

electric field” at the level of the signal wire as the sum of the 

incident field at wire level and the average of the scattered 

tangent electric fields on the contour C: 

     xEdzxExE sca

x

inc

x

tot

x  ,  (28)   

 

With those definitions, we can now write (24), in the 

following compact form: 

   
   

 xE
dx

xxVd
xILjR tot

x

sca

TLsignal 
int

int,  (29)   

In (29), note that the equation does not depend anymore of the 

return conductor. Similarly to (17), the second TL equation 

writes: 

   
 

0intint, 
dx

xdI
xxVCj sca

TL  (30)   

where CTL,int is the p.u.l. capacitance of the inner TL. 

 

This formalism can be applied to any types of full wave 

solvers together with their specific meshed geometrical 

models. (29) is obtained with a contour averaging for the sake 

of clarity of this paper but it can be recovered with an 

averaging over an area as well. The averaging process with 

many electric field component contributions increases 

accuracy as for oblique thin wire configurations for which the 

2D symmetry observed for regular thin wires does not exist 

anymore and leads to non-uniform distribution of scattered 

electric field components around C [15].  

In this paper we are particularly interested by the FDTD 

method when it is coupled with Holland’s formalism [13] and 

its extensions for oblique thin wires [14]-[16]. In all cases for 

which regular thin-wire models are included along a Cartesian 

direction, the tangential fields along the wire result of an 

averaging of the electrical fields obtained by the FDTD 

method close to the wire. Note that each field component 

calculated by the FDTD method is an average field flux 

through a quad area. The average process leading to (29) 

applies even when the wire is located along a FDTD grid 

edge. Moreover, the total field quantity in (28) calculated by 

the FDTD method and located along the wire does not need to 

be zero as expected by the theory on a PEC wire because it 

must be understood as an average of fields around the wire.    

Finally, the above whole theoretical development has been 

made with a two-wires TL as described in Fig. 1. However, as 

done in [1] for the derivations of Taylor’s and Agrawal’s FTL 

models, (29) and (30) can be extended to any geometrical 

configuration of the return conductor. In the following of this 

paper, the return wire will be replaced by a reference structure, 
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standing for example for a wire, a ground plane, a 3D surface 

etc...  

E. Modified FTL formulation based on an equivalent 

“total” tangential electric field 

We observe that (16) (for the reference TL) and (29) (for the 

inner TL) have TL equation forms. We have to remember that 

both equations are derived from an application of Faraday’s 

law of the same problem. The difference in both equations is 

that the TL approximation (i.e. TEM mode) is required in the 

whole domain in (16) whereas it is required in the cylinder 

domain only in (29) which makes this formulation less 

restrictive and particularly adapted for 3D full-wave 

techniques with the possibility to update EM fields in the 3D 

model at the level of C. 

Hereafter we want to make an analogy between the two 

equations in order to generalize (29) to a TL formulation of 

the reference TL as in (16). The objective is to overcome the 

usual FTL limitation consisting in not having the reaction of 

the current induced on the wires on the total field. 

 

For this purpose we introduce the kL coefficient defined as the 

ratio between the p.u.l. inductances of the reference TL and 

the inner TL respectively: 

int,TL

TL
L

L

L
k   

(31)   

From (31) we derive the transformation of the p.u.l. 

capacitance: 

L

TL

TLLTL

TL
k

C

LkvLv
C

int,

int,

22 .

1

.

1
  (32)   

Then we multiply (29) by the kL coefficient. We obtain: 

   
 

 xEk
dx

xdV
xILjRk tot

xL

eq

TL
TLsignalL    (33)   

If we introduce (32) in (30), we obtain: 

 
 

0
dx

xdI
xVCj eq

TLTL  (34)   

In both (33) and (34) we introduce a new equivalent TL 

voltage definition: 

     xxVkxV sca

L

eq

TL int  (35)   

In an analogous way as what is done in Agrawal’s model in 

(16) and (17) which involve a scattered voltage,  xV sca

TL
, the 

system of equations (33) and (34) involve an equivalent 

voltage definition,  xV eq

TL
, which is not the real voltage. 

However both models provide the real current solution, I(x). 

Besides, compared to (16) which uses the incident electric 

fields (namely    0,, xEdxE inc

x

inc

x  ) as the right hand side term, 

(33) uses an analogous (  xEk tot

xL
 term. 

III. VALIDATION 

A. Numerical methods used 

In this section, the modified FTL method is validated on 

simple configurations of lossless one-wire networks over a 

PEC ground plane. As far as our validations are concerned the 

main advantage of these configurations is that we know that 

the wire networks will behave as antennas and that EM 

radiation of EM fields will be observed in a large frequency 

band which requires being able to model the reaction of EM 

fields scattered by induced currents. 

All validation problems are solved with 3 methods: 

- Method 1: with a full 3D calculation in which the wires 

under test are present. This calculation is considered to 

provide reference results. 

- Method 2: with the classical Agrawal’s FTL approach 

based on Agrawal’s model in which the 3D calculation 

does not include the wire under test and provide incident 

electric fields along the route 

- Method 3: with the modified FTL model developed in 

this paper in which the 3D calculation includes the wire 

under test and provide total electric fields along the route 

All the field calculations in the 3 methods are performed with 

the TEMSI-FD solver developed by the XLIM Institute [18]. 

Fig. 4 represents the geometry of the problem as it is depicted 

by TEMSI-FD. The calculations of the MTLN responses in 

methods 2 and 3 are made using the CRIPTE code based on 

the resolution of the BLT equation in frequency domain [2] 

and developed by ONERA [19]. In both FTL methods (2 and 

3), note that the field source terms must be applied on the 

horizontal wire as well as on the two vertical wires connecting 

the horizontal wires on the PEC ground planes. 

B. One-wire validation test-case 

1) Presentation of the test-case 

The first geometrical configuration is made of a thin victim 

wire of radius 0.1 mm and length 2 m, called “victim wire”, 

running in parallel in the x direction over a PEC and finite-

dimensions ground plane (1.5 m x 1.5 m) at a 10-cm height 

(Fig. 4). Two vertical wires of similar radiuses connect it to 

the ground plane at which level two lumped resistances equal 

to 1 Ohm have been applied. On the lower side of the PEC 

plane, in the same x-z plane as the victim wire, another wire, 

called “excitation wire”, with the same radius and height as 

the victim wire is running in the x direction; it is connected to 

two vertical wires as above the ground plane but this time with 

a resistive load of 50  on the left hand side (low x-value end) 

and a short-circuit on the right hand side (large x-value end). 

In this geometry, a lumped voltage generator can be applied at 

the level of the ground plane on either the left-hand-side 

extremities of the victim wire or the excitation wire. 

In the MTLN model of the victim wire, the model of the TL is 

approximated as a wire over an infinite ground plane and the 

vertical wires have the same p.u.l. electrical parameters as 

these of the horizontal line (usual conic antenna 

approximation [20]). The cell-size in the FDTD model has 

been chosen equal to 2 cm and Perfectly Matched Layers 

(PML) absorbing conditions surround the useful calculation-

domain box of size 3.4 m x 3.4 m x 0.4 m. Time domain 

calculations have been made by applying on one of the two 

wires a lumped voltage generator with a Gaussian waveform 

of a frequency content up to 1 GHz. Then all currents induced 

on the victim wire and calculated either directly in Method 1 

or by FTL and modified FTL approaches in Methods 2 and 3 

(through tangential electric fields computed in the 3D 

simulation) have been Fourier transformed. All currents 

obtained by the 3 methods have been normalized to the 

Gaussian waveform. 
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The objective is to observe the current on the victim wire at 

two positions: at the left hand side extremity (“I1”) and in the 

middle (“Imiddle”). The excitation wire is always included in the 

3D model. 

 
Fig. 4. Geometrical configuration used for the validation on a single TL The 

rectangular box indicates the position of the PML layers 

2) Field illumination configuration 

In this configuration, the lumped generator including the 50  

resistive load is applied on the left-hand-side extremity of the 

excitation wire at the level of the ground plane; the incident 

field applied on the victim wire is generated by the current 

developed on this excitation wire. The results of currents 

obtained at the two observation test points on the victim wire 

are presented in Fig. 5.  

On the one hand, we observe that the classical Agrawal FTL 

method perfectly works from DC up to about 20 MHz, i.e. for 

quasi-static regime but not in the resonance regime of the 

wire. In the resonance regime, the FTL model does not capture 

properly the amplitude of the resonance peaks observed in the 

reference results, even if the resonance frequencies are well 

predicted.  

On the other hand, the modified FTL entirely predicts the 

reference results on the whole frequency band. The 

comparison is almost perfect at the left hand side extremity 

(I1) since the modified approach results fully overlap the 

reference calculated current. We do not observe such a perfect 

matching in the middle of the wire (middle) but we note that 

this discrepancy also appears in Agrawal’s classical FTL. We 

attribute this discrepancy to the fact that the TL approximation 

does not perfectly work outside the extremities of the line 

certainly due to so-called “common antenna mode currents” as 

explained in [1]. 

  

3) Victim wire voltage excitation configuration 

A lumped generator including a 1  resistive load is now 

applied on the left-hand-side extremity of the victim wire at 

the level of the ground plane. This configuration is more 

challenging for our validation since no incident field is applied 

on the victim wire: especially the response of the victim wire 

can be directly obtained from a straightforward unique TL 

model exciting the victim wire with a 1V voltage generator. 

Nevertheless, we can also apply the modified FTL model and 

see the effect of the equivalent total field source terms (here 

equal only to the average scattered tangential electric field 

around the wire).  

The conclusions are the same as for the former field 

illumination configuration; especially in this configuration the 

modified FTL approach allows taking into account the EM 

radiation of the wire. We even observe that the current at the 

center is better predicted than in the illumination 

configuration, certainly because a pure differential mode is 

excited on the TL and no common antenna mode currents is 

generated, which does not mean that this configuration does 

not radiate EM fields. 

 
Fig. 5: Field illumination configuration (local voltage generator on the 

excitation wire) - Comparisons of currents obtained at the left-hand-side 

extremity (I1, above) and in the center of the wire (middle, below) between 
full-3D (Method 1 – label “Full FDTD”), classical Agrawal’s method 

(Method 2 – Label “FTL (with incident E field)”) and modified FTL method 

(Method 3 – label “FTL with Total E field”). On the left hand side full 
frequency range. On the right hand side, high frequency range. 

 

 
Fig. 6: Victim-wire voltage excitation configuration (local voltage generator 

on the victim wire) - Comparisons of currents obtained at the left-hand-side 

extremity (I1, above)  and in the center of the wire (middle, below), between 

full-3D (Method 1 – label “Full FDTD”), classical TL model (Method 2 – 

Label “TL alone”) and modified FTL method (Method 3 – label “FTL with 

Total E field”). On the left hand side full frequency range. On the right hand 
side, high frequency range.  

C. Branched network configuration 

The previous test-case concerned only one TL but it is 

important to evaluate the robustness of the modified FTL 

model for branched network configurations, even if the 

previous single-TL test-case already included network aspects 

because of the connection of the two vertical wires to the 

horizontal wire. The PEC ground plane dimensions are 2.3 m 

x 1.7 m. Other main dimensions are reported in Fig. 7. A 

straight wire of radius 5 mm is connecting two metal boxes at 

the level of two connection points called “connector A” and 
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“connector B” and a transverse wire of radius 5 mm connects 

this straight wire to a connector C at the level of the ground 

plane with a vertical wire. As for the previous single TL test-

case, an excitation wire is running under the ground-plane in 

the direction of the straight wire. All wires, including the 

excitation wire are at a 10 cm height above or below the PEC 

ground plane. The mesh size in the 3D-model is 2.5 cm. Note 

that the two metal boxes are meshed in the 3D model as well 

as the excitation wire. 

 
Fig. 7. Geometrical configuration used for the validation on branched 

networks 

Fig. 8 presents the currents obtained at connector A in two 

loads configurations when all wire ends are either on 50  or 

on short-circuits. Full 3D FDTD reference results match those 

obtained with the modified FTL model. Despite some signal 

processing issues observed at low frequencies, the same 

conclusions as for the single TL can be drawn. The modified 

FTL model allows us to reproduce the wire radiation losses in 

the resonance region. The small shift observed in the short-

circuit configuration are not fully explained up to now but 

time to frequency signal processing is highly suspected due to 

time domain signals not fully returned to zero. 

  
Fig. 8. Currents at end A on the branched network configuration when all 

extremities are loaded on 50   (left) and short-circuit (right) 

IV. CONCLUSION AND PROSPECTS 

In this paper, we presented an extension of Agrawal’s FTL 

model in a frequency domain formulation that includes the 

reaction of the induced current on the scattered field. The 

formulation is obtained by establishing the relationship 

between two TL models of an electrical wire in a 3D structure. 

The first TL is made by the wire inside a fictitious surrounding 

cylinder. The second TL is made by the wire with respect to 

the 3D structure: this model is directly derived from the first 

TL model by the multiplication with a kL factor equal to the 

ratio of the p.u.l. inductances of the first and second TL 

models. We thereby obtain the modified FTL model, making 

the analogy with the usual Agrawal’s model. As Agrawal’s 

model, the MTLN model is referred to the 3D structure and 

can run independently from the 3D model. However there are 

some differences: 

- The source term is defined as an equivalent total 

tangential field made of the usual incident tangential 

electric field to which a scattered tangential electric field 

on the surface of a surrounding cylinder is added. This 

source term is multiplied by the kL factor. 

- The p.u.l. resistance of the TL with respect to the 3D 

structure is also multiplied by the kL factor. 

- An equivalent voltage is defined along the TL. As for 

Agrawal’s scattered voltage, this voltage is not used as 

such since its definition is quite complicated. Only the 

current is practically used in the resolution. 

Validations have been made on single-wire TL networks over 

PEC ground planes for both EM field illumination and direct 

voltage generator application by computing EM source fields 

with a FDTD model. Results have been compared with full-

3D calculations in which the single-wires were parts of the 3D 

mesh. In these applications with FDTD models, the modified 

FLT appears as a formulation in the frequency domain of the 

well-known Holland model (or its derivatives for oblique 

wires) in which the process of exchange and update of EM 

fields is now made a posteriori.  

Despite its theoretical interest, we must admit that the use of 

this modified model in future applications is not 

straightforward. The objective of the modified FTL approach 

is indeed to have an approach similar to Agrawal’s FTL model 

in which field terms are used as a distributed source terms 

applied in a MTLN model. Actually, the main interest of 

Agrawal’s model (or Taylor’s or Rachidi’s model) is that the 

sources terms are based on incident fields, which means that 

they are calculated with a full-wave calculation in the absence 

of the cables and any type of multiconductor cable can be used 

since the same incident field terms can be applied on the wires 

(provided the wires have the same route as the route on which 

the incident field have been determined). In the modified FTL 

model, the wires have to be present in the full-wave 

calculation. So we can ask ourselves the following question: 

what is the interest of making another calculation with a TL 

model when the 3D calculation has already provided the 

solution of the currents on the wire?  

As a matter of fact, the foreseen interest of this approach is 

clearly for MTLN applications. Indeed, as far as 

Multiconductor TL (MTLs) are concerned, we can anticipate 

that the scattered fields to be exchanged at the cylinder surface 

are dominated by the total current generated by all the wires of 

the MTL. This means that, provided an equivalent wire model 

of the MTL can be obtained, the scattered EM fields on the 

cylinder surface can be used and applied as source terms for 

each equivalent wire of the MTL, as done for usual FTL 

models. Several references have already investigated this 

problem of an equivalent wire or MTL models ([21], [22]) and 

could be used for this purpose.  

Finally, the requirement to have to define a fictitious cylinder 

could be certainly bypassed applying techniques such as test-

wires [23]. This technique allows the derivation of the source 

terms to be applied on a TL model thanks to the knowledge of 

the distribution of currents along the test-wire and the p.u.l. 

electrical parameters of its TL. From a practical point of view, 
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the test-wire is included in the 3D model and the currents 

along this wire are collected. Such a technique could be 

advantageously applied on our problem of the TL in the 

cylinder. Indeed the source terms obtained from the 

application of the test-wire method would be directly the ones 

derived in (28). 

Another possibility could be to choose appropriately the 

geometry of the cylinder; namely, a circular cylinder making a 

coaxial TL would be the simplest choice allowing easy 

determination of the inner TL p.u.l. electrical parameters, and 

therefore of the kL factor.  

All these perspectives will be the subjects of future 

investigation for determining the scope of practical application 

of this formalism for real cable bundle configurations. 
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