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Abstract. Bayesian and probabilistic models are widely used in image
processing to handle noise due to various alteration phenomena. To ben-
efit from the spatial information in a tractable way, Markov Random
Fields (MRF) are often assumed with isotropic neighborhoods, that is
however at the detrimental of the preservation of thin structures. In this
study, we aim at relaxing this assumption on stationarity and isotropy of
the neighborhood shape in order to get a prior probability term that is
relevant not only within the homogeneous areas but also close to object
borders and within thin structures. To tackle the issue of neighborhood
shape estimation, we propose to base on tensor voting, that allows for
the estimation of structure direction and saliency at various scales. We
propose three main ways to derive anisotropic neighborhoods, namely
shape-based, target-based and cardinal-based neighborhood. Then, hav-
ing defined the neighborhood field, we introduce an energy minimized
using graph cuts, and illustrate the benefits of our approach against the
use of isotropic neighborhoods in the applicative context of crack detec-
tion. First results on such a challenging problem are very encouraging.

Keywords: Thin structures · Segmentation ·Anisotropic neighborhoods
· Superpixels · Graph cuts.

1 Introduction

Image segmentation is a challenging task in the computer vision field, which
deals with the problem of partitioning an image (or video) into multiple regions
with labels that may later be used in higher level tasks, like object classification,
detection or tracking. This is an ill-posed problem. At pixel level, such opera-
tion is prone to noise, corrupted data and all kind of optic phenomena altering
the original image. A common way to overcome these difficulties is to take into
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account spatial relationships between close pixels in order to favor regular solu-
tions. Classically, one may model the 2-dimensional field of labels as a MRF [10]
and compute the segmentation using the Maximum A Posteriori (MAP).

Variational approaches are widely used to provide solutions minimizing a
functional gathering energy terms representing data fidelity and regularization
terms. The numerous energy models for reducing the impact of image artifacts
over the output segmentation nevertheless tend to share a common drawback:
They behave poorly on thin structures1, because of the small size and complex
geometry of the latter with respect to neighborhood ones. The early removal of
such structures is a well known effect of Total Variation (TV) regularization (e.g.
in image reconstruction [20]) and Potts regularization (e.g. in image segmenta-
tion [14]). Thin structures are however ubiquitous in a number of applications
(such as medical imaging or quality control) and detecting them as accurately
as possible is therefore of great interest.

Alternatively, superpixel decomposition methods have been developed for
grouping pixels sharing similar radiometric intensities into regions of controlled
spatial extent. Superpixel partitions are generally seen as oversegmentations that
preserve small structures but also noise. The benefits of superpixel decomposition
is thus to drastically reduce the number of elements to process while keeping the
geometrical information that is often lost with multi-resolution approaches and
leaving noise removal for further processing steps.

Dealing with further processing, a major drawback of a superpixel segmen-
tation is that the usual hypothesis of a regular lattice is lost (i.e. pixels are all of
the same size and shape). As a result, image segmentation approaches taking ad-
vantage of superpixels must cope with these problems and introduce new spatial
relationships. This induces a neighborhood construction step even for isotropic
neighborhoods: For instance, a simple criterion is that superpixels are consid-
ered as neighbors when they share a common border ([21,15,9,6]). The authors
of [21] propose to minimize an energy using graph cuts on the adjacency graph
obtained from the watershed of the input image. In this graph, edges connecting
two adjacent regions are weighted upon their common border length, similarly
to [6]. Those neighborhood fields based on adjacency do not favor specific ori-
entations of neighborhoods with respect to superpixel context and/or location.
The approach of [11] is to gather all superpixels whose centroid belongs to a disc

1 In n-dimensional images, thin structures or tubular structures are characterized by
a significantly smaller size in at least one of their n dimensions.
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centered on it and is therefore isotropic as in most of the other superpixel-based
segmentation approaches.

At pixel level however, anisotropic approaches have been introduced to min-
imize the alteration of thin structures by regularization processes [13,7]. It cor-
responds to the relaxation of the isotropic hypothesis often introduced when
formulating the problem as a MRF. As an alternative to the weighted Total
Variation (TV) [19], the authors of [17] introduce a directional TV approach,
based on a “vesselness feature” which aims to detect thin structures. Finally, since
we believe that structure orientation estimation is a key aspect of anisotropic
regularization approaches, let us mention different ways to estimate it: tensor
voting approaches [16,5], vesselness operators like RORPO [18], the Frangi vessel-
ness [8], or structure aware regression filters [23] to perform structure-dependent
image smoothing. By analogy with usual probabilistic modeling, uniform hy-
pothesis widely used in the absence of prior knowledge corresponds to isotropic
neighborhood, and specific prior distribution corresponds to anisotropic neigh-
borhood which can be derived from the observation of the local orientation in
our case.

We thus propose a methodology that both allows for the relaxation of isotropic
neighborhood which is all the more relevant that we consider superpixel level,
and provides regularized results robust to noise. We consider in this context the
construction of elliptic neighborhoods, that originate from [7] and [11], and of
two path-based neighborhoods. Similarly to [17], we expect these anisotropic
neighborhoods to take into account the orientations of image’s structures. Thus,
we introduce a new field embedding these orientations computed from tensor
voting [16]. Finally, we formulate the segmentation problem in an energy mini-
mization framework, and solve it using graph cuts.

The rest of the paper is organized as follows. The problem formulation is
presented in Section 2 and the construction of isotropic and anisotropic neigh-
borhoods is detailed in Section 3. Section 4 introduces the energy terms imple-
mented and Section 5 compares our results against those obtained with isotropic
neighborhoods on real and simulated images. Finally, Section 6 outlines the con-
tributions of the paper and discuss future work.

2 Problem definition

A superpixel is a group of pixels, defined by their coordinates in the n-dimensional
space, n ∈ N>0 (n = 2 in the experiments presented in Section 5). Since each
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pixel belongs to one and only one superpixel, the set S of K ∈ N>0 superpixels is
a partition of the original image. Denoting by P the set of pixels, then each super-
pixel s is an element of S ⊂ 2P , i.e. s ∈ 2P where 2X denotes the power set of a set
X. The partition constraint implies that ∀p ∈ P ,∃!s ∈ S such that p ∈ s. Notice
that the shape of any superpixel is also usually constrained to be composed of a
single connected component. We denote by F the feature space holding the spec-
tral information associated to any pixel or superpixel, for instance R (grayscale
images), R3 (color images) or a higher dimensional space (hyperspectral images).

To stress that our approach can apply indifferently to an image of pixels or
of superpixels, we define the position and the features vector of a superpixel
s ∈ S . In our case (but other choices could have been done depending on the
application), they are the barycenter of the coordinates (in n-dimensional space)
of the pixels that compose s and the feature barycenter (in F) of these same
pixels: The image of superpixels (with superpixels possibly reduced to a single
pixel) being denoted I ∈ FS , ∀s ∈ S , I(s) ∈ F is the mean of color (or spectral)
features of all pixels in s. Given a finite set C = {1, . . . , C} of C ∈ N>0 classes,
segmenting the image is equivalent to finding a field of labels u ∈ CS .

We use the MAP criterion to assign, given the image I, a label us ∈ C to s,
∀s ∈ S . To this end, we set up a functional E, to be minimized over the field of
labels u ∈ CS , that encompasses different priors on the labeling u:

E(u, V ) = E1(u) + αE2(u, V ), (1)

where α ∈ R>0 is a parameter controlling the balance between the data fidelity
term E1 and the smoothness term E2, and V : S → 2S (2S denotes the powerset
of S) is the neighborhood field that is fixed. Note that E1 only depends on the
image data and on u. Smoothness prior on the labeling u yields the smoothness
term E2 that is itself based on neighborhood field definition. In this study, we
only only consider the second order cliques, and we denote by N ⊂ S2 the set
of second order cliques of superpixels. Note that using such a definition, the
superpixels of any pair (s, t) ∈ N are not required to have a common boundary.
For any superpixel s ∈ S , we define the neighborhood V (s) of s as

V (s) = {t ∈ S | (s, t) ∈ N }.

With the relaxation of isotropy and stationarity constraints on V comes
the need to introduce additional priors. First, we formulate the hypothesis that
the structure of the neighborhood of a superpixel depends on the structure of
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the objects in the image. We model such information of structure through a
symmetric second order tensor field T ∈ (Rn×n)S and assume that it can be
built from the field of labels u. Other considered priors yield different ways to
construct the neighborhood field V , presented in the next section.

3 Proposed neighborhoods construction

In this section, we aim at defining the neighborhood field V : S → 2S , possibly
anisotropic and non stationary. To each site s ∈ S , we associate a set of sites
V (s) ∈ 2S , where s is either a superpixel or a pixel, such definition being con-
sistent with S = P . To underline the genericity of our formulation, we consider
both cases in our experiments.

The construction of our anisotropic neighborhoods aims at encouraging strong
relationships between sites aligned with respect to the directions of the thin
structures of the image. As explained in Section 1, the characteristics thereby
depicted for these structures, namely orientation and saliency, may be retrieved
from vesselness operators ([23,8,18]) or Tensor Voting ([16]). In this study, we
consider this latter approach where a scale parameter σ ∈ R>0 sets the span
of the voting field. Whatever the way they have been estimated, let us repre-
sent the thin structure features in a field of second order tensors T ∈ (Rn×n)

S .
For any site s ∈ S , local orientation and saliency of structure are derived from
the eigenvectors and the eigenvalues of the tensor Ts. Eigenvectors are ranked
by decreasing order of their corresponding eigenvalue. More precisely, for any
site s ∈ S , the construction of V is achieved using a set of vectors, (−→vi (Ts))n−1i=0 ,
where −→vi (Ts) ∈ Rn is collinear with the ith eigenvector with its norm being equal
to the ith eigenvalue, ∀i ∈ {0, . . . , n− 1}.

We distinguish two families of anisotropic neighborhoods, namely shape-
based neighborhoods and path-based neighborhoods, both compared (see Sec-
tion 5) against the following neighbourhoods: Stawiaski’s boundary-based neigh-
borhood [21] and Giraud’s neighborhood [11]. Note that the latter can be seen
as an isotropic restriction of our shape-based neighborhood. Path-based neigh-
borhoods stem from the idea of adapting the neighborhood structure to 1-
dimensional thin structures, represented by paths. Formally, for any k ∈ N>0,
we define a path of cardinality k as a set of sites (s1, . . . , sk) ∈ Sk such that,
in our case, (si, si+1) have a common boundary (see [21]), ∀i ∈ {1, . . . , k − 1}.
Moreover, we denote by PK the set of paths of cardinality K for any K ∈ N>0

and by P the set of paths of any cardinality k ∈ N>0. In what follows, we detail
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three different ways to construct the neighborhood field V using the tensor field
T .

3.1 Shape-based neighborhoods

We are inspired of [11], using superpixel centroid relative locations and n-dimensional
shapes instead of discs to settle the shape-based neighborhoods (shape). When-
ever the centroid of a superpixel belongs to the computed neighborhood shape
of a second one, it is added to the neighborhood of the latter. For computational
reasons, we discretize the orientations of the parametric shapes based on the one
of −→v0(Ts) for any site s ∈ S , which boils down to the use of a dictionary of
neighborhood shapes. Notice that the neighborhood V (s) of any site s ∈ S is
not necessarily connected with such an approach.

3.2 Target-based neighborhoods

Target-based neighborhood (target) is a path-based neighborhood that aims
at constructing the neighborhood V (s) of a site s ∈ S by connecting it to two
distant sites t0, t1 ∈ S (named “target”) through paths of minimal energy. Hence,
the connectedness along these paths (and so V (s)) is thus ensured by definition.
We propose to find these paths in two stages. Firstly, for any j ∈ {0, 1}, targets
connecting s are found with

t∗j ∈ argmin
t∈Ṽ (s)

‖I(s)− I(t)‖22 − β‖
−→
st‖2 sign ((−1)j〈−→v0(Ts),

−→
st〉), (2)

where β ∈ R>0 is a free parameter, Ṽ (s) denotes a shape-based neighborhood
(see Section 3.1), sign (.) denotes the sign of a real number, 〈., .〉 denotes the scalar
product, ‖.‖ denotes the Euclidean norm and −→st denotes the vector connecting
any pair of sites (s, t) ∈ S2. In Eq. (2), the first term favors the sites s and t

to have similar image intensities while the second term favors far targets from s

that are aligned with −→v0(Ts).

Secondly, paths of minimal energy connecting the site s ∈ S to either targets
t∗0 or t∗1 (see Eq. (2)) are obtained with

p∗j ∈ argmin
p=(s1=s,...,s]p=t∗j )∈P

]p−1∑
i=1

‖I(si)− I(si+1)‖22, (3)
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where ] stands for the cardinality of a set. The term to be minimized in Eq. (3)
is large when image intensities of successive sites along a path are dissimilar
and small otherwise. Finally, the neighborhood V (s) of the site s can be now
constructed as follows: V (s) = (p∗0 ∪ p∗1) \ {s}.

3.3 Cardinal-based neighborhoods

Cardinal-based neighborhood (cardinal) is a path-based neighborhood that
aims at constructing the neighborhood V (s) of a site s ∈ S by finding two
paths of minimal energy starting from s, in opposite directions (according to
−→v0(T (s))) and of fixed length K ∈ N>0. For any j ∈ {0, 1}, these paths are
obtained with

p∗j ∈ argmin
p=(s1=s,...,sK)∈PK

ljC(p). (4)

In the above expression, ljC(p) provides a measure of the length of the path p

starting from s. For any path p = (s1 = s, . . . , sK) ∈PK , ljC(p) is defined by

ljC(p) =

K∑
i=2

‖I(s)− I(si)‖22 + β′φj(
−→v0(Ts),−→ssi), (5)

where β′ ∈ R>0 is a free parameter and

φj(
−→u ,−→v ) =

{
arccos

(∣∣∣ 〈−→u ,−→v 〉
‖−→u ‖‖−→v ‖

∣∣∣) if (−1)j〈−→u ,−→v 〉 > 0,

+∞ otherwise,

measures the angle between the vectors −→u and −→v and discriminates whether
the scalar product between them is positive or not. The first term of Eq. (5)
encourages the image intensities of any site si to be similar to s while the second
term aims at aligning the path with −→v0(Ts). This allows for ensuring that two
paths in opposite directions are selected to establish the neighborhood V (s)

of s. Finally, the neighborhood V (s) of the site s can be now constructed as
follows: V (s) = (p∗0 ∪ p∗1) \ {s}. In the next section, the segmentation model
using anisotropic and isotropic neighborhoods is detailed.

4 Proposed model

The data fidelity term E1(u) in the functional E(u, V ) (see Eq. (1)) is the en-
ergy term derived from the likelihood P (I | u). At pixel level, popular models
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rely on statistical assumptions, especially by assuming site conditional indepen-
dence. Relying on the same assumption but at superpixel level, the probability
P (I | u) is the product, over S , of probabilities P (I(s) | us), I(s) ∈ F being the
observation and us ∈ C the class of s.

In this study, we adopt a color model assuming that image intensities are
Gaussian-distributed for each class c ∈ C with mean value µc ∈ F and standard
deviation σc ∈ R>0 [4]. Then, the data term Es

1 for any superpixel s ∈ S and
any label us ∈ C is written

Es
1(us) =

‖I(s)− µus‖22
2σ2

us

+ log(σus
),

and, for any u ∈ CS , E1 in Eq. (1) is:

E1(u) =
∑
s∈S

Es
1(us). (6)

The energy term E2(u, V ) corresponds to the smoothness prior on the label
field u and requires the definition of a neighborhood field V , as introduced in
Section 2. Then, this neighborhood field being fixed, we assume u is an MRF so
that a prior probability on u can be computed from ‘elementary’ energy terms.

In this study, we adopt the Potts model [25], weighted according to the
strength of interaction between neighboring superpixels. The definition of E2(u, V )

is thus the following:

E2(u, V ) =
∑

s∈S
∑

p∈V (s)W (s, p)1{us 6=up},

where 1{a6=b} =

{
1 when a 6= b,
0 otherwise.

and W : N → R>0 is a weighting function.

For instance, in our implementation of the neighborhood of [21], the weighting
function W is defined for any pair (s, p) ∈ N as W (s, p) = ∂(s,p)

∂(s) ∈]0, 1], where
∂(s, p) and ∂(s) denote the common boundary between s and p and the perimeter
of s, respectively. In the other neighborhood fields we compare, the cliques N
can connect non adjacent superpixels. Thus, we propose to define for any pair
(s, p) ∈ N the weighting function W as W (s, p) = ]V (s)−1 ∈]0, 1].

The Potts model preserves its properties, in particular submodularity, and
the data fidelity term E1 is convex. Numerous works have proven the efficiency
of graph cuts [12,3]. According to [12] and [3] respectively, the energy function
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defined in Eq. (1) can be exactly minimized when ]C = 2 (this is the case in our
experiments) and approximately minimized when ]C > 2.

Finally, let us remark that the estimation of the neighborhood field V itself
requires a segmentation u. In this study, we use the blind segmentation (i.e.
α = 0).

5 Numerical experiments

5.1 Application framework and parameter setting

Let us now introduce the data and experiments carried out within our application
context, namely crack detection. We aim at segmenting a crack, which is a thin
structure over a highly textured and noisy background, for instance some asphalt
road or concrete wall as in the cracktree dataset [27]. In this study, in addition
to images drawn from this dataset, we consider a simulated image with arbitrary
shapes and textured noise as shown in Fig. 1. Images intensities are normalized
in [0, 1].

A variety of algorithms for generating superpixels exist and exhibit different
properties [1,22]. Besides, the requirement of providing a partition of the image
into connected sets of pixels, main desirable properties are the preservation of
image boundaries, the control of the compactness of superpixels and their num-
ber, in addition to computational efficiency of the algorithms. In order to study
the benefit of our approach also regardless the superpixel decomposition, we pro-
pose a “perfectly shaped” set of superpixels generated from the dilated ground
truth. Then, for results derivation using actual superpixels, we require the fol-
lowing properties for superpixels: good compactness to be efficiently modeled by
their centroid, regularity in size while at the same time allowing the grouping
of crack pixels into thin superpixels. Given those prerequisites, we have consid-
ered Extended Topology Preserving Segmentation superpixels (ETPS) [26] after
image smoothing with median filtering with a square window of size (7× 7).

Concerning the construction of anisotropic neighborhoods, the parameters
are fixed so that there are 6 neighbors per superpixel in average. For shape, this
reduces to setting the ellipse’s area to 7 times the mean area of a superpixel, while
their flattening is set to 0.6. With cardinal, we set K = 4 and β′ = 5 × 10−3.
Finally for target, β = 5 × 10−3 × βR where βR ∈ R>0 is the radius of the
shape-based neighborhood ellipsis.
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Finally, we estimate the mean µc of each class c ∈ C (here, ]C = 2) from
the mean of the regions of the ground truth, and we set σc = 1 for simplicity.
To compensate the effect of variation of texture size due to perspective, we set
the mean value of classes as an affine function of the vertical position of the su-
perpixel. Future works can handle the parameter estimation in an unsupervised
context.

5.2 Quantitative and qualitative evaluation

Because our ground truth can be composed of 1 pixel width objects, in order
to distinguish between slight mislocation errors and non-detection of some parts
of the cracks, we compute the F-measure (FM) at scale ε = 2, based on the
number of true positives (TP), false positives (FP) and false negatives (FN),
like in [24,2]. In addition, the crack region and the non-crack area being highly
unbalanced (in favor to the non-crack area), we use a high value of γ = 5 in FM
to increase sensitivity to FN with respect to FP:

FM(γ) =

(
1 +

γ2FN

(1 + γ2)TP
+

FP

(1 + γ2)TP

)−1
∈ [0, 1]. (7)

Original image Ground truth Blind Isotropic Shape

58.80 88.82 91.97

99.53 98.98 99.81

Fig. 1: Evaluation performance against ground truths at pixel level for a crack
image (top row) and a simulated one (bottom row). The three last columns are
segmentations without regularization ( “blind”) and with regularization (isotropic
with 4-connectivity or shape-based anisotropic neighborhoods with ellipses). For
each image, in both regularized cases, the results achieving the largest FM with
respect to tensor voting scale σ and regularization parameter α, are depicted.
FM measurements are also provided in percents for γ = 5.
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The results are presented at pixel level in Fig. 1 and at superpixel level in
Fig. 2, respectively. For each image, that corresponds to a set of parameters
including the type of superpixels and the type of neighborhood, we select the
best result, according to FM criterion, among the results obtained varying the
parameters σ (the scale parameter of tensor voting) and α (the regularization
parameter in Eq. (1)).

At pixel level, Fig 1 illustrates the clear improvement of the quality of the
results with the use of anisotropic neighborhoods. In the first image of crack,
anisotropic regularization allows for enhancing the continuity of the detected
cracks, even if some small gaps still fragment it. In the simulated image, the
improvement is significant with the correct segmentation of the six discontinuities
in the cracks, without loss of precision on more complex shapes.

However, at superpixel level (Fig. 2), while exhibiting better blind results
thanks to the averaging of information at pixel level, superpixel anisotropic
neighborhoods seem to suffer in general from the fact that it is difficult to estab-
lish the right neighborhood V even with a correct estimation of its orientation
(see last column). Our experiments reveal that even if we are far from “Optimal”
neighborhood performances, path-based neighborhoods tend to outperform the
shape-based ones. Unluckily, the anisotropic approach benefits exhibited in Fig. 2
do not seem to improve the segmentation of the crack image in a so significant
way: Path-based approach outperforms the other approaches when superpixels
are perfectly shaped, but are still sensitive to the degradation of the quality of
the superpixels.

6 Conclusion

In this paper, we introduced three anisotropic neighborhoods, in order to make
them able to fit the thin structures of the image and thus to improve segmenta-
tion results. They rely on the estimation of the orientations of such structures,
based here on tensor voting that is efficient in estimating dense map of orien-
tations from a sparse field of labeled sites in the blind segmentation. We then
perform the minimization of our energy functional via graph cuts.

We tested our results with a simulated image and an actual difficult crack im-
age, to validate the improvements brought by anisotropic regularization. While
our results exhibit a high gain of performances at pixel level, superpixel segmen-
tation suffers from the challenging task to estimate neighborhood at superpixel
level, that seems to weaken the benefits of anisotropic regularization.
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Simulation Crack image
ETPS [26] “perfectly shaped”
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98.88 75.99 91.09
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c [1
1]

98.84 88.78 92.90

[2
1]

98.87 89.36 92.81
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ic Sh
ap

e

99.54 87.97 93.82

T
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99.35 87.68 94.34

C
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l

99.82 88.53 94.27

O
pt
im

al

99.94 96.49 98.50

Fig. 2: Evaluation performance against ground truths at superpixel level for a
crack image and a simulated one. The segmentations achieving the largest FM
with respect to parameters σ and α for γ = 5, are depicted. The last two columns
correspond to the use of the “perfectly shaped” superpixel, the last one being an
illustration of the neighborhood (red) of a superpixel (blue). Each row shows a
different type of neighborhood, specified in header lines. The last row is a ground
truth-based neighborhood for comparison purpose.
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Finally, we plan to investigate the possible refinement of the neighborhood
field estimation after computing the regularized segmentation to introduce an
alternative minimization procedure, and to explore extensions of our approach
with thin structures in shape from focus in 3D-space [20] for future works.
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