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Abstract—Approximate computing techniques trade-off the
performance of an application for its accuracy. The challenge
when implementing approximate computing in an application is
to efficiently evaluate the quality at the output of the application
to optimize the noise budgeting of the different approximation
sources. It is commonly achieved with an optimization algorithm
to minimize the implementation cost of the application subject to
a quality constraint. During the optimization process, numerous
approximation configurations are tested, and the quality at the
output of the application is measured for each configuration
with simulations. The optimization process is a time-consuming
task. We propose a new method for infering the accuracy or
quality metric at the output of an application using kriging, a
geostatistical method.

I. INTRODUCTION

The fierce competition to design faster, cheaper and more
energy-efficient electronic systems has led to the development
of many methods to minimize silicon area, energy consumption
and latency. During the design process of a System on Chip
(SoC), every choice is important to be able to embed massive
applications as in signal, image or video processing, and
artificial intelligence fields. To optimize criteria as energy,
latency and area, a new approach is to trade-off the output
application quality for the cost of the designed system. In
this context, numerous approaches have been proposed in
Approximate Computing (AC). The approximation technique
can be applied at the computation level, by skipping or
approximating some processing [1], at the hardware level
with voltage overscaling [2] or inexact operators [3]–[5] or
at the data level with finite precision arithmetic [6], [7]. Each
approximation technique may be tuned according to different
parameters to trade quality for performance. Consequently,
when implementing AC techniques in an application, the AC
design space has to be explored to obtain the best solution
minimizing the implementation cost. This Design Space Explo-
ration (DSE) can be modeled as a combinatorial optimization
problem searching for the optimal solution in a Nv-dimension
hypercube, where Nv is the number of variables to optimize.

Nevertheless, solving this optimization problem is long
and complex. Quality evaluation has been identified as one
of the most critical process [8], [9]. The quality metric λ is
evaluated numerous times during the optimization process. The
evaluation must be accurate to take the right decision during
the travel inside the Nv-dimension hypercube. The evaluation
time must be low enough to obtain reasonable optimization
time. Currently, two types of state-of-the-art approaches can
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be used to evaluate the quality at the output of an application:
analytical and simulation-based approaches. Analytical meth-
ods mathematically express the quality metric depending on
the approximation sources. Approaches based on interval arith-
metic have been used to determine the output error bounds [10]
or the computation significance [11]. Generalizing theses ap-
proaches to other quality metric or to other approximation
sources is still a challenge. Moreover, analytical techniques
are complex, hard to automate and their applicability can be
limited to systems having specific properties. Simulation-based
techniques are widely used since they are generic and easier
to implement than analytical techniques. The application is
simulated on an arbitrary large pre-defined input data set using
a reference simulation without approximation and a simulation
integrating the approximations. Nevertheless these approaches
suffer from a major drawback which is the long evaluation
time. Indeed, the approximation technique has to be emulated
to measure its impact on the considered quality or accuracy
metric. The simulation time overhead due to the approximation
emulation combined with the great number of input values
to simulate and the numerous configurations to test lead to
long evaluation time to evaluate the metric at the output of
the application. Different approaches have been proposed to
reduce the overhead due to the emulation of approximation
techniques [12], [13] or to reduce the number of input values
to simulate [14].

In this paper, we propose a new approach based on
statistical interpolation to reduce the number of simulation-
based metric evaluations. The concept exploited in this paper
is kriging, a geostatistical inference method compatible with
non-linear systems and any type of accuracy or quality metric.
Kriging allows interpolating the value of the metric λ in a given
configuration, from previously evaluated values of λ in other
configurations. In this paper, our method is illustrated with two
types of optimization problem for the AC DSE. The first one
is the case of finite precision refinement, where the variables
to optimize are the application data word-lengths. The second
one is the case of error sensitivity analysis. The aim of this
optimization process is to find the maximal tolerated power
of internal error sources for a targeted quality metric value.
This approach can be used for other AC DSE as long as the
interpolated surface is continuous and a distance between the
different tested configurations can be defined.

The remainder of this paper is organized as follows:
Section II presents the context and related works to solve
the considered optimization problem. Section III details the
proposed interpolation-based method. Section IV presents the
experimental setup and the obtained results in terms of quality
of the result of the optimization problem and number of
simulated configurations.



II. CONTEXT AND RELATED WORKS

The AC DSE can be modeled as an optimization problem
in which the implementation cost C is minimized subject to a
quality or accuracy constraint λmin:

min(C(e)) subject to λ(e) > λmin (1)

where e represents a Nv-length vector of the different approx-
imation sources. The value of the metric λ(e) depends on the
considered configuration of the approximation sources e. In the
rest of the paper, the vector of size Nv , ei = (ei0, e

i
1, ...e

i
Nv

)
represents the configuration i of the different approximation
sources. To solve the combinatorial optimization problem,
numerous configurations are tested and this leads to long
simulation time. The total simulation time topt to solve the
optimization problem depicted in Equation 1 is expressed as:

topt = Nλ ·No · to (2)

where Nλ is the number of quality or accuracy metric evalu-
ations, No, the number of observations required to accurately
estimate the metric λ and to, the simulation time of a single
observation.

To limit the number of tested configurations, heuristics
based on greedy algorithms are commonly used. For instance,
for finite-precision refinement, different gradient-based algo-
rithms [15]–[17] using sensitivity information have been
proposed. Likewise, in this domain, the simulation time to has
been reduced in the literature with efficient emulation methods,
reducing the time to, as for instance C++ fixed-point libraries
proposed by Mentor Graphics [12] or by SystemC [13]. A
framework based on inferential statistics has also been pro-
posed [14] to reduce the number of observations No required
to evaluate an intermediate accuracy metric, the noise power.

Complementary to these approaches, in this paper, we focus
on interpolation-based techniques to evaluate the quality metric
λ. Interpolation-based methods have already been proposed
to solve the optimization problem depicted in Equation 1 for
fixed-point refinement. In this case, the vector of the different
approximation sources is w, the word-lengths vector of the
internal variables in the application. Sedano et al. [18] have
proposed an interpolation method based on an optimization
algorithm similar to the min+1 bit algorithm described in
Section III-B.

Interpolation is only used during the first step of the
considered heuristic for which only the contribution of a
single variable on the metric is considered. This approach
does not consider a Nv-dimension hypercube allowing taking
into account the contributions of all the variables at the same
time. Besides, this method is specific to the estimation of
the considered intermediate accuracy metric, the noise power.
Contrary to [18], our method reduces Nλ using kriging, which
is compatible with non-linear systems and any type of accuracy
or quality metric. Kriging allows interpolating the value of the
metric λ in a given configuration ei, from previously measured
values of λ in other configurations.

III. PROPOSED KRIGING-BASED ERROR EVALUATION
METHOD

The objectives of the proposed method are: 1) to reduce
the number of simulation-based evaluations Nλ of the accuracy

or quality metric at the output of the application for solving
the optimization problem in Equation 1. 2) To provide an
interpolation method taking into account a Nv-dimension
hypercube. 3) To provide an interpolation method generic for
any metric at the output of an application.

If the components of vector e are forming a hypercube, the
different vector elements ek for each tested configuration are
sampling this Nv-dimension hypercube. The proposed method
infers the value of the metric λ in a new configuration of
the hypercube ei from the values of the metric λ already
measured on the other configurations, instead of evaluating by
simulations. The inference is done with kriging, a technique
to estimate the value of a random field, in this case λ, in an
arbitrary configuration ei depending on the values of λ already
measured in the configurations ej, j 6= i.

A. Kriging description

Geostatistics [19] applies the theory of random functions to
spatially distributed data. The goal of geostatistics is to model
the behavior of a variable that is evolving in space and/or time,
and predict its value in unknown parts of space. Geostatistical
methods were first developed for mining, and have been used
to estimate complex quantities such as confidence intervals.
The geostatistical method implemented to estimate the metric
is a simple kriging technique. Kriging is a stochastic spatial
interpolation technique, that allows predicting a random field
λ(.), possibly non-linear, in an arbitrary configuration ei

using the already known values of λ(.) in the configurations
e0, ..., ei−1. The proposed method relies on two steps. Firstly,
the function indicating the correlation between points depend-
ing on their distance is identified from the already known
values of λ(.) in e0, ..., ei−1. Secondly, the obtained model
is used to interpolate the value of λ(.) in configuration ei.

The already known values of λ in configurations
e0, ..., ei−1 that are used for the interpolation can be discrete
or continuous. The interpolated surface does not need to
be regularly sampled. Nevertheless, the hypothesis of the
proposed method lies in the fact that the interpolated surface
is continuous.

The random field λ(.) in configuration ei is modeled by:

λ(ei) = m+

i−1∑
k=0

µkλ(ek) (3)

where m and µk are constant values. The weights µk are
determined such that the estimator λ(ei) is unbiased and leads
to an estimation error of minimal standard deviation.

The first step of the proposed method consists in deriving
the function indicating the evolution of the correlation between
the measured values of the random field λ(.) in configurations
ej, j 6= i, depending on the distance d between the config-
urations. This function is called the semi-variogram γ̂. The
computation of γ̂(d) is detailed in Equation 4.

γ̂(d) =
1

2|N(d)|
∑
N(d)

{λ(ej)− λ(ek)}2 (4)

where the set N(d) = {(j, k) such that |ej − ek = d|} and



|N(d)| represents the number of distinct couples (j, k) in the
set N(d). ei is the configuration in which the value of λ has to
be infered. From the already measured values of λ(.), the semi-
variogram can be computed and identified to a particular type
of semi-variogram [19]. This identification allows computing
the value γ̂(d) for any value of d. The identification of the
semi-variogram has to be done once for a particular metric
and application.

Kriging is an optimal linear estimator with no bias. The
interpolated value of the metric in configuration ei is noted
λ̂(ei) and the real value λ(ei). Kriging gives the interpolated
value by computing the weighted average of the available con-
figurations leading to an estimation error of minimal standard
deviation as presented in Equation 5.

min(V ar[λ̂(ei)− λ(ei)]) (5)

The methodology for computing the unknown value can be
summarized in the three following steps. Firstly, the unknown
value λ̂(ei) is modeled as a linear combination of the known
values as expressed in Equation 3. Secondly, the universality
constraint, which indicates that kriging is an unbiased estima-
tor is expressed as in Equation 6.

E[λ̂(ei)− λ(ei)] = 0 (6)

Thirdly, the optimality constraint is defined by solving Equa-
tion 5. The conditions for kriging (optimality and no bias)
allow computing the interpolated value λ̂(ei).

Let γ̂jk be the semi-variogram value γ̂(|ej−ek|), where ej

and ek are samples in which the value of λ has been measured.
Let γ̂ik be γ̂(|ei−ek|), where ei is the configuration in which
the value of λ has to be infered. For clarity, let’s denote λk =
λ(ek). If we define two N + 1-length vectors λ and γi as:

λ = (λ0, λ1, ..., λN−1, 0) (7)
γi = (γ̂i 1, γ̂i 2, ..., γ̂iN−1, 1) (8)

Let the (N + 1)× (N + 1) symmetric matrix Γ be:

Γ =


γ̂0 0 γ̂0 1 ... γ̂0N−1 1
γ̂1 0 γ̂1 1 ... γ̂1N−1 1

...
γ̂N−1 0 γ̂N−1 1 ... γ̂N−1N−1 1

1 1 ... 1 0

 (9)

Then, the interpolated value λ̂(ei) is computed as in Equa-
tion 10.

λ̂(ei) = γi · Γ−1 · λ (10)

B. Exploitation in the context of an optimization algorithm

As explained in Section II, in the optimization process
described in Equation 1, the convergence towards the solution
is not done with an exhaustive evaluation of the different
configurations but with a optimization algorithm evaluating
only a subset of configurations. In the case of greedy algorithm,
a local search is carried-out to find the best trajectory in
the Nv-dimension hypercube search space. This local search

only evaluates a subset of configurations Sls in the global
search space. To evaluate the number of configurations in Sls
for which kriging could be used to evaluate λ, the proposed
method has been integrated in a gradient-based greedy opti-
mization algorithm. This particular optimization algorithm can
be a steepest descent gradient-based algorithm or a middle
ascent gradient-based algorithm. Our method is illustrated
on a middle ascent optimization algorithm corresponding to
the min+1 bit [15] algorithm in the context of word-length
optimization.

The challenge is to determine whether the set of already
simulated configurations in Sls allows predicting a large num-
ber of configurations using kriging. The optimization algorithm
has then been launched on the exhaustive input data set I to get
the real metric values for each tested configuration. For each
tested configuration, the word-lengths wi of all the variables in
the application are recorded as well as the real metric value.
The different vectors wi are corresponding to the different
configurations ei. Consequently, for each vector of size Nv
wi = (wi0, w

i
1, ..., w

i
Nv

), the accuracy λi = −Pi corresponding
to the opposite of the real noise power value is measured. The
points have been recorded in the order in which they have to be
measured, for comparison with the results obtained by kriging.
When the noise power value is obtained with simulations,
the application is simulated with the considered word-lengths
vector wi on the exhaustive input data set I and the accuracy
at the output of the application is measured. In the rest of
the paper, the simulation of the word-lengths configuration
wi and the computation of the accuracy metric by simulation
are summarized as: λ = evaluateAccuracy(I,wi) The goal of
the proposed method is to replace the simulation-based metric
evaluations by kriging.

1) Proposed algorithm: The proposed method to estimate
the metric λ is implemented in the min+1 bit optimization
algorithm described in [15]. For each tested word-lengths
configuration wi, the proposed kriging-based technique has
been applied to infer the metric value in configuration wi from
the surrounding metric values on the hypercube and for a given
distance d.

The min+1 bit optimization algorithm is composed of two
steps. The first step determines a minimal word-length vector
wmin used as a starting point for the second step which imple-
ments a greedy algorithm to obtained the optimized solution
wres. These two steps have been modified to integrate the
proposed krigging-based approach as described in Algorithm 1
for the determination of wmin and in Algorithm 2 for the
determination of wres. Both algorithms takes as input the
following parameters: the accuracy constraint λm, the number
of variables to optimize Nv and the distance d to search for
the neighbours of the interpolated configuration. The impact
of parameter d is studied in the experimental study. The
value Nmax corresponds to the maximum tested word-length.
The matrix Wsim storing the already simulated configuration
vectors, the vector storing the corresponding metric values as
well as the number of simulated configurations are initialized
to the null elements and to zero (line 2). Then, for each
tested configuration w, the already simulated configurations
are analyzed (lines 7-15) to determine if they can be used
for kriging. For each configuration wj

sim in matrix Wsim,
its distance to configuration w in which the metric value is



Algorithm 1 Minimum word-length wmin determination
1: procedure MINKWL(λm, I, Nv, Nmax, d)
2: Wsim = ()0,0, λsim = ()0,1, Nsim = 0
3: for i ∈ [1;Nv] do . Min part
4: w← (Nmax, ..., Nmax)
5: repeat . Iterate on the variables
6: j = 0,Wtmp = ()0,0, λtmp = ()0,1, Nn = 0
7: while j < Nsim do . Iterate on simulated config.
8: wj

sim ←Wsim(j, :)
9: dCur = ||w− wj

sim||1
10: if dCur ≤ d then
11: Wtmp ←Wtmp ∪ wj

sim

12: λtmp ← λtmp ∪ λ(j)
13: Nn ← Nn + 1
14: end if
15: j ← j + 1
16: end while
17: if Nn > Nn,min then . Process Kriging
18: λ = kriging(Wtmp, λtmp,w)
19: else . Simulation
20: λ = evaluateAccuracy(I,w)
21: Wsim ←Wsim ∪w
22: λsim ← λsim ∪ λ
23: Nsim ← Nsim + 1
24: end if
25: wi ← wi − 1
26: until λ ≥ λm ∨ wi ≤ 1
27: wmin

i ← wi + 1
28: end for
29: return wmin

30: end procedure

searched is computed. The distance is obtained by computing
the L1 norm between both vectors. If the obtained distance
is lower or equal to d, the configuration wj

sim is kept as a
neighbouring configuration for kriging. This value is stored in
Wtmp as well as the corresponding metric value in λtmp (lines
11-12). If enough surrounding configurations have already
been simulated, that is to say if Nn is higher than the minimum
number of neighbouring points Nn,min (line 17), kriging is
applied, else the configuration is simulated. When kriging is
applied, from the already measured configurations, the matrix
Γ in Equation 9 is computed and the metric value is estimated
with Equation 10.

If the configuration is interpolated, it is not used for kriging
other configurations. The higher the distance d, the more points
can be interpolated.

IV. EXPERIMENTAL STUDY

The experimental study aims at showing that 1) The pro-
posed method can replace simulation for an important number
of configurations. 2) The quality of the obtained estimation
depends on the number of configurations taken for inference,
controlled by the parameters d and Nn,min. 3) The proposed
method can be applied to the estimation of an accuracy or
Quality of Service (QoS) metric. The kriging methodology
has been implemented with the equations described in [20].
For the estimation of the noise power, an accuracy metric, the
proposed method has been applied on the min+1 bit algorithm.
During this optimization process, numerous word-lengths con-
figurations are tested and their impact on the accuracy metric
is measured. For instance, for a Finite Impulse Response (FIR)

Algorithm 2 Optimized word-length wres determination
1: procedure OPTIMKWL(λm, I, Nv,wmin,Wsim, λsim,
Nsim, d)

2: wres ← wmin

3: repeat
4: for i ∈ [1;Nv] do . Competition between variables
5: wi ← wi + 1
6: j = 0,Wtmp = ()0,0, λtmp = ()0,1, Nn = 0
7: repeat . Iterate on the simulated configurations
8: wj

sim ←Wsim(j, :)
9: dCur = ||w− wj

sim||1
10: if dCur ≤ d then
11: Wtmp ←Wtmp ∪ wj

sim

12: λtmp ← λtmp ∪ λ(j)
13: Nn ← Nn + 1
14: end if
15: j ← j + 1
16: until j < Nsim

17: if Nn > Nn,min then . Process Kriging
18: λi = kriging(Wtmp, λtmp,w)
19: else . Simulation
20: λi = evaluateAccuracy(I,w)
21: Wsim ←Wsim ∪w
22: λsim ← λsim ∪ λi

23: Nsim ← Nsim + 1
24: end if
25: w← wres

26: end for
27: jc ← argmin

i
{λi}

28: wres
jc ← wres

jc + 1
29: λ← λjc

30: until λ ≤ λm

31: return wres

32: end procedure

filter with two variables converted into fixed-point coding, the
word-length at the output of the adder and the word-length
at the output of the multiplier, the different measurements of
the accuracy metric, in this case the noise power, lead to the
creation of the surface presented in Figure 1. The goal of
the proposed method is to estimate with a sufficient quality a
non-negligible number of configurations of the surface without
simulations.

In Table I, the obtained results have been reported for the
fixed-point refinement of several benchmarks. The distance d
is indicated and varies between 2 and 5. For each considered
distance, the percentage of configurations that can be interpo-
lated instead of being simulated p(%) is indicated, as well as
the average number of already simulated configurations j that
were used for each interpolation. Finally, quality metrics are
provided. Let ε be the difference between the interpolated and
the real value. This difference is expressed as an equivalent
number of bits when the accuracy metric is the noise power.
In this case, the equivalent number of bits ni is computed
from the noise power value P̂ (wi) in configuration wi as:
P̂ (wi) = 2−ni

12 In this case, ε is computed as:

ε =

∣∣∣∣∣log2

(
P̂ (wi)

P (wi)

)∣∣∣∣∣ (11)

When the accuracy metric is the noise power, for each interpo-
lated configuration, the equivalent number of bits is computed
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Fig. 1. Evolution of the accuracy metric (noise power in dB) depending on
the word-lengths of the adder and the multiplier for a FIR filter.

as well as the equivalent number of bits for the real noise
power value. The difference ε between the number of bits
obtained with the proposed method and with the accurate
optimization algorithm is computed and its maximum and
average values over all the interpolations are indicated, max ε
and µε respectively.

When another metric is considered, the difference between
the interpolated and the real metric values is expressed as a
relative difference. If λ̂(ei) is the interpolated metric value in
configuration ei and λ(ei) is the accurate metric value, the
relative difference is computed as:

ε =
|λ̂(ei)− λ(ei)|

λ(ei)
(12)

The maximum max ε and average µε of ε are indicated.
Among the considered benchmarks, three benchmarks belong
to classical signal processing kernels, a 64-th order FIR filter
(Nv = 2), an 8-th order Infinite Impulse Response (IIR) filter
(Nv = 5) and a Fast Fourier Transform (FFT) applied on 64
points (Nv = 10). For these benchmarks, the chosen metric is
the output noise power. The proposed method allows faithfully
interpolating a large number of the noise power values from
close neighbours. Indeed, when using a distance constraint of
d = 3 for the FIR filter, 52.78% of the configurations can
be interpolated while inducing a low error of interpolation,
on average 0.43 bit. For the IIR filter, for d = 2, 47.52% of
the configurations can be interpolated inducing a similar error
of interpolation. With a measured interpolation time of 10−6s
compared to a simulation time of 2.4s for the evaluation of
a noise power by simulations, the total time for fixed-point
refinement is on average halved with our method. It is to be
noted that the low number of variables in these two bench-
marks leads to a small fraction of the configuration space that
can be infered. According to the FFT, the number of variables
is larger than for the two filters. As a matter of consequence,
a significantly larger number of configurations can be infered
from d = 2, since 78.14% of the configurations can be infered
without using simulations. The error of interpolation also stays
really low since it is on average lower than 1 bit for d ∈ J2; 5K.
In the case of the FFT, if 80% of the noise power evaluations

can be done without simulations, the time for quality metric
evaluation is divided by 5.

The following considered benchmark is the 2-D motion
compensation module of a High Efficiency Video Coding
(HEVC) codec. This module processes blocks of 8×8 pixels to
interpolate the block in the case of non-integer motion vector.
For this module, 23 variables are considered in the word-length
optimization process. The considered accuracy metric is the
noise power. As for the FFT, since the number of variables
in the optimization process is important, a large number of
noise power values can be infered, since for d = 2, 87.35% of
the configurations can be infered. Nevertheless, from d = 4,
expanding the search space for interpolation is not useful since
the percentage of infered configurations is only increasing by
0.35%. The average error of estimation is really low since
lower or equal to 0.52 bit and the maximum difference is
lower than 2.72 bit. In this case, the inference of the noise
power values is really interesting since with a constraint on the
noise power of −50dB, 2473 evaluations of the noise power
are required. Each evaluation of the motion compensation
module by simulation takes 1.37s. Consequently, if 90% of
the evaluations can be replaced by interpolation, the time for
fixed-point refinement is divided by 10.

The last considered benchmark is a deep learning bench-
mark with Nv = 10 variables. This benchmark is an image
classification application based on the SqueezeNet deep con-
volutional neural network [21]. Contrary to the other tested
benchmarks, the optimization problem depicted in Eq. 1 is not
a word-length optimization problem but an error sensitivity
analysis. An error source is injected at the output of each layer
of the network. The configuration ei is composed of the power
of the different error sources allocated at the output of each
layer. The quality metric for this benchmark is the probability
pcl to have the same classification as the one predicted by the
reference, i.e. the classification obtained without error injec-
tion. This metric is computed on an input data set composed of
1000 images. The aim of this optimization process is to find
the maximal power of the error sources tolerated for a tar-
geted value of pcl. The steepest descent gradient-based greedy
algorithm proposed in [22] is used to budget the different
error sources between the layers. As shown in Table I, this
benchmark leads to very similar results than the FFT in terms
of percentage of configurations that can be interpolated without
simulations since they have the same number of variables to
optimize. The difference between the interpolated and the real
value is expressed as a relative difference as presented in
Equation 12. The maximum relative difference ranges between
15.72% and 33.58% but is on average lower than 12.16%. For
a distance d = 3, almost 90% of the configurations can be
estimated with the proposed method instead of simulations,
while inducing an average relative error of 6.51%. Finally,
when solving the optimization problem for the SqueezeNet
benchmark with simulations, 290 configurations are tested for
an optimization time of 98 hours. If the proposed method is
implemented with d = 3, 89.31% of the configurations can be
estimated with kriging. In this case, the optimization time is
divided by a factor 10.

To evaluate the impact of kriging on the result of the op-
timization algorithm, the number of different decisions (when
using kriging), taken during the optimization process has been



measured and approximately ranges 10%. Nevertheless, the
optimization algorithm compensates these different choices to
end with a similar result than the one obtained without kriging.

To end with, the proposed method has been tested with
Nn,min = 2. Nevertheless, it only reduces the number of
configurations that can be interpolated while slightly increasing
the interpolation error.

λ Nv d p(%) j maxε µε

FIR Noise Power 2

2 33.33 3.78 0.98 0.28

3 52.78 5.44 1.66 0.43

4 58.33 7.00 2.29 0.46

5 66.67 8.61 2.42 0.51

IIR Noise Power 5

2 47.52 2.72 1.29 0.44

3 64.54 2.09 2.58 0.72

4 70.92 2.00 3.24 1.02

5 77.30 2.00 3.93 1.24

FFT Noise Power 10

2 78.14 3.48 0.82 0.18

3 89.07 2.01 1.21 0.34

4 91.90 2.04 2.07 0.54

5 95.55 2.05 2.88 0.68

HEVC Noise Power 23

2 87.35 3.60 1.86 0.07

3 93.33 2.38 1.86 0.15

4 95.63 2.11 2.24 0.30

5 95.96 2.01 2.72 0.52

SqueezeNet Classification

rate
10

2 78.28 3.33 15.72% 3.50%

3 89.31 2.18 25.75% 6.51%

4 91.38 2.12 31.57% 9.11%

5 93.10 2.09 33.58% 12.16%

TABLE I. EXPERIMENTAL RESULTS FOR THE PROPOSED METHOD.

V. CONCLUSION

In this paper, we proposed an interpolation-based method
which allows estimating the accuracy or quality metric at the
output of an application depending on the different sources
of approximation. The estimation is done with a geostatisti-
cal method, kriging. The number of estimated configurations
without simulations depends on d, the distance between the
estimated configuration and its neighbours taken for the es-
timation. We have verified that with a tight proximity in the
neighbouring configurations, kriging enables halving the num-
ber of accuracy or quality metric evaluations with simulations,
while keeping an estimation error lower than 0.5 bit for small
signal processing benchmarks composed of a few variables.
When the number of variables in the considered benchmark
increases, the search space for the configurations used for
kriging is larger and the number of configurations that can
be estimated increases up to 90% on average. The proposed
method is particularly interesting to solve a multi-dimensional
optimization problem and its major advantage is that it is
not dependent on a particular metric which is particularly
interesting when the chosen metric is hard to evaluate.
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