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Selected configuration interaction (SCI) methods, when complemented with a second-order perturbative correction,
provide near full configuration interaction (FCI) quality energies with only a small fraction of the Slater determinants
of the FCI space. However, a selection criterion based on determinants alone does not ensure a spin-pure wave func-
tion. In other words, such SCI wave functions are not eigenfunctions of the Ŝ 2 operator. In many situations (bond
breaking, magnetic system, excited state, etc), having a spin-adapted wave function is essential for a quantitatively
correct description of the system. Here, we propose an efficient algorithm which, given an arbitrary determinant space,
generates all the missing Slater determinants allowing one to obtain spin-adapted wave functions while avoiding manip-
ulations involving configuration state functions. For example, generating all the possible determinants with 6 spin-up
and 6 spin-down electrons in 12 open shells takes 21 CPU cycles per generated Slater determinant. The selection is
still done with individual determinants, and one can take advantage of the basis of configuration state functions in the
diagonalization of the Hamiltonian to reduce significantly the memory footprint.

Keywords: Selected Configuration Interaction ; spin-adaptation ; configuration state functions

I. INTRODUCTION

In recent years, selected configuration interaction (SCI)
methods1–3 have become more and more popular,4–31 espe-
cially for the accurate calculation of electronic excitation
energies.32–47 Determinant-based SCI refers to configuration
interaction in a truncated space of determinants. For instance,
a SCI with singles and doubles (SCISD) refers to the diago-
nalization of the CISD Hamiltonian with only a subset of cho-
sen (or selected) determinants belonging to the CISD space.
There exists many variants of SCI methods differing in two
major aspects. The first one is the nature of the target space:
the most common spaces are the multi-reference CI (MRCI)
space,5,10,48 the (frozen-core) full CI (FCI) space4,8,9,20,34 and
the complete active space (CAS).49 The second aspect in
which SCI methods differ are in the rules used to select the
determinants, thus affecting the convergence with respect to
the number of determinants and the computational cost. The
various permutations of such rules results in a plethora of SCI
methods.

Discussing the different kinds of selection rules is beyond
the scope of the present article. The reader who is not ac-
quainted with SCI methods only needs to be aware of a few
key aspects: (i) the selection criterion is chosen to include
the most energetically relevant determinants in the variational
space; (ii) SCI methods produce wave functions that are po-
tentially expanded in an arbitrary set of determinants; (iii) it
is of common practice to compute the Epstein-Nesbet second-
order perturbative correction (EPT2) to the variational energy,
in order to estimate the lowest eigenvalues of the CI Hamil-
tonian matrix defined by the method (CAS, MRCI, FCI, . . . );
(iv) as the number of determinants grows, EPT2 → 0 and the
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variational SCI energy converges monotonically to the exact
energy of the CI Hamiltonian.

A balanced description of excited states, magnetic systems,
and bond breakings require the wave functions to be spin-
adapted, i.e., eigenfunctions of the Ŝ 2 operator. The Slater
determinant many-particle representation is, by construction,
only strictly an eigenfunction of the Ŝ z operator and therefore
does not ensure a spin-pure wave function. The usual way to
enforce the wave function to be an eigenfunction of Ŝ 2 is to
work in a basis where each element of the basis is an eigen-
function of Ŝ 2 with the desired eigenvalue. These basis func-
tions are built as linear combinations of Slater determinants,
and are known as configuration state functions (CSF).

A natural option would be to express SCI in terms of CSFs.
However, due to the complexity in the calculation of matrix el-
ements in the CSF basis, many SCI implementations still rely
on determinants. Opting for the CSF representation would re-
quire a major effort for re-writing the software, such as the im-
portant work that was done in the NECI FCIQMC code which
now uses the graphical unitary group approach50,51 and the
ORCA program which uses the angular-momentum coupling
based approach52,53. In the present paper we follow a differ-
ent route and present simple recipes to ensure that the selected
wave functions are spin-adapted without requiring too many
modifications in a determinant-based code.

II. MANY-PARTICLE BASIS REPRESENTATIONS

A configuration is a vector of molecular orbital occupation
numbers. For example, the configuration (2, 1, 1, 1, 1) can be
written as a linear combination of six determinants
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or of two CSFs with coefficients A and B
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By definition, all the determinants belonging to the same CSF
are associated with the same configuration, and the determi-
nants associated with a given configuration may be involved
in multiple CSFs. Expressing Eq. (1) in terms of CSFs is
an overdetermined problem: six parameters (a, b, c, d, e, f ) for
determinants vs two parameters (A, B) for the CSFs, so it has
no unique solution in the general case. Only eigenfunctions
of the Ŝ 2 operator possess the necessary constraints to enable
the exact transformation.

A few years ago, Bytautas and Ruedenberg proposed a sim-
ple scheme to truncate large determinant-based wave func-
tions while maintaining the spin purity.54 The squared co-
efficients of the determinants within the same configuration
are summed together to produce the so-called space-product
weights, which are then used to truncate the wave function.
As the truncation occurs by removing configurations, one can
understand from Eqs. (1) and (2) that the removal of all the
determinants associated with a configuration is equivalent to a
removal all the CSFs associated with the same configuration,
hence keeping the spin purity of the wave function.

Following this idea, imposing spin adaptation in
determinant-based SCI methods can be done by (i) identify-
ing all the configurations of the determinants composing the
variational space, (ii) generating all the determinants of the
required multiplicity corresponding to these configurations,
and (iii) diagonalizing the Hamiltonian in this spin-complete
determinant space. Since the Hamiltonian commutes with the
Ŝ 2 operator, the obtained eigenfunction is automatically spin-
adapted. An efficient algorithm to carry out this procedure is
presented in this paper. Because the obtained wave functions
are spin-adapted, they can be exactly expressed in terms of
CSFs.55–57 Then, we take advantage of the reduction of the
number of parameters to reduce the memory requirement of
the Davidson diagonalization, which is the main bottleneck
in today’s SCI algorithms. All the presented algorithms
are implemented in the open-source Quantum Package
software.58

III. ALGORITHM

The wave function of a given electronic state is expressed
as

|Ψ〉 =
∑

I

cI |DI〉 (3)

where each Slater determinant DI is represented as a Waller-
Hartree double determinant,59

DI = d↑i d↓j (4)

i.e., the product of a determinant of spin-up (↑) orbitals d↑i and
a determinant of spin-down (↓) orbitals d↓j . Such a representa-
tion can be encoded as a pair of bit strings (di, d j), where each
bit string is of length Norb, the number of molecular orbitals.
The spin-up and spin-down orbitals originate from a restricted
Hartree-Fock or a CAS self-consistent field (CASSCF) calcu-
lation, so that the spatial part of these orbitals are common for
both spin manifolds. Within a bit string, each bit corresponds
to a spin-orbital; the bit is set to 1 if the orbital is occupied,
and it is set to 0 if the orbital is empty. In low-level languages
such as Fortran or C, a bit string may be stored as an array of
Nint 64-bit integers, where

Nint =

⌊
Norb − 1

64

⌋
+ 1 (5)

This representation allows for efficient determinant com-
parisons using bit-wise operation capabilities of modern
processors60 and will be convenient in the following.

All the CPU cycle measurements were performed on an
Intel(R) Xeon(R) Gold 6140 CPU@2.30GHz with the GNU
Fortran compiler 7.3.0, by reading the time stamp counter of
the CPU with the rdtsc instruction.

A. Identification of the configurations

The configuration pI associated with determinant DI in
Eq. (4), is a vector of integers defined as

[pI]k =


0 when the k-th orbital is unoccupied
1 when the k-th orbital is singly occupied
2 when the k-th orbital is doubly occupied

(6)

If pI is encoded as a pair of bit strings (p(1)
I , p

(2)
I ), where p(1)

I

and p(2)
I encode respectively the singly and doubly occupied

orbitals, the configuration can be computed asp(1)
I = di ⊕ d j

p
(2)
I = di ∧ d j

(7)

where ⊕ and ∧ denote respectively the xor and the and binary
operators.
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function compute_permutations(n,m)
/* n: input, number of bits set to 1 */

/* m: input, number of bits set to 0 */

/* v: output, an array of permutations */

/* u, t, t′, t′′ and v are encoded in at least n + m + 1 bits */

k← 0

u← (1 � n) − 1
while u < (1 � (n + m)) do
v[k]← u
k← k + 1

t← u ∨ (u − 1)
t′ ← t + 1

t′′ ← ((¬t ∧ t′) − 1) � (ctz(u) + 1)
u← t′ ∨ t′′

end while
return v

end function

FIG. 1. Anderson’s algorithm. All the configurations of n bits set
to 1 are generated in an integer of n + m bits in lexicographic order.
ctz(i) counts the number of trailing zeros, i � n shifts i by n bits
to the left, i � n shifts i by n bits to the right, ∧ is the bit-wise and
operator, and ∨ is the bit-wise or operator.

Transforming all the selected determinants into a list of
unique configurations can be done in linear time if a hash
value is associated with each configuration.61 Hence, the time
for this transformation is negligible.

B. Generating all the determinants associated with a
configuration

Given a configuration, one must generate all the possible
determinants by considering either a spin-up or a spin-down
electron in the singly occupied molecular orbitals, keeping the
numbers of spin-up and spin-down electrons fixed. One can
notice that, by doing so, all the generated determinants only
differ by these singly occupied orbitals, so from now on we
can consider a more compact representation: a bit string of
n↑ + n↓ bits, where n↑ and n↓ denote the numbers of spin-up
and spin-down unpaired electrons. The bit is set to 1 when
the orbital is occupied by a spin-up electron, and 0 when it is
occupied by a spin-down electron. The indices of the singly
occupied orbitals are kept in a look-up table m for later use.

To generate all the determinants keeping the numbers of
spin-up and spin-down electrons constant, we need to build
all the possible bit strings with n↑ bits set to 1 and n↓ bits set
to 0. This compact representation allows us to use Anderson’s
algorithm (see Fig. 1),62 which generates all the configura-
tions of n↑ bits set to 1 in a bit string of length n↑ + n↓ in
lexicographical order. To illustrate how this algorithm pro-
ceeds, we show in Table I the step-by-step transformations of
the variables with n↑ = 2 and n↓ = 2 from which the sequence
(0011, 0101, 0110, 1001, 1010, 1100) is produced.

Figure 2 gives a pictorial description of the data structures
used to generate a determinant. To build a generated determi-
nant (d↑, d↓) from a permutation u, one must

1. Fill the doubly occupied orbitals by setting both d↑ and

TABLE I. Evolution of the values of the variables as the algorithm
in Fig. 1 advances.

Iteration t t’ t” u

0 0011

1 0011 0100 0001 0101

2 0101 0110 0000 0110

3 0111 1000 0001 1001

4 1001 1010 0000 1010

5 1011 1100 0000 1100

pI

p
(2)
I

p
(1)
I

m

0123456789

2
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FIG. 2. The configuration pI is encoded as in Eq. (7). Singly and
doubly occupied orbitals are represented respectively in green and
red. The list of indices m of the singly occupied orbitals is built (in
blue), and this mapping is re-used to build the determinants from per-
mutations (yellow) generated by Anderson’s algorithm. Bit strings
and arrays are represented from right to left to be consistent with the
binary notation of Table I.

d↓ equal to p(2)
I .

2. Iterate over the bits of u. If the k-th bit is set to 1, set the
mk-th orbital of d↑ to 1, otherwise set the mk-th orbital
of d↓ to 1.

C. Further optimizations

As a first optimization, instead of creating each determinant
from the permutation as shown in Fig. 2, all the determinants
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can be generated iteratively by considering only the orbitals
that have changed from the previously generated determinant.
This avoids always setting all the n↑+ n↓ bits in the bit strings.
The integer obtained by v[k − 1]⊕ v[k] has bits set to 1 at the
positions where the bits differ between v[k − 1] and v[k]. The
positions of these bits can be found in a few cycles by

1. Counting the number of trailing zeros. This gives the
position of the least significant 1.

2. Setting the least significant 1 to 0 using
v[k]← v[k] ∧ (v[k] − 1).

and iterating until v[k] = 0.
A second optimization is to consider time-reversal symme-

try (i.e., exchanging all spin-up and spin-down electrons in an
even electron systems). When n↑ = n↓, one can remark that
v[ndet − 1 − k] = ¬v[k], where ndet is the number of determi-
nants generated:

ndet =
(n↑ + n↓)!

n↑!n↓!
(8)

Hence, it is sufficient to iterate over the first half of the per-
mutations of Anderson’s algorithm, and generate pairs of de-
terminants per iteration.

D. Reduction of the memory requirements

In the latest version of Quantum Package, the spin-pure
eigenstates were obtained by finding the lowest eigenstate
of a linear combination of the Hamiltonian and the Ŝ 2

matrices.58,63 At iteration n, the Davidson algorithm requires
the computation of the matrix W = H U, where U and W are
Ndet × Nstates matrices, where Ndet is the number of determi-
nants, and Nstates is greater than the number of states of in-
terest and adjusted to reduce the number of iterations for the
convergence of the algorithm.

In terms of storage, the W and U matrices of all n itera-
tions need to be stored. As the storage increases with iter-
ations, it is common practice to define a maximum iteration
nmax where all the U matrices are compressed into a single
Ndet × Nstates improved U matrix, and the algorithm restarts. If
one wants to monitor the expectation value

〈
Ŝ 2
〉
, one needs

also to compute Y = S2 U, and store the Y matrices of all iter-
ations. As the computation of Ŝ 2 is made only for monitoring
purposes, the Y matrices can be stored in single precision to
limit the increase in the memory requirements. Hence, in the
determinant basis, the required space for the diagonalization
is 2.5 × Ndet × Nstates × nmax.

Since the selected determinant space contains all the deter-
minants of each configuration, we can make an exact transfor-
mation from the determinant basis to the CSF basis,56,57 thus
rendering the many-particle basis representation more com-
pact. Hence, we now store the U and W matrices in the CSF
basis, while the computation W = H U is still performed in
the determinant basis for simplicity. As the wave function is
guaranteed to be an eigenstate of Ŝ 2, it is no longer necessary
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FIG. 3. Avoided crossing of LiF, with and without imposing spin
symmetry. The energy (in hartree) of the two lowest singlet states of
LiF is represented as a function of the bond length (in Å).

to compute and store S2, so the storage requirements are re-
duced to 2 × Ndet × Nstates + 2 × NCSF × Nstates × nmax, where
NCSF � Ndet is the number of CSFs (see below).

IV. NUMERICAL TESTS

In this section, the configuration interaction using a per-
turbative selection made iteratively (CIPSI) algorithm3,58 is
employed to select determinants of the external space: they
are selected by the magnitude of their contribution to the
second-order perturbative correction to the energy. The spin-
adaptation step is introduced between the selection step and
the diagonalization. We would like to emphasize that we
use CIPSI because it is the method implemented in Quantum
Package, but any CI or SCI could be have been considered.

A. Avoided crossing of LiF

The avoided crossing between the ionic and neutral 1Σ+

states of LiF is a common benchmark for correlated methods,
as the location of the crossing is highly sensitive to the amount
of correlation.64–66 At large distances, the lowest triplet state is
very close in energy to the singlet states. If the wave function
is not spin-adapted, the triplet state will mix with the singlets
during the selection, and the convergence of the CIPSI calcu-
lation to the correct states is not guaranteed.

We report in Fig. 3 the potential energy curve of the two
lowest singlet states of LiF computed with and without impos-
ing spin adaptation. For all the distances, the CIPSI calcula-
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FIG. 4. Difference of extrapolated FCI energy obtained with and
without spin-adaptation (purple) along the dissociation path of N2

(aug-cc-pVDZ). The overlaps of the wave functions obtained with
the two schemes are reported in green.

tions were run blindly (with no user interaction), starting with
the CASSCF(2,2)/aug-cc-pVDZ wave functions of both states
(four determinants). Only the lowest molecular orbital was
frozen, corresponding to the 1s orbital of the fluorine atom.
The calculations were stopped when the second-order pertur-
bative correction was below 0.1 mEh or when the number of
determinants reached 4 million.

Figure 3 shows that for large distances, without spin adap-
tation, there are multiple erratic points for which the two ob-
tained states are not the desired ones. This curve also shows
that all the points obtained with spin-adaptation converged to
the correct states, giving a smooth potential energy curve.

B. Dissociation of N2

Selected CI methods provide not only the energies of the
states of interest, but also the corresponding wave functions
which can be used for post-processing. For instance, wave
functions computed with CIPSI have shown to be excellent
choices of trial wave functions for quantum Monte Carlo
calculations.19,25,26,36,46,67 When a wave function is used for
further calculations, the spin-adapted characteristic is particu-
larly important because it can enforce a continuous behavior
of wave function along a dissociation curve, especially when
different spin states become quasi-degenerate.

To illustrate the importance of this feature, we compute
the dissociation curve of the singlet ground state of the N2
molecule with the aug-cc-pVDZ basis set, and estimate the
frozen-core FCI energy by extrapolating the variational en-
ergy with respect to the renormalized second-order perturba-
tive correction.58 The curve is first computed using a simple
determinant selection, minimizing the energy without consid-
ering the spin operator. Then, the curve is computed using the
spin-adapted determinant selection, and we report in Fig. 4 the
difference in extrapolated FCI energies, as well as the overlap
between the two wave functions at each point of the curve. For
each point of the curve, the calculation was stopped when the
wave function was expanded on more than a million determi-
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of Ndet in the case of dissociated N2 with the aug-cc-pVDZ basis.

nants. This corresponds to second-order perturbative energy
corrections smaller than 0.012 hartree.

When the triple bond is broken, N2 dissociates into two ni-
trogen atoms, each in its high-spin configuration. At disso-
ciation, the two nitrogens can be combined in a singlet, in a
triplet or in a quintet state, all with the same energy. Hence,
without any particular treatment all these spin states mix to-
gether and produce spin contaminated wave functions. As the
determinant-based Epstein-Nesbet perturbation theory is not
invariant with respect to the magnetic quantum number ms,
spin contamination in the reference wave function affects the
second-order perturbative correction and makes the extrapo-
lations less accurate. This effect can be observed in Fig. 4
where for distances larger than 2 Å the overlap between the
spin-adapted singlet wave function and the determinant wave
function shows a significant spin contamination, leading to
fluctuations in the extrapolated energies as large as a milli-
hartree.

Figure 5 shows the memory requirements of the Davidson
routines in the determinant-based and the CSF-based storage.
From this figure, it is clear that storing the matrices in the
CSF basis makes a big difference in terms of memory require-
ments, with a reduction by a factor 4 in the case of dissociated
N2 at an internuclear distance of 5 Åwith the aug-cc-pVDZ
basis.

Figure 6 displays the ratio Ndet/NCSF as a function of Ndet
for the same system, which clearly tells us that the number of
determinants increases faster than the number of CSFs. This
can be explained by the fact that upon starting with a closed
shell reference, during the CIPSI selection, determinants with
a large number of open shells appear later than determinants
with mostly closed shells. Hence, we expect the reduction in
terms of memory requirements to be increasingly notable as
the number of CIPSI iterations increases.
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V. CONCLUSION

We have presented a general algorithm to complement an
arbitrary wave function with all the required Slater determi-
nants to obtain eigenstates of the Ŝ 2 operator when the Hamil-
tonian is diagonalized, with negligible computational over-
head. This spin adaptation step is introduced after the deter-
minant selection of the SCI algorithm, and enables the pos-
sibility to switch to the CSF basis for the diagonalization of
the Hamiltonian to reduce the memory requirements which is
one of the limiting step is today’s SCI algorithms. We would
like to emphasize that this spin-adaptation procedure can be
applied to any SCI-type method: CIPSI, SHCI, FCIQMC, etc.
We hope to report further algorithmic improvements in the
near future following the same philosophy.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Sean Eron Anderson
for creating the Bit Twiddling Hacks62 web page.

This work is supported by the European Centre of Excel-
lence in Exascale Computing TREX - Targeting Real Chemi-
cal Accuracy at the Exascale. This project has received fund-
ing from the European Union’s Horizon 2020 - Research and
Innovation program - under grant agreement no. 95216. AS
and PFL were also supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant agreement No. 863481).
Funding from Projet International de Coopération Scientifique
(PICS08310) is acknowledged. KG acknowledges support
from grant number CHE1762337 from the U.S. National Sci-
ence Foundation. This research used resources of the Ar-
gonne Leadership Computing Facility, which is a U.S. De-
partment of Energy Office of Science User Facility operated
under contract DE-AC02-06CH11357. This work was per-
formed using HPC resources from CALMIP (Toulouse) under
allocation 2021-18005 and from GENCI-TGCC (Grant 2020-
A0040801738).

1J. L. Whitten and M. Hackmeyer, J. Chem. Phys. 51, 5584 (1969).
2C. F. Bender and E. R. Davidson, Phys. Rev. 183, 23 (1969).
3B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745 (1973).
4J. Greer, J. Comput. Chem. 146, 181 (1998).
5M. Hanrath and B. Engels, Chem. Phys. 225, 197 (1997).
6P. Stampfuß and W. Wenzel, J. Chem. Phys. 122, 024110 (2005).
7L. Bytautas and K. Ruedenberg, Chem. Phys. 356, 64 (2009).
8G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106
(2009).

9E. Giner, A. Scemama, and M. Caffarel, Can. J. Chem. 91, 879 (2013).
10R. J. Buenker, R. A. Phillips, S. Krebs, H.-P. Liebermann, A. B. Alekseyev,

and P. Funke, Theor. Chem. Acc. 133, 1468 (2014).
11A. A. Holmes, N. M. Tubman, and C. J. Umrigar, J. Chem. Theory Comput.

12, 3674 (2016).
12W. Liu and M. Hoffmann, Theor. Chem. Acc. 133, 1481 (2014).
13W. Liu and M. R. Hoffmann, J. Chem. Theory Comput. 12, 1169 (2016).
14Y. Lei, W. Liu, and M. R. Hoffmann, Mol. Phys. 115, 2696 (2017).
15N. Zhang, W. Liu, and M. R. Hoffmann, J. Chem. Theory Comput. 16,

2296 (2020).
16P. M. Zimmerman, J. Chem. Phys. 146, 104102 (2017).
17Y. Ohtsuka and J. ya Hasegawa, J. Chem. Phys. 147, 034102 (2017).
18J. P. Coe, J. Chem. Theory Comput. 14, 5739 (2018).
19A. Scemama, Y. Garniron, M. Caffarel, and P.-F. Loos, J. Chem. Theory

Comput. 14, 1395 (2018).
20F. A. Evangelista, J. Chem. Phys. 140, 124114 (2014).
21H.-J. Flad, T. Rohwedder, and R. Schneider, in Progress in Physical Chem-

istry Volume 3 (Oldenbourg Wissenschaftsverlag GmbH, 2010) pp. 361–
379.

22J. J. Eriksen, T. A. Anderson, J. E. Deustua, K. Ghanem, D. Hait, M. R.
Hoffmann, S. Lee, D. S. Levine, I. Magoulas, J. Shen, N. M. Tubman,
K. B. Whaley, E. Xu, Y. Yao, N. Zhang, A. Alavi, G. K.-L. Chan, M. Head-
Gordon, W. Liu, P. Piecuch, S. Sharma, S. L. Ten-no, C. J. Umrigar, and
J. Gauss, J. Phys. Chem. Lett. 11, 8922 (2020).

23Y. Garniron, A. Scemama, E. Giner, M. Caffarel, and P. F. Loos, J. Chem.
Phys. 149, 064103 (2018).

24P.-F. Loos, Y. Damour, and A. Scemama, J. Chem. Phys. 153, 176101
(2020).

25A. Scemama, E. Giner, A. Benali, and P.-F. Loos, J. Chem. Phys. 153,
174107 (2020).

26A. Benali, K. Gasperich, K. D. Jordan, T. Applencourt, Y. Luo, M. C. Ben-
nett, J. T. Krogel, L. Shulenburger, P. R. C. Kent, P.-F. Loos, A. Scemama,
and M. Caffarel, J. Chem. Phys. 153, 184111 (2020).

27J. B. Schriber and F. A. Evangelista, J. Chem. Phys. 144, 161106 (2016).
28J. Li, M. Otten, A. A. Holmes, S. Sharma, and C. J. Umrigar, J. Chem.

Phys. 149, 214110 (2018).
29Y. Yao, E. Giner, J. Li, J. Toulouse, and C. J. Umrigar, J. Chem. Phys. 153,

124117 (2020).
30J. Li, Y. Yao, A. A. Holmes, M. Otten, Q. Sun, S. Sharma, and C. J. Umri-

gar, Phys. Rev. Research 2, 012015 (2020).
31K. T. Williams, Y. Yao, J. Li, L. Chen, H. Shi, M. Motta, C. Niu, U. Ray,

S. Guo, R. J. Anderson, J. Li, L. N. Tran, C.-N. Yeh, B. Mussard, S. Sharma,
F. Bruneval, M. van Schilfgaarde, G. H. Booth, G. K.-L. Chan, S. Zhang,
E. Gull, D. Zgid, A. Millis, C. J. Umrigar, and L. K. Wagner, Phys. Rev. X
10, 011041 (2020).

32J. P. Coe and M. J. Paterson, J. Chem. Phys. 139, 154103 (2013).
33J. B. Schriber and F. A. Evangelista, J. Chem. Theory Comput. 13, 5354

(2017).
34A. A. Holmes, C. J. Umrigar, and S. Sharma, J. Chem. Phys. 147, 164111

(2017).
35P.-F. Loos, A. Scemama, A. Blondel, Y. Garniron, M. Caffarel, and

D. Jacquemin, J. Chem. Theory Comput. 14, 4360 (2018).
36A. Scemama, A. Benali, D. Jacquemin, M. Caffarel, and P.-F. Loos, J.

Chem. Phys. 149, 034108 (2018).
37M. Dash, S. Moroni, A. Scemama, and C. Filippi, J. Chem. Theory Com-

put. 14, 4176 (2018).
38A. D. Chien, A. A. Holmes, M. Otten, C. J. Umrigar, S. Sharma, and P. M.

Zimmerman, J. Phys. Chem. A 122, 2714 (2018).
39P.-F. Loos, M. Boggio-Pasqua, A. Scemama, M. Caffarel, and

D. Jacquemin, J. Chem. Theory Comput. 15, 1939 (2019).

http://dx.doi.org/10.1063/1.1671985
http://dx.doi.org/10.1103/physrev.183.23
http://dx.doi.org/10.1063/1.1679199
http://dx.doi.org/10.1006/jcph.1998.5953
http://dx.doi.org/10.1016/s0301-0104(97)00241-3
http://dx.doi.org/10.1063/1.1829045
http://dx.doi.org/10.1016/j.chemphys.2008.11.021
http://dx.doi.org/10.1063/1.3193710
http://dx.doi.org/10.1063/1.3193710
http://dx.doi.org/10.1139/cjc-2013-0017
http://dx.doi.org/10.1007/s00214-014-1468-7
http://dx.doi.org/10.1021/acs.jctc.6b00407
http://dx.doi.org/10.1021/acs.jctc.6b00407
http://dx.doi.org/10.1007/s00214-014-1481-x
http://dx.doi.org/10.1021/acs.jctc.5b01099
http://dx.doi.org/10.1080/00268976.2017.1308029
http://dx.doi.org/10.1021/acs.jctc.9b01200
http://dx.doi.org/10.1021/acs.jctc.9b01200
http://dx.doi.org/10.1063/1.4977727
http://dx.doi.org/10.1063/1.4993214
http://dx.doi.org/10.1021/acs.jctc.8b00849
http://dx.doi.org/10.1021/acs.jctc.7b01250
http://dx.doi.org/10.1021/acs.jctc.7b01250
http://dx.doi.org/10.1063/1.4869192
http://dx.doi.org/10.1524/9783486711639.361
http://dx.doi.org/10.1524/9783486711639.361
http://dx.doi.org/ 10.1021/acs.jpclett.0c02621
http://dx.doi.org/ 10.1063/1.5044503
http://dx.doi.org/ 10.1063/1.5044503
http://dx.doi.org/10.1063/5.0027617
http://dx.doi.org/10.1063/5.0027617
http://dx.doi.org/ 10.1063/5.0026324
http://dx.doi.org/ 10.1063/5.0026324
http://dx.doi.org/10.1063/5.0021036
http://dx.doi.org/10.1063/1.4948308
http://dx.doi.org/ 10.1063/1.5055390
http://dx.doi.org/ 10.1063/1.5055390
http://dx.doi.org/ 10.1063/5.0018577
http://dx.doi.org/ 10.1063/5.0018577
http://dx.doi.org/10.1103/PhysRevResearch.2.012015
http://dx.doi.org/10.1103/PhysRevX.10.011041
http://dx.doi.org/10.1103/PhysRevX.10.011041
http://dx.doi.org/10.1063/1.4824888
http://dx.doi.org/10.1021/acs.jctc.7b00725
http://dx.doi.org/10.1021/acs.jctc.7b00725
http://dx.doi.org/10.1063/1.4998614
http://dx.doi.org/10.1063/1.4998614
http://dx.doi.org/ 10.1021/acs.jctc.8b00406
http://dx.doi.org/ 10.1063/1.5041327
http://dx.doi.org/ 10.1063/1.5041327
http://dx.doi.org/10.1021/acs.jctc.8b00393
http://dx.doi.org/10.1021/acs.jctc.8b00393
http://dx.doi.org/ 10.1021/acs.jpca.8b01554
http://dx.doi.org/ 10.1021/acs.jctc.8b01205


7

40P.-F. Loos, A. Scemama, M. Boggio-Pasqua, and D. Jacquemin, J. Chem.
Theory Comput. 16, 3720 (2020).

41P.-F. Loos, A. Scemama, and D. Jacquemin, J. Phys. Chem. Lett. 11, 2374
(2020).

42P. F. Loos, F. Lipparini, M. Boggio-Pasqua, A. Scemama, and
D. Jacquemin, J. Chem. Theory Comput. 16, 1711 (2020).

43M. Véril, A. Scemama, M. Caffarel, F. Lipparini, M. Boggio-Pasqua,
D. Jacquemin, and P.-F. Loos, WIREs Comput. Mol. Sci. n/a, e1517.

44M. Dash, J. Feldt, S. Moroni, A. Scemama, and C. Filippi, J. Chem. Theory
Comput. 15, 4896 (2019).

45E. Giner, A. Scemama, J. Toulouse, and P.-F. Loos, J. Chem. Phys. 151,
144118 (2019).

46A. Scemama, M. Caffarel, A. Benali, D. Jacquemin, and P.-F. Loos, Res.
Chem. 1, 100002 (2019).

47N. S. Blunt, S. D. Smart, G. H. Booth, and A. Alavi, J. Chem. Phys. 143,
134117 (2015).

48F. Neese, J. Chem. Phys. 119, 9428 (2003).
49J. E. T. Smith, B. Mussard, A. A. Holmes, and S. Sharma, J. Chem. Theory

Comput. 13, 5468 (2017).
50W. Dobrautz, S. D. Smart, and A. Alavi, J. Chem. Phys. 151, 094104

(2019).
51G. Li Manni, W. Dobrautz, and A. Alavi, J. Chem. Theory Comput. 16,

2202 (2020).
52V. G. Chilkuri and F. Neese, J. Comput. Chem. ( forthcoming 2020).
53V. G. Chilkuri and F. Neese, J. Chem. Theory Comput. ( forthcoming

2020).

54L. Bytautas and K. Ruedenberg, in ACS Symposium Series (American
Chemical Society, 2007) pp. 103–123.

55R. Pauncz, Spin Eigenfunctions: Construction and Use (Springer US,
2012).

56J. Olsen, J. Chem. Phys. 141, 034112 (2014).
57B. S. Fales and T. J. Martínez, J. Chem. Phys. 152, 164111 (2020).
58Y. Garniron, T. Applencourt, K. Gasperich, A. Benali, A. Ferté, J. Paquier,

B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse, P. Barbaresco, N. Renon,
G. David, J.-P. Malrieu, M. Véril, M. Caffarel, P.-F. Loos, E. Giner, and
A. Scemama, J. Chem. Theory Comput. 15, 3591 (2019).

59R. Pauncz, Int. J. Quantum Chem. 35, 717 (1989).
60A. Scemama and E. Giner, arXiv (2013), 1311.6244.
61D. Bitton and D. J. DeWitt, ACM Trans. Database Syst. 8, 255 (1983).
62“Bit twiddling hacks,” (2021), accessed Jan 15 2021.
63B. S. Fales, E. G. Hohenstein, and B. G. Levine, J. Chem. Theory Comput.

13, 4162 (2017).
64D. Casanova, J. Chem. Phys. 137, 084105 (2012).
65Ö. Legeza, J. Röder, and B. A. Hess, Mol. Phys. 101, 2019 (2003).
66Y. Garniron, E. Giner, J.-P. Malrieu, and A. Scemama, J. Chem. Phys. 146,

154107 (2017).
67M. Caffarel, T. Applencourt, E. Giner, and A. Scemama, J. Chem. Phys.

144, 151103 (2016).

http://dx.doi.org/10.1021/acs.jctc.0c00227
http://dx.doi.org/10.1021/acs.jctc.0c00227
http://dx.doi.org/10.1021/acs.jpclett.0c00014
http://dx.doi.org/10.1021/acs.jpclett.0c00014
http://dx.doi.org/ 10.1021/acs.jctc.9b01216
http://dx.doi.org/ https://doi.org/10.1002/wcms.1517
http://dx.doi.org/ 10.1021/acs.jctc.9b00476
http://dx.doi.org/ 10.1021/acs.jctc.9b00476
http://dx.doi.org/10.1063/1.5122976
http://dx.doi.org/10.1063/1.5122976
http://dx.doi.org/ 10.1016/j.rechem.2019.100002
http://dx.doi.org/ 10.1016/j.rechem.2019.100002
http://dx.doi.org/10.1063/1.4932595
http://dx.doi.org/10.1063/1.4932595
http://dx.doi.org/10.1063/1.1615956
http://dx.doi.org/10.1021/acs.jctc.7b00900
http://dx.doi.org/10.1021/acs.jctc.7b00900
http://dx.doi.org/10.1063/1.5108908
http://dx.doi.org/10.1063/1.5108908
http://dx.doi.org/10.1021/acs.jctc.9b01013
http://dx.doi.org/10.1021/acs.jctc.9b01013
http://dx.doi.org/10.1021/bk-2007-0958.ch007
https://books.google.fr/books?id=VADyBwAAQBAJ
http://dx.doi.org/10.1063/1.4884786
http://dx.doi.org/10.1063/5.0005155
http://dx.doi.org/ 10.1021/acs.jctc.9b00176
http://dx.doi.org/10.1002/qua.560350607
https://arxiv.org/abs/1311.6244
http://arxiv.org/abs/1311.6244
http://dx.doi.org/10.1145/319983.319987
https://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation
http://dx.doi.org/10.1021/acs.jctc.7b00466
http://dx.doi.org/10.1021/acs.jctc.7b00466
http://dx.doi.org/10.1063/1.4747341
http://dx.doi.org/10.1080/0026897031000155625
http://dx.doi.org/10.1063/1.4980034
http://dx.doi.org/10.1063/1.4980034
http://dx.doi.org/10.1063/1.4947093
http://dx.doi.org/10.1063/1.4947093

	Spin-adapted selected configuration interaction in a determinant basis
	Abstract
	I Introduction
	II Many-particle basis representations
	III Algorithm
	A Identification of the configurations
	B Generating all the determinants associated with a configuration
	C Further optimizations
	D Reduction of the memory requirements

	IV Numerical tests
	A Avoided crossing of LiF
	B Dissociation of N2

	V Conclusion
	 Acknowledgments


