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Abstract 
 
 
Variable selection methods for process monitoring have focused mainly on the 
explained variance performance criteria. However, explained variance efficiency is a 
minimal notion of optimality and does not necessarily result in an economically 
desirable selected subset, as it makes no statement about the measurement cost or 
other engineering criteria. For many applications, it may be useful for external 
information to influence the selection process. For example, some variables may be 
easier and cheaper to carry out then others or they might be very important according 
to some engineering criteria. Neglecting this information in statistical process control, 
would be counterproductive. In this article, we propose a statistical methodology to 
select a reduced number of relevant variables for multivariate statistical process 
control that makes use of engineering and variability evaluation criteria. A double 
reduction of dimensionality is applied in conjunction with economic and variability 
selection criteria. The subset of relevant variables is selected in a manner that retains, 
to some extent, the structure and information carried by the full set of original 
variables. A real application from automotive industry will be used to illustrate the 
method. 
 
Keywords: process control, dimension reduction, variance efficiency, influence 
function, measurement cost 
 
 
1. Introduction 
 
The aim of Statistical Process Control, SPC, is to bring a production process under 
control and keep it in stable condition to ensure that all process output is conforming. 
This under control state is achieved by monitoring process through measurements of 
selected variables. When large number of variables are available, it is natural to 
enquire whether they could be replaced by a fewer number of measurements without 
loss of much information. Woodall et al. (2004) and Colosimo et al. (2008) present 
examples of situations in which variable selection is necessary. Gonzalez and Sanchez 
(2010) propose a two stage methodology to select a subset of variables that retains as 
much information on the full set of variables as possible assuming that all variables 
are equally important according to engineering and economic criteria. However, in 
many cases measured variables generally are not equally important according to given 
criteria. For example, according to some engineering criteria some variables may be 
very important for the functionality of the part and others less important, or some 
variables may be easier and cheaper to carry out then others or some variables may be 
more efficient in waste redaction because their measurement are made at earlier points 
in the process. Neglecting this information in SPC would be counterproductive. There 
is a gap in the SPC literature devoted to statistical selection of variables in conjunction 
with given engineering or economic criteria. 
In this article, we propose a statistical methodology to select a reduced number of 
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relevant variables for multivariate SPC. The selection methodology uses external 
information to influence the selection process. The subset of relevant variables is 
selected in a manner that retains, to some extent, the structure and information carried 
by the full set of original variables, thereby providing a SPC almost as efficient as we 
were monitoring all original variables. The proposed method is a stepwise procedure. 
Various variable selection procedures might be used to select relevant primary 
variables. In this article we propose a backward elimination scheme, which at each 
step eliminates the less informative variable among the primary variables that have not 
yet been eliminated. The new variable is eliminated by its inability to supply 
complementary information for the whole set of variables. To achieve this we propose 
the use PCs which are computed using only the selected subset of primary variables, 
but represent well the whole set of variables. This strategy mitigates the risk that an 
assignable cause inducing a shift, that lies entirely in the discarded variables, will go 
undetected. To find such PCs we use Rao’s (1964) approach on principal components, 
PCs, of instrumental variables. 
 
 
2. Formulation 
 
In what follows we suppose that  =(X1,X2,…,Xm) is the vector of the measured 

variables, with mean µ and covariance matrix Σ. We collect n observations and let X 
be the n×m matrix of in-control data. When a large number of measurements are 
available, it is natural to investigate whether they could be replaced by a fewer number 
of variables. In the proposed methodology we assume that a two-class system is used 
to classify the variables as primary and secondary based on different criteria. For 
example according to some measurement cost criteria some variables may be easier 
and cheaper to carry out then others or some variables may be more efficient in waste 
redaction because their measurement are made at earlier points in the process. Without 
loss of generality let 1=(X1,X2,…,Xp) and 2=(Xp+1,…,Xm) be the sets of primary and 

secondary variables respectively. We may write =(1,2). Our goal is to find a 

subset 1 of c primary variables (c≤p), which best in some sense represents the whole 

set of original variables . PCs that are based on the selected subset of primary 
variables are suggested for this purpose as an appropriate tool for deriving 
low-dimension subspaces which capture most of the information of the whole data set. 
For the case 1=, several selection methods have been suggested in different 
contexts (see for example Jolliffe, 1972, 1973, 2002, McCabe, 1984, Krzanowski 
1987, Tanaka and Mori 1997, Cadima and Jolliffe 2001, Cumming and Wooff 2007, 
Gonzalez and Sanchez 2010). Suppose that 1 is the selected subset of primary 

variables and similarly 2 the subset of remaining variables. We may write =(1,2). 

Let ),( 111 Σµ  and ),( 222 Σµ  denote the location scale parameters of 1, and 2 

respectively. We have the following expressions for µ  and Σ  
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Consider a transformation: 
AY 1=               (2) 



where A is a matrix of rank q. The residual dispersion matrix of X after subtracting its 
best linear predictor in terms of Y is  

1
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where ),( 1211 ΣΣ=Θ . 
 
In this article we propose a variable selection procedure based on PCs, which are 
computed as linear combinations of selected subset, but are optimal with respect to a 
given criterion measuring how well each subset approximates all variables including 
those that are not selected. For a given q we wish to determine A such that the 
predictive efficiency of Y for X is maximum. Using as overall measure of predictive 
efficiency the trace operator we have the following solution: the columns of matrix A 
consist of q first eigenvectors of the following determinant equation:  
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Assuming that cλλλ ≥≥≥ ...21  are the ordered eigenvalues and denoting by 

cααα ,...,, 21  the associated eigenvectors, the matrix A is given as following 
),...,,( 21 qA ααα= , Rao (1964).  

 
 
3. Variability Evaluation Criteria 
 
There are several measures to summarize the overall multivariate variability of a set of 
variables. The choice of indices will depend on the nature and goals of specific aspect 
of data analysis but the most popular ones are based on trace operator, generalized 
variance and squared norm of the dispersion matrix. Al-Kandari and Jolliffe (2001, 
2005) have investigated and compared the performance of several selection methods 
and their results showed that the efficiency of selection methods is dependent on the 
performance criterion. Furthermore they noted that it may be not wise to rely on a 
single method for variable selection. In practice it is necessary to know how well Y 
approximates the whole data set X. A suitable criterion for this purpose is the 
proportion of variability explained by the best q space spanned by the selected subset 
1 given by: 
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Classical PCA results guarantee that the maximum value of the right hand of Eq. (5) is 
attained for 1=. The index PX1 is useful to quantify how much information the 
selected variables have about the whole set of variables. However, it does not tell us 
how much information the selected variables have about the unselected ones. This 
information cannot be found in Σres but it can be found in conditional covariance 
matrix of subset 2 given Y, denoted as /YX2

Σ given by: 
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We then propose the use of a second variability evaluation criterion defined as: 



)(
...1

22

''
2

'
1

/2 Σ
+++

−= −

trace
P cm

YX
λλλ

          (7) 

where ''
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1 ,...,, cm−λλλ  are eigenvalues of /YX2

Σ . The criterion YXP /2
 is similar to 

index REX defined in Gonzalez and Sanchez (2010). It grows both with the variance of 
the selected variables as well as with the variance of the unselected ones explained by 
the selected variables. If YXP /2

is near zero it shows that the subspaces spanned by 1 

and 2 are almost orthogonal and the sets of variables 1 and 2 describe different 
phenomena of the same process. Therefore a shift in the unselected variables could not 
be detected by the selected subset. Conversely, a high YXP /2

 value will guarantee 
that the selected variables may provide a SPC almost as efficient as if we were 
monitoring all m variables.  
 
 
4. Variable Selection Algorithm 
 
Various variable selection procedures might be applied to select relevant primary 
variables and then find PCs which are based on them but represent well the whole set 
of variables. Here we propose a backward elimination scheme: 
Compute dispersion matrix of the whole data set. Based on 1 calculated PCs that 

explain well the whole set of original variables . Looking carefully at eigenvalues 
and the cumulative proportions, determine the number of PCs to be used. Remove 
each one among the p variables in 1 in turn, and solve p eigenvalue problems, Eq.(4), 
with (p-1) variables. Find the best subset of size (p-1) according to selection criterion 
that is used and remove the corresponding variable. Put p=(p-1) and continue 
backward elimination till stopping criteria are satisfied. When selection procedure is 
stopped we have obtained the selected subset of primary variables 1=1.  
 
 
5. Control Charts 
 
Assignable causes that affect the variability of the output do not increase significantly 
each component of total variace of . Instead, they may have a large influence in the 
variability of some components and small effect in the remaining directions. Therefore 
an approach to design control charts for variability consists to detect any significant 
departure from the stable level of the variability of each component. Based on 1 PCs 
that represent well the whole set of variables are used to build up control charts to 
monitor components of process variability. To build up such control charts one may 
use either the principal components or the influence functions of eigenvalues of 
dispersion matrix, Jaupi (2001), Jaupi and Saporta (1993). The control limits of the 
proposed control charts are three sigma control limits as in any Shewhart control chart.  
 
 
6. Application 
 
The proposed methodology will be illustrated by using data from a real production 
process. The process manufactures bumper covers for vehicles. Bumper covers are 



molded pieces made of durable plastic designed to enhance the look and shape of the 
vehicle while hiding the real bumper. They are attached to the vehicle with fasteners. 
The current inspection procedure consists of measurements taken at 10 points. The 
variables that are measured are holes diameters. To fit well with the automobile's 
overall holes diameters have tight dimensional tolerances. But no all these variables 
are equally important according to engineering and economic criteria. Six among them 
are very important because their deviations from target values lead to designs with less 
aesthetic fit of automobile's overall and they are very awkward to handle. Meanwhile 
for the remaining four variables their deviations from target diameters can be handled 
easily by operators and lead to designs that fit well. So the number of elements in the 
sets of primary and secondary variables 1 and 2 are 6 and 4 respectively. We 
applied our proposed selection methodology to bumper cover manufacturing process. 
The proposed methodology shows that efficient monitoring of this process according 
to criterion PX1 could be attained by using only four primary variables. Shewhart 
control charts of influence function of eigenvalues of covariance matrix are used to 
monitor components of process variability. Average influence is zero. Graphical 
displays of these charts will be presented in oral presentation of the paper. But in 
process logbook there are clear explanations for all assignable causes that are detected 
by influential charts of eigenvalues.  
 
 
7. Conclusions 
 
This article presents a methodology to select a reduced subset of variables to be used 
in multivariate SPC that has some advantages with respect to the existing ones, filling 
a vacancy in the quality-control literature. A double-reduction of dimensionality is 
applied in conjunction with engineering, economic and variability criteria. The subset 
of relevant variables is selected in a manner that retains, to some extent, the structure 
and information carried by the full set of original variables. This strategy mitigates the 
risk that an assignable cause inducing a shift, that lies entirely in the discarded 
variables, will go undetected. Just like ordinary PCA the solution of the eigenvalue 
problem in Eq(4) is not scale invariant, and therefore sometimes it is better to apply 
the above method to standardized data rather than raw data. In such cases the 
covariance matrices in their formulation are replaced by the corresponding correlation 
matrix. 
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