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In this paper new theoretical results for reasoning with belief functions are obtained and dis-
cussed. After a judicious decomposition of the set of focal elements of a belief function, we
establish the Total Belief Theorem (TBT) which is the direct generalization of the Total Proba-
bility Theorem when working in the framework of belief functions. The TBT is also generalized
for dealing with different frames of discernments thanks to Cartesian product space. From TBT,
we can derive and define formally the expressions of conditional belief functions which are con-
sistent with the bounds of imprecise conditional probability. This work provides a direct estab-
lishment and solid justification of Fagin-Halpern belief conditioning formulas. The well-known
Bayes’ Theorem of Probability Theory is then generalized in the framework of belief functions
and we illustrate it with an example at the end of this paper.

1 INTRODUCTION
In this paper, we present new theoretical results for reasoning with belief functions
(BF) introduced by Shafer in1, known as Dempster-Shafer Theory (DST) in the liter-
ature. The first result is the establishment of the Total Belief Theorem (TBT) which
can be interpreted as a generalization of the Total Probability Theorem (TPT) for the
belief functions framework. TBT is essential for formally establishing conditional be-
lief functions in a constructive manner whose expressions are consistent with original
Dempster’s idea (through eq. (4.8) in2), rediscovered independently and popularized
by Fagin-Halpern in3,4. TBT also allows us to present a new formulation of General-
ized Bayes’ Theorem (GBT).
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Several methods have been proposed in the literature to address the belief con-
ditioning problem. They essentially can be separated in two different approaches:
1) Shafer’s belief conditioning method based on Dempster’s rule of combination1,
and 2) the belief conditioning method consistent with imprecise probability calculus
bounds2,3,5–8 based on the lower and upper probability interpretation of belief func-
tions.

Although Shafer’s belief functions offer an appealing mathematical framework for
modeling epistemic uncertainty, their use and the validity of the results obtained in the
applications are very controversial both for uncertain information fusion as well as for
belief conditioning mainly due to Shafer’s choice of Dempster’s rule of combination as
a pillar for combining evidences represented by belief functions and for conditioning.
These well known problems of DST have already been reported and discussed by many
experts in the fields over the last decades, see for example9–23. That is why in this paper
we focus on the second approach of belief conditioning based on the lower and upper
probability interpretation of BF.

It is worth noting that Smets in nineties25 did propose a preliminary version of
GBT to generalize Bayes’ Theorem (BT) to belief functions but Smets’ GBT is based
on conditional embedding, conjunctive merging and Shafer’s conditioning which make
it quite complicate to apply and whose results have been cast in doubt in26. Here
we propose a simpler and direct constructive manner to derive a new version of GBT
without need of extra assumptions of some underlying ad-hoc principles as done by
Smets. Of course, we prove that our TBT and GBT presented in this work are fully
consistent with classical TPT and BT as soon as the belief functions are restricted to
Bayesian belief functions (i.e. classical probability measures).

This paper is organized as follows. After a brief recall of basics of belief func-
tions in Section 2 and Total Probability Theorem in Section 3, we present probability
conditioning and Bayes’ theorem in Section 4 followed by classical Shafer’s and Fagin-
Halpern’s belief conditioning methods respectively in Sections 5 and 6. In Section 7,
we present the decomposition of the set of focal elements of any basic belief assign-
ment that allows us to establish formally the Total Belief Theorem and its generaliza-
tion on Cartesian product space. The Section 8 presents and justifies the new belief
conditioning formulas drawn from TBT which are fully consistent with Fagin-Halpern
conditioning formulas. Section 9 presents the generalization of Bayes’ theorem in the
framework of belief functions obtained from TBT. We illustrate our new theoretical
results with a quite simple GBT example in Section 10 to show how to make deriva-
tions of GBT and to prove that Shafer’s conditioning results are inconsistent with GBT.
Section 11 concludes this paper.

2 BASICS OF BELIEF FUNCTIONS
Belief functions (BF) have been introduced by Shafer in1 to model epistemic uncer-
tainty based on preliminary works done by Dempster2,27. Shafer’s Theory of Belief
Functions is also referred as Dempster-Shafer Theory (DST) in the literature. We as-
sume that the answer1 of the problem under concern belongs to a known (or given)
finite discrete frame of discernement (FoD) Θ = {θ1, θ2, . . . , θn}, with n > 1, and

1i.e. the solution, or the decision to take.



where all elements of Θ are exhaustive and exclusive2. The set of all subsets of Θ
(including empty set ∅, and Θ) is the power-set of Θ denoted by 2Θ. The number of el-
ements (i.e. the cardinality) of 2Θ is 2|Θ|. A basic belief assignment (BBA) associated
with a given source of evidence is defined as the mapping m(·) : 2Θ → [0, 1] satisfy-
ing the conditions m(∅) = 0 and

∑
A∈2Θ m(A) = 1. The quantity m(A) is called the

mass of A committed by the source of evidence. Belief and plausibility functions are
respectively defined by

Bel(A) =
∑

X∈2Θ

X⊆A

m(X) (1)

Pl(A) =
∑

X∈2Θ

X∩A ̸=∅

m(X) = 1− Bel(Ā). (2)

where3 Ā , Θ − {A} = {X|X ∈ Θ and X /∈ A}, i.e. Ā is the complement of
A in Θ. The notation , means equal by definition. The width Pl(A) − Bel(A) of
the belief interval [Bel(A), P l(A)] is usually called the uncertainty on A committed
by the source of evidence, and will be denoted4 by U(A∗). It represents in fact the
imprecision on the probability of A granted by the source of evidence, which provides
the BBA m(·).

A focal element X of a BBA m(·) is an element of 2Θ such that m(X) > 0. Note
that the empty set ∅ is not a focal element of a BBA because m(∅) = 0 (close-world
assumption of Shafer’s model for the FoD). The set of all focal elements of m(·) is
denoted

FΘ(m) = {X ⊆ Θ|m(X) > 0} = {X ∈ 2Θ|m(X) > 0} (3)

Because m(∅) = 0, one always has 1 ≤ |FΘ(m)| ≤ 2|Θ|−1. The set of focal elements
of m(·) included in a subset A of Θ is denoted

FA(m) , {X ⊆ A ⊆ Θ|m(X) > 0} = {X ∈ FΘ(m)|X ∩A = X} (4)

Note that if A ⊆ B ⊆ Θ, then FA(m) ⊆ FB(m), and one always has5 FA(m) ∩
FB(m) = FA∩B(m) for any subsets A and B of Θ, but FA∪B(m) ̸= FA(m)∪FB(m)
in general6.

By definition, all elements of 2Θ not in FΘ(m) have a zero mass value, and there-

2This is so-called Shafer’s model of FoD 28.
3Here the minus symbol denotes the set difference operator 29,30.
4In the literature it is usually denoted by U(A). Here we use a new notation U(A∗) which is not

anecdotic. This new notation reveals its importance for the consistency of notations used in formulas we
give in this paper.

5Proof: FA(m)∩FB(m) = {X ∈ FΘ(m)|(X ∩A)∩ (X ∩B) = X} = {X ∈ FΘ(m)|X ∩ (A∩
B) = X} = FA∩B(m).

6For example, consider the focal elements given in the example of section 10. One has A1 ∪ B̄ =
{θ1, θ3, θ4, θ7} ∪ {θ1, θ2, θ3} = {θ1, θ2, θ3, θ4, θ7} and therefore FA1∪B̄ = {X2, X4, X5, X7}, but
FA1

= {X4} and FB̄ = {X5}, so that FA1
∪ FB̄ = {X4, X5} ̸= FA1∪B̄ .



fore the definition of Bel(A) and Pl(A) given in (1)–(2) can also be expressed7

Bel(A) =
∑

X∈FΘ(m)
X⊆A

m(X) =
∑

X∈FA(m)

m(X) (5)

Pl(A) =
∑

X∈FΘ(m)
X∩A ̸=∅

m(X) = 1− Bel(Ā). (6)

The set of focal elements FΘ(m) of the BBA m(·) can always been partitioned as
{FA(m),FĀ(m),FA∗(m)} where

FA∗(m) , FΘ(m)−FA(m)−FĀ(m) (7)
= {X ∈ FΘ(m)|X ∩A ̸= ∅ and X ∩ Ā ̸= ∅} (8)

represents the set of focal elements of m(·) which are not subsets of A and not subsets
of Ā = Θ− {A}.

The uncertainty U(A∗) can also be expressed directly as

U(A∗) =
∑

X∈FA∗ (m)

m(X) (9)

It is worth noting that U(Ā∗) = Pl(Ā)− Bel(Ā) = (1− Bel(A))− (1− Pl(A)) =
Pl(A)−Bel(A) = U(A∗), or equivalently

U(Ā∗) =
∑

X∈FĀ∗ (m)

m(X) (10)

where FĀ∗(m) = FΘ(m)−FĀ(m)−FA(m) = FA∗(m).

When all elements of FΘ(m) are only singletons, m(·) is called a Bayesian BBA1

and its corresponding Bel(·) and Pl(·) functions are homogeneous to a same (subjec-
tive) probability measure P (·).

The class of belief functions can be characterized without explicitly referencing to
a BBA, see Shafers’ theorem in1 page 39, with its proof on page 51. More precisely, a
mapping Bel(·) : 2Θ 7→ [0, 1] is a belief function if and only if Bel(∅) = 0, Bel(Θ) =
1 and for every positive integer n and every collection A1,. . . , An of subsets of Θ

Bel(A1 ∪ . . . ∪An) ≥
∑

I⊂{1,...,n}
I ̸=∅

(−1)|I|+1Bel(∩
i∈I

Ai) (11)

7More precisely, we should write Bel(A) = 0 +
∑

X∈FA(m) m(X) to get a well defined value even
there is no X ∈ FΘ(m) such that X ⊆ A. For notation convenience, this zero additional term (as well
other zero terms in formulas (9)-(10), (41), etc) will be omitted in the sequel being understood that a sum of
non existing terms is always equal to zero.



There is a one-to-one relationship between a BBA m(·) and its corresponding belief
function Bel(·). The BBA m(·) that produces a given belief function is unique and is
obtained for any A ⊆ Θ by the following Möbius inverse formula (see1, p.39)

m(A) =
∑

B⊆A⊆Θ

(−1)
|A−B|

Bel(B) (12)

In DST framework, Shafer1 did propose to combine s ≥ 2 distinct sources of evi-
dence represented by BBAs m1(.), . . . ,ms(.) over the same FoD with Dempster’s rule
(i.e. the normalized conjunctive rule). Discussions on the justification of Dempster’s
rule with examples can be found in21–23.

3 TOTAL PROBABILITY THEOREM (TPT)
We recall briefly the Total Probability Theorem because we will present its extension
in Belief function framework. In probability theory, the elements θi of the space Θ are
experimental outcomes. The subsets of Θ are called events and the event {θi} consist-
ing of the single element θi is an elementary event. The space Θ is called the sure event
and the empty set ∅ is the impossible event. We assign to each event A a number P (A)
in [0, 1], called the probability of A, which satisfies the three Kolmogorov’s conditions:
1) P (∅) = 0; 2) P (Θ) = 1; and 3) if A ∩B = {∅}, then P (A ∪B) = P (A) + P (B).
These conditions are the axioms of the theory of probability30,31. The fundamental
Theorem of the probability theory is the following Total Probability Theorem (TPT),
also called a the law of total probability, see31 and Theorem 1B of32.

Total Probability Theorem (TPT): Consider an event B and any partition8 {Ai, i =
1, . . . , k} of the space Θ, then

P (B) = P (B ∩A1) + P (B ∩A2) + . . .+ P (B ∩Ak) (13)

4 CONDITIONAL PROBABILITY AND BAYES’ FORMULA
Starting from TPT formula (13) and assuming P (B) > 0, we get for any i ∈ {1, . . . , k} after
dividing each side of (13) by P (B) and rearranging terms the equality

P (Ai ∩B)

P (B)
= 1−

∑
j=1,...,k

j ̸=i

P (Aj ∩B)

P (B)
= 1− P (Āi ∩B)

P (B)
(14)

which allows us to define the conditional probability P (Ai|B) by9

P (Ai|B) , P (Ai ∩B)/P (B) (15)

Similarly, by considering an event Ai of Θ and the partition {B, B̄} of Θ, the TPT formula
P (Ai) = P (Ai∩B)+P (Ai∩B̄) applies, and by dividing it by P (Ai) (assuming P (Ai) > 0),
we get

P (Ai ∩B)/P (Ai) = 1− P (Ai ∩ B̄)/P (Ai) (16)

8A partition of a set Θ is a collection of mutually exclusive subsets of Θ whose union equals Θ.
9In probability theory, the notation P (Ai, B) ≡ P (Ai ∩ B) is also used to represent the probability of

the joint occurence (intersection) of events Ai and B.



which allows us to define also the conditional probability P (B|Ai) by

P (B|Ai) , P (Ai ∩B)/P (Ai) (17)

From (15) and (17), one deduces the equality

P (Ai ∩B) = P (Ai|B)P (B) = P (B|Ai)P (Ai) (18)

From (18) and assuming P (B) > 0 we get P (Ai|B) = P (B|Ai)P (Ai)/P (B), and assuming
P (Ai) > 0 we get P (B|Ai) = P (Ai|B)P (B)/P (Ai).

Using TPT formula (13) and noting that P (Ai ∩B) = P (B|Ai)P (Ai), we get

P (B) =

k∑
i=1

P (B|Ai)P (Ai) (19)

Substituting (19) in P (Ai|B) = P (B|Ai)P (Ai)/P (B), we get the well-known Bayes’ Theo-
rem formula (BTF)

P (Ai|B) = P (B|Ai)P (Ai)/

k∑
i=1

P (B|Ai)P (Ai) (20)

It can be easily verified that the conditional probability defined by (15) verifies the three
axioms of the Theory of probability 31: 1) P (∅|B) = 0, 2) P (Θ|B) = 1 and 3) if A1 ∩A2 = ∅,
then P (A1 ∪A2|B) = P (A1|B) + P (A2|B).

In the previous presentation, Ai (i = 1, . . . , k) and B are events (subsets) of the same
space Θ. How to proceed to compute P (Ai|B) if the events Ai (i = 1, . . . , k) and B are
subsets of different spaces, say if Ai ⊆ Θ1 = {x1, . . . , xm} = {xp, p = 1, 2 . . . ,m} (i =
1, . . . , k), and if B ⊆ Θ2 = {y1, . . . , yn} = {yq, q = 1, 2, . . . , n} with Θ1 ̸= Θ2? Such
situation corresponds to a so-called combined experiment 31. In fact, one can prove that similar
conditioning formulas can also be established. For this, we need to work with the Cartesian
product space Θ , Θ1 ×Θ2 whose elementary elements are all the ordered pairs (xp, yq) with
xp ∈ Θ1 and yq ∈ Θ2. The two experiments are viewed as a single combined one whose
outcomes are pairs (xp, yq). In this space Θ = Θ1 × Θ2, xp is not an elementary element
but a subset of n elements of Θ, i.e. {xp} = {(xp, y1), . . . , (xp, yn)}. Similarly, yq is not an
elementary element but a subset of m elements of Θ, i.e. {yq} = {(x1, yq), . . . , (xm, yq)}. If
Ai ⊆ Θ1 and B ⊆ Θ2, then Ai×B = {(xp, yq)|xp ∈ A; yq ∈ B} ⊆ Θ. If one forms Ai×Θ2

and Θ1 × B one sees that Ai × B = (Ai × Θ2) ∩ (Θ1 × B) = (Θ1 × B) ∩ (Ai × Θ2).
Because the event Ai ×Θ2 occurs in the combined experiment if the event Ai of the experiment
1 occurs no matter what the outcome of experiment 2, one has P (Ai × Θ2) = P1(Ai) where
P1(Ai) is the probability of event Ai in the experiment 1. Similarly, the event Θ1 × B occurs
if B occurs in experiment 2 no matter what the outcome of experiment 1, so that P (Θ1 ×B) =
P2(B) where P2(B) is the probability of event B in the experiment 2. One considers a partition
{A1, A2, . . . , Ak} of Θ1 and a subset (event) B ⊆ Θ2. Based on set theory and property of
Cartesian product, one has

Θ1 ×B = (Θ1 ×B) ∩ (Θ1 ×Θ2) = (Θ1 ×B) ∩ ((A1 ∪A2 ∪ . . . ∪Ak)×Θ2)

= (Θ1 ×B) ∩ ((A1 ×Θ2) ∪ . . . ∪ (Ak ×Θ2)) = ∪i((Θ1 ×B) ∩ (Ai ×Θ2))

The elements Ai ×Θ2, i = 1, . . . , k being disjoint10, one has the following TPT formula

P (Θ1 ×B) = P (∪i((Θ1 ×B) ∩ (Ai ×Θ2)))

= P ((Θ1 ×B) ∩ (A1 ×Θ2)) + . . .+ P ((Θ1 ×B) ∩ (Ak ×Θ2)) (21)

10because Ai are disjoint since {A1, . . . , Ak} is a partition of Θ1.



After dividing each side of formula (21) by P (Θ1 × B) (assumed positive) and rearranging
terms, we get

P ((Ai ×Θ2) ∩ (Θ1 ×B))

P (Θ1 ×B)
= 1−

∑
j=1,...,k

j ̸=i

P ((Aj ×Θ2) ∩ (Θ1 ×B))

P (Θ1 ×B)
(22)

Formula (22) suggests naturally to define the conditional probability P (Ai ×Θ2|Θ1 ×B) by

P (Ai ×Θ2|Θ1 ×B) , P (Ai ×B)/P (Θ1 ×B) (23)

Using same reasoning as before and working on Cartesian product space Θ = Θ1×Θ2, one can
also prove11 that if P (Ai ×Θ2) > 0 ons can define

P (Θ1 ×B|Ai ×Θ2) = P (Ai ×B)/P (Ai ×Θ2) (24)

From (23) and (24), one deduces the equality

P (Ai ×Θ2|Θ1 ×B)P (Θ1 ×B) = P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2) (25)

From equality (25) and assuming P (Θ1 ×B) > 0, we get

P (Ai ×Θ2|Θ1 ×B) = P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2)/P (Θ1 ×B) (26)

From equality (25) and assuming P (Ai ×Θ2) > 0 we get

P (Θ1 ×B|Ai ×Θ2) = P (Ai ×Θ2|Θ1 ×B)P (Θ1 ×B)/P (Ai ×Θ2) (27)

Using TPT formula (21) and formula(24), we get P (Θ1 × B) =
∑k

i=1 P (Θ1 × B|Ai ×
Θ2)P (Ai ×Θ2). Putting this expression in (26), we obtain the Bayes’ Theorem formula (BTF)
when A ⊆ Θ1 and B ⊆ Θ2 and Θ1 ̸= Θ2, which is written as

P (Ai ×Θ2|Θ1 ×B) =
P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2)∑k
i=1 P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2)

(28)

For notation convenience (and notation abuse), we can use classical formulas when working
with different sets of experimental outcomes Θ1 and Θ2 with keeping in mind that in this case
Ai must be understood as Ai ×Θ2 and B as Θ1 ×B.

5 SHAFER’S CONDITIONING
In the belief functions framework, Shafer did propose formulas to calculate conditional belief
functions Bel(A|B) and Pl(A|B). Shafer’s formulas have been obtained from the conditional
BBA m(·|B) obtained from Dempster’s rule of combination of the original BBA m(·) with
the BBA mB(B) = 1 focused on B under the condition that Bel(B̄) < 1, or equivalently12

under the condition that Pl(B) > 0. Shafer’s conditioning formulas for belief and plausibility
functions were established by Shafer in Theorem 3.6 p. 66 of 1. For A,B ⊆ Θ with Pl(B) > 0,
Bel(A|B) and Pl(A|B) are given by

Bel(A|B) = (Bel(A ∪ B̄)−Bel(B̄))/(1−Bel(B̄)) (29)

Pl(A|B) = Pl(A ∩B)/P l(B) (30)

11The proof is left to the reader due to space limitation restraint.
12Indeed, if Bel(B̄) < 1 then Pl(B) = 1−Bel(B̄) is greater than zero.



The expression (29) of Bel(A|B) is equivalent to

Bel(A|B) = (Pl(B)− Pl(B ∩ Ā))/P l(B) (31)

because one has always (from definition of belief functions) Pl(B) = 1 − Bel(B̄), and the
numerator of (29) can be written as

Bel(A ∪ B̄)−Bel(B̄) = (1−Bel(B̄))− (1−Bel(A ∪ B̄))

= Pl(B)− Pl(A ∪ B̄) = Pl(B)− Pl(B ∩ Ā)

Using (29)–(30) and taking A = ∅, we get Bel(∅|B) = Pl(∅|B) = 0, and taking A = Θ we
get Bel(Θ|B) = Pl(Θ|B) = 1. Also in taking B = Θ we get Bel(A|Θ) = Bel(A) and
Pl(A|Θ) = Pl(A). Note that taking B = A in (30)–(31), we obtain Bel(A|A) = Pl(A|A) =
1 which fits with the common sense.

In reversing the roles played by A and B and switching the notations in previous expressions,
the following formulas also hold (assuming Pl(A) > 0)

Bel(B|A) = (Pl(A)− Pl(A ∩ B̄)/P l(A) (32)

Pl(B|A) = Pl(B ∩A)Pl(A) (33)

From (30) and (33), one deduces Pl(A∩B) = Pl(A|B)Pl(B) = Pl(B|A)Pl(A). Hence, the
following formula applies for conditional plausibilities when Pl(B) > 0

Pl(A|B) = Pl(B|A)Pl(A)/P l(B) (34)

Note that this formula for conditional plausibilities is similar to the expression for condi-
tional probabilities given in (15) when replacing plausibilities by probabilities.

The main drawback of Shafer’s conditioning is its incompatibility with probability calculus
when working with imprecise probabilities. More precisely, the bounds of belief interval defined
by [Bel(A|B), P l(A|B)] obtained by (29)-(30) are in general13 incompatible with lower and
upper bounds of the conditional probability P (A|B). This problem makes Shafer’s conditioning
very disputable and cast serious doubts on pertinence (validity) of Shafer’s conditioning results
when used in applications, which is a direct consequence of the validity of Dempster’s rule
reported in 3,9–23,33,34. Shafer’s conditioning problem has already been reported and addressed
by several authors 3,6,7,14,24 in the past with some examples. To easily show this incompatibility
of Shafer’s conditioning with probability calculus we present briefly the famous Ellsberg’s urn
example 35.

Example 1 (Ellsberg’s urn): We consider an urn with red (R) balls, black (B) and yellow (Y)
balls. The a priori information one has on the repartition of the balls in the urn is the following:
1/3 of balls are red balls and 2/3 or balls are black and yellow balls. We don’t know precisely
the percentage of black balls, nor the percentage of yellow balls. So the a priori information
about the chance to pick a ball in the urn can be represented by a (parametric) probability mass
function P (·) with P (R) = 1/3, P (B) = 2/3 − x, P (Y ) = x, where x is an unknown
number/parameter in [0, 2/3], P (R) is the probability to pick at random a red ball in the urn,
P (B) is the probability to pick at random a black ball in the urn, and P (Y ) is the probability to
pick at random a yellow ball in the urn. Of course because x is unknown but bounded, P (B) and
P (Y ) are unknown but their bounds are known. In fact, this problem can be seen as a problem
of imprecise probabilities where P (R) ∈ [1/3, 1/3], P (B) ∈ [0, 2/3], P (Y ) ∈ [0, 2/3] and

13but if the BBA m(·) is Bayesian.



with the constraint P (R) + P (B) + P (Y ) = 1. Now let’s suppose that someone picks a ball at
random in the urn and tell us that the color of the ball is not black, i.e. the event B̄ = R∪ Y has
occurred. How do we must revise (update) our prior probabilities with this new information? The
correct answer to this question is obtained by computing the conditional probabilities P (R|B̄),
P (B|B̄) and P (Y |B̄) and by analyzing their bounds. This is done as follows using the fact that
P (B̄) = P (R ∪ Y ) = P (R) + P (Y ) − P (R ∩ Y ) = P (R) + P (Y ) = (1/3) + x. Indeed,
P (R ∩ Y ) = 0 because the events R and Y are mutually exclusive. So, we get

P (R|B̄) = P (R ∩ (R ∪ Y ))/P (R ∪ Y ) = P (R)/((1/3) + x) = (1/3)/((1/3) + x)

P (B|B̄) = P (B ∩ (R ∪ Y ))/P (R ∪ Y ) = P (∅)/((1/3) + x) = 0/((1/3) + x)

P (Y |B̄) = P (Y ∩ (R ∪ Y ))/P (R ∪ Y ) = P (Y )/((1/3) + x) = x/((1/3) + x)

If x = 0, then P (R|B̄) = 1 and P (Y |B̄) = 0. If x = 2/3, then P (R|B̄) = 1/3 and
P (Y |B̄) = 2/3. Therefore after conditioning by B̄ = R ∪ Y we get as bounds of conditional
probabilities values the following intervals P (R|B̄) ∈ [1/3, 1], P (B|B̄) ∈ [0, 0], P (Y |B̄) ∈
[0, 2/3] with the constraint P (R|B̄) + P (B|B̄) + P (Y |B̄) = 1.

Let’s examine what we get using Shafer’s conditioning approach. For this, the problem
is modeled directly in the belief function framework using the a priori BBA m(·) defined on
the FoD Θ = {R,B, Y } with m(R) = 1/3, m(B ∪ Y ) = 2/3 which corresponds to the
following a priori belief intervals [Bel(R), P l(R)] = [1/3, 1/3], [Bel(B), P l(B)] = [0, 2/3],
[Bel(Y ), P l(Y )] = [0, 2/3].

With Shafer’s conditioning formulas and noting that Pl(R) = 1/3, Pl(B) = 2/3, Pl(Y ) =
2/3, and Pl(R ∪ Y ) = 1, we get incompatible results with the real bounds of conditional prob-
abilities because

[Bel(R|B̄), P l(R|B̄)] = [1/3, 1/3] (by Shafer) ̸= [1/3, 1] (correct bounds)

[Bel(B|B̄), P l(B|B̄)] = [0, 0] (by Shafer) = [0, 0] (correct bounds)

[Bel(Y |B̄), P l(Y |B̄)] = [2/3, 2/3] (by Shafer) ̸= [0, 2/3] (correct bounds)

To overcome this problem, Fagin and Halpern did propose a more efficient conditioning
approach which is, by construction, always consistent with conditional probability bounds. It is
presented in the next section.

6 FAGIN-HALPERN CONDITIONING
Fagin and Halpern (FH) proposed in 3,4 to define the conditional belief as the lower envelope
(i.e. the infimum) of a family of conditional probability functions to make belief conditioning
consistent with imprecise conditional probability calculus. Assuming Bel(B) > 0, Fagin and
Halpern proposed the following conditional formulas (FH formulas for short)

Bel(A|B) = Bel(A ∩B)/(Bel(A ∩B) + Pl(Ā ∩B)) (35)

Pl(A|B) = Pl(A ∩B)/(Pl(A ∩B) +Bel(Ā ∩B)) (36)

Fagin and Halpern did prove in 3 with long derivations and great effort that the conditional
belief Bel(A|B) given by (35) satisfies also the three conditions for defining a true belief func-
tion according to Shafer’s theorem in 1, p. 39. Therefore, the formula (35) is also a good can-
didate and serious alternative for conditioning belief functions. However, it is quite mysterious
how Fagin and Halpern did obtain (construct) these close-form expressions. According to the au-
thors, these expressions were rather established from a very good intuition. A better justification
has been given by Sundberg and Wagner in 7 (p. 268) but it is still not so clear in our opinion. In



this paper, we justify clearly and directly the establishment of FH formulas from the simple and
direct consequence of the Total Belief Theorem (TBT) which is one of the main contributions
of our work. From FH conditioning formulas (35)-(36), we can verify that the common sense
results are also obtained, that is Bel(∅|B) = Pl(∅|B) = 0, Bel(Θ|B) = Pl(Θ|B) = 1,
Bel(A|Θ) = Bel(A), Pl(A|Θ) = Pl(A), and Bel(A|A) = Pl(A|A) = 1.

FH conditioning formulas are consistent with Bayes conditioning formulas when the under-
lying BBA m(·) is Bayesian. Indeed if m(·) is Bayesian, then Pl(A ∩ B) = Bel(A ∩ B) =
P (A∩B), Pl(Ā∩B) = Bel(Ā∩B) = P (Ā∩B) and Pl(B̄∩A) = Bel(B̄∩A) = P (B̄∩A)
so that the FH formulas become equivalent to Bel(A|B) = P (A∩B)/(P (A∩B)+P (Ā∩B))
and Pl(A|B) = P (A∩B)/(P (A∩B)+P (Ā∩B)). Thanks to total probability theorem (TPT)
formula (13), the denominator involved in these formula is P (A ∩ B) + P (Ā ∩ B) = P (B),
therefore Bel(A|B) = Pl(A|B) = P (A ∩B)/P (B) = P (A|B).

Similarly, one can also easily verify that Bel(B|A) = Pl(B|A) = P (A ∩ B)/P (A) =
P (B|A). The advantage of FH conditioning is its complete compatibility with the conditional
probability calculus 7. Let us show what provides FH conditioning in the previous Ellsberg’s urn
example.

Ellsberg’s urn example revisited: Let’s see the result obtained by formulas (62) and (64) for
Ellsberg’s urn example. Applying formulas (62) and (64) with the conditioning event B̄ = R∪Y
we obtain

Bel(R|B̄) =
Bel(R ∩ (R ∪ Y ))

Bel(R ∩ (R ∪ Y )) + Pl((B ∪ Y ) ∩ (R ∪ Y ))
=

1/3

(1/3) + (2/3)
= 1/3

Pl(R|B̄) =
Pl(R ∩ (R ∪ Y ))

Bel((B ∪ Y ) ∩ (R ∪ Y )) + Pl(R ∩ (R ∪ Y ))
=

1/3

0 + (1/3)
= 1

Bel(B|B̄) =
Bel(B ∩ (R ∪ Y ))

Bel(B ∩ (R ∪ Y )) + Pl((R ∪ Y ) ∩ (R ∪ Y ))
=

0

0 + 1
= 0

Pl(B|B̄) =
Pl(B ∩ (R ∪ Y ))

Bel((R ∪ Y ) ∩ (R ∪ Y )) + Pl(B ∩ (R ∪ Y ))
=

0

(1/3) + 0
= 0

Bel(Y |B̄) =
Bel(Y ∩ (R ∪ Y ))

Bel(Y ∩ (R ∪ Y )) + Pl((R ∪B) ∩ (R ∪ Y ))
=

0

0 + (1/3)
= 0

Pl(Y |B̄) =
Pl(Y ∩ (R ∪ Y ))

Bel((R ∪B) ∩ (R ∪ Y )) + Pl(Y ∩ (R ∪ Y ))
=

2/3

(1/3) + (2/3)
= 2/3

Hence with FH conditioning formulas, we get the correct conditional probability bounds

[Bel(R|B̄), P l(R|B̄)] = [1/3, 1] (by Fagin-Halpern) = [1/3, 1] (correct bounds)

[Bel(B|B̄), P l(B|B̄)] = [0, 0] (by Fagin-Halpern) = [0, 0] (correct bounds)

[Bel(Y |B̄), P l(Y |B̄)] = [0, 2/3] (by Fagin-Halpern) = [0, 2/3] (correct bounds)

We can also verify that Bel(∅|B̄) = 0, Bel(R ∪ B|B̄) = 1/3, Bel(R ∪ Y |B̄) = 1,
Bel(B ∪ Y |B̄) = 0 and Bel(R ∪ B ∪ Y |B̄) = 1. Applying Möbius inverse formula (12)
with this conditional belief function Bel(·|B̄), we get the conditional mass of belief given by
m(R|B̄) = 1/3 and m(R ∪ Y |B̄) = 2/3 and all other mass values are equal to zero, whereas
with Shafer’s approach based on Dempster’s rule of combination we get m(R|B̄) = 1/3 and
m(Y |B̄) = 2/3. We see the difference between Shafer’s and FH conditioning approaches. With
Shafer’s conditioning approach, because (B ∪ Y ) ∩ (R ∪ Y ) ̸= ∅ the mass m(B ∪ Y ) = 2/3
is entirely transferred (optimistically) to the most specific focal element Y included in B̄ =
R ∪ Y . With the FH conditioning method the mass m(B ∪ Y ) = 2/3 is entirely transferred
(pessimistically, or cautiously) to the least specific focal element R∪Y included in B̄ = R∪Y .



7 TOTAL BELIEF THEOREM (TBT)
In this section, we extend TPT theorem to belief and plausibility functions and we establish the
Total Belief Theorem (TBT). Before this, we need to explain how the set of focal elements of a
given BBA m(·) must be decomposed because it is the basis of the establishment of TBT.

7.1 Decomposition of the set of focal elements FΘ(m)

Let us consider a FoD Θ = {θ1, . . . , θ|Θ|} with |Θ| > 1 elements, and a BBA m(·) defined on
2Θ with a given set of focal elements FΘ(m). Consider any partition {A1, A2, . . . , Ak} of the
FoD Θ, then one can always decompose FΘ(m) as the union of following subsets

FΘ(m) = FA1(m) ∪ . . . ∪ FAk (m) ∪ FA∗(m) (37)

where FAi(m) (i = 1, . . . , k) is the set of focal elements of m(·) included in Ai, and FA∗(m)
is the set of focal elements of m(·) which are not included in Ai, i = 1, . . . , k. We use the
notation A∗ for representing the entity characterized by the focal set FA∗(m) mathematically
defined by

FA∗(m) , FΘ(m)−FA1(m)− . . .−FAk (m) (38)

The entity A∗ has in general no explicit form and it is used only for notation convenience
to make presentation of formulas more concise in the sequel. Because Ai for i = 1, . . . , k
are mutually exclusive (disjoint), the sets FAi(m) are also mutually exclusive and therefore
∩i=1,...,k(FΘ(m) − FAi(m)) = FΘ(m) − FA1(m) − . . . − FAk (m) because all possible
intersections of focal sets including FAi(m) ∩ FAj (m) for j ̸= i equal the empty set. Hence
FA∗(m) can also be expressed as

FA∗(m) = ∩i=1,...,kF̄Ai(m) (39)

where F̄Ai(m) , FΘ(m)−FAi(m) = FĀi
(m)+FA∗

i
(m) represents the set of focal elements

of m(·) which are not subsets of Ai.

Example 2: Consider Θ = {θ1, θ2, θ3, θ4, θ5} and a BBA m(·) defined on 2Θ, with set of
focal elements FΘ(m) = {X1, X2, . . . , X8} with X1 = θ1, X2 = θ1 ∪ θ2, X3 = θ2 ∪ θ3,
X4 = θ3 ∪ θ4, X5 = θ4. Consider the partition {A1, A2, A3} of Θ with A1 = {θ1, θ2},
A2 = {θ3, θ4} and A3 = {θ5}. In this example, one has

FA1(m) = {X1, X2} = {θ1, θ1 ∪ θ2}
FA2(m) = {X4, X5} = {θ3 ∪ θ4, θ4}
FA3(m) = {X8} = {θ5}
FA∗(m) = FΘ(m)−FA1(m)−FA2(m)−FA3(m) = {X3, X6, X7}

= {θ2 ∪ θ3, θ4 ∪ θ5, θ1 ∪ θ3 ∪ θ5}

One sees that

F̄A1(m) = FΘ(m)− {X1, X2} = {X3, X4, X5, X6, X7, X8}
F̄A2(m) = FΘ(m)− {X4, X5} = {X1, X2, X3, X6, X7, X8}
F̄A3(m) = FΘ(m)− {X8} = {X1, X2, X3, X4, X5, X6, X7}

and applying (39), we get

F̄A1(m) ∩ F̄A2(m) ∩ F̄A3(m) = {X3, X6, X7} = FA∗(m)



Example 3: Consider Θ = {θ1, θ2, θ3, θ4, θ5} and a BBA m(·) defined on 2Θ, with the degen-
erate set of focal elements with only one focal element as follows FΘ(m) = {X1 = Θ} corre-
sponding to the vacuous BBA. Consider the partition {A1, A2, A3} of Θ where A1 , {x3, x5},
A2 , {x2} and A3 , {x1, x4}. Then, we get FA1(m) = ∅, FA2(m) = ∅, FA3(m) = ∅
and FA∗(m) = {X1} − ∅ − ∅ − ∅ = Θ. Note that, F̄A1(m) = F̄A2(m) = F̄A2(m) = Θ,
and therefore F̄A1(m) ∩ F̄A2(m) ∩ F̄A3(m) = Θ = FA∗(m), and of course FΘ(m) =
FA1(m) ∪ FA2(m) ∪ FA3(m) ∪ FA∗(m) = ∅ ∪ ∅ ∪ ∅ ∪Θ = Θ.

7.2 Total Belief Theorem (TBT)
Based on the previous decomposition of the set of focal elements FΘ(m) according to any given
partition {A1, . . . , Ak} of the FoD Θ, the following Total Belief Theorem (TBT) is established.

Total Belief Theorem (TBT): Let’s consider a frame of discernment Θ with |Θ| ≥ 2 elements
and a BBA m(·) defined on 2Θ with the set of focal elements FΘ(m). For any chosen partition
{A1, . . . , Ak} of Θ and for any B ⊆ Θ, one has

Bel(B) =
∑

i=1,...,k

Bel(Ai ∩B) + U(A∗ ∩B) (40)

where FA∗(m) , FΘ(m)−FA1(m)− . . .−FAk (m) and

U(A∗ ∩B) ,
∑

X∈FA∗ (m)|X∈FB(m)

m(X). (41)

Proof of TBT: See appendix.

A∗ is a shorthand notation for the entity associated to the set of focal elements FA∗(m)
of the BBA m(·) involved in the summation (41) of U(A∗ ∩ B). From the formula (41), one
sees that U(A∗ ∩ B) ∈ [0, 1]. Note that if B = Θ and if the FoD Θ is simply partitioned as
{A , A1, Ā , A2}, then U(A∗ ∩ B) = U(A∗ ∩ Θ) = U(A∗) = Pl(A) − Bel(A) =
Pl(Ā)−Bel(Ā).

If one applies TBT with B = Θ, we get for any chosen partition {A1, . . . , Ak} of Θ∑
i=1,...,k

Bel(Ai) + U(A∗) = 1 (42)

where U(A∗) ,
∑

X∈FA∗ (m) m(X). This equality corresponds to TPT if U(A∗) = 0 (i.e.
there is no uncertainty on the value of probabilities of Ai, i = 1, . . . , k).

Corollary of TBT: If m(·) is Bayesian, then TBT is consistent with the Total Probability Theo-
rem (TPT).

Proof: See appendix.

From TBT one can establish the following (not so elegant) Total Plausibility Theorem (TPlT).

Total Plausibility Theorem (TPlT): For any BBA m(·) : 2Θ 7→ [0, 1], and for any partition
{A1, . . . , Ak} of Θ, one has for any B ⊆ Θ

Pl(B) =
∑

i=1,...,k

Pl(Āi ∪B) + 1− k − U(A∗ ∩ B̄) (43)

Proof: See appendix.



Example 4: Consider the FoD Θ = {θ1, . . . , θ7} and the set of focal elements FΘ(m) =
{X1, X2, . . . , X9} of a BBA m(·) defined over 2Θ given in Table I.

Table I: Focal elements and their masses.
Focal element X BBA m(X)
X1 = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ7 m(X1) = 0.01
X2 = θ1 ∪ θ2 ∪ θ3 ∪ θ4 m(X2) = 0.02
X3 = θ3 ∪ θ5 ∪ θ6 m(X3) = 0.03
X4 = θ4 ∪ θ7 m(X4) = 0.04
X5 = θ2 m(X5) = 0.20
X6 = θ6 ∪ θ7 m(X6) = 0.30
X7 = θ2 ∪ θ3 ∪ θ7 m(X7) = 0.20
X8 = θ1 ∪ θ4 ∪ θ6 m(X8) = 0.15
X9 = θ6 m(X9) = 0.05

Let’s consider the partition {A1, A2, A3} of Θ with A1 , θ1 ∪ θ3 ∪ θ4 ∪ θ7, A2 , θ2 ∪ θ5
and A3 , θ6 and the subset B = θ4 ∪ θ5 ∪ θ6 ∪ θ7 of Θ having positive belief Bel(B) =
m(X4) +m(X6) +m(X9) = 0.39. Table II summarizes the belief values of different subsets
of Θ which are needed in the derivations to apply TBT.

Table II: Belief and plausibility values used for the derivations.
Subsets of Θ Bel(·)
B = θ4 ∪ θ5 ∪ θ6 ∪ θ7 Bel(B) = 0.39
A1 = θ1 ∪ θ3 ∪ θ4 ∪ θ7 Bel(A1) = 0.04
A2 = θ2 ∪ θ5 Bel(A2) = 0.20
A3 = θ6 Bel(A3) = 0.05
A1 ∩B = θ4 ∪ θ7 Bel(A1 ∩B) = 0.04
A2 ∩B = θ5 Bel(A2 ∩B) = 0
A3 ∩B = θ6 Bel(A3 ∩B) = 0.05

In this example, one has

FB(m) = {X4, X6, X9} and FB̄(m) = {X5}
FA1(m) = {X4} and FĀ1

(m) = {X5, X9}
FA2(m) = {X5} and FĀ2

(m) = {X4, X6, X8, X9}
FA3(m) = {X9} and FĀ3

(m) = {X1, X2, X4, X5, X7}
FA∗(m) = FΘ(m)−FA1(m)−FA2(m)−FA3(m) = {X1, X2, X3, X6, X7, X8}

Therefore,

U(A∗ ∩B) =
∑

X∈FA∗ (m)|X∈FB(m)

m(X) = m(X6) = 0.30

In applying TBT formula (40), one can easily verify that

Bel(B) = Bel(B ∩A1) +Bel(B ∩A2) +Bel(B ∩A3) + U(A∗ ∩B)

= 0.04 + 0 + 0.05 + 0.30 = 0.39



7.3 Special case : A partition with only two elements
If we consider any simple partition {A, Ā} of the FoD Θ and any B subset of Θ, then the TBT
and TPlT formulas (40) and (43) reduce to14

Bel(B) = Bel(A ∩B) +Bel(Ā ∩B) + U(A∗ ∩B) (44)

Pl(B) = Pl(Ā ∪B) + Pl(A ∪B)− 1− U(A∗ ∩ B̄) (45)

Remark: If the BBA m(·) is Bayesian then U(A∗ ∩ B) = 0. Therefore the previous formulas
reduce to

Bel(B) = Bel(A ∩B) +Bel(Ā ∩B) (46)

Pl(B) = Pl(Ā ∪B) + Pl(A ∪B)− 1 (47)

m(·) being a Bayesian BBA, Bel(·) and Pl(·) are homogeneous to a same (possibly subjective)
probability measure P (.). Therefore, the previous equalities can be rewritten as

P (B) = P (A ∩B) + P (Ā ∩B) (48)

P (B) = P (Ā ∪B) + P (A ∪B)− 1 (49)

The formula (48) is valid because {A, Ā} is a partition of Θ and because of TPT theorem.
The formula (49) is nothing but a dual form of TPT formula. It is also valid because

P (Ā ∪B) + P (A ∪B)− 1 = P (Ā) + P (B)− P (Ā ∩B) + P (A) + P (B)− P (A ∩B)− 1

= (P (Ā) + P (A)− 1) + 2P (B)− (P (Ā ∩B) + P (A ∩B))

= 0 + 2P (B)− P (B) = P (B)

7.4 Generalization of TBT
Previously, the TBT formula was established when the partition {A1, . . . , Ak} was related to a
given FoD Θ and B was a subset of the same FoD Θ. We can generalize TBT in considering
{Ai, . . . , Ak} as any partition of a FoD Θ1 = {x1, . . . , xm} = {xp, p = 1, 2 . . . ,m}, and
B as being a subset of another FoD Θ2 = {y1, . . . , yn} = {yq, q = 1, 2, . . . , n} with Θ1 ̸=
Θ2. For this, we need to work within the Cartesian product space Θ , Θ1 × Θ2. In the
space Θ = Θ1 × Θ2, xp is not an elementary element but a subset of n elements of Θ, i.e.
{xp} = {(xp, y1), . . . , (xp, yn)}. Similarly, yq is not an elementary element but a subset of
m elements of Θ, i.e. {yq} = {(x1, yq), . . . , (xm, yq)}. If Ai ⊆ Θ1 and B ⊆ Θ2, then
Ai × B = {(xp, yq)|xp ∈ Ai; yq ∈ B} ⊆ Θ. Because {A1, . . . , Ak} is a partition of Θ,
then {A1 × Θ2, . . . , Ak × Θ2} defines a partition of Θ = Θ1 × Θ2. Because Θ1 × B =
∪i=1,...,k((Θ1×B)∩ (Ai×Θ2)), we can apply TBT in the Cartesian space Θ. More precisely,

Bel(Θ1 ×B) = Bel(∪i((Θ1 ×B) ∩ (Ai ×Θ2)))

= Bel((Θ1 ×B) ∩ (A1 ×Θ2)) + . . .+Bel((Θ1 ×B) ∩ (Ak ×Θ2))

+ U((A∗ ×Θ2) ∩ (Θ1 ×B))

where the quantity U((A∗ ×Θ2) ∩ (Θ1 ×B)) is now defined by

U((A∗ ×Θ2) ∩ (Θ1 ×B)) ,
∑

X∈FA∗×Θ2
(m)|X∈FΘ1×B(m)

m(X) (50)

14Take k = 2, and set A , A1 and Ā , A2 in (40) and (43).



The previous TBT formula when working in the Cartesian space Θ = Θ1 × Θ2 can be written
more concisely as

Bel(Θ1 ×B) =
∑

i=1,...,k

Bel(Ai ×B) + U(A∗ ×B)) (51)

because (Θ1×B)∩(Ai×Θ2) = (Ai×Θ2)∩(Θ1×B) = Ai×B, and by notation convention
U(A∗ ×B) = U((A∗ ×Θ2) ∩ (Θ1 ×B)).

Note that the formula (51) can be used if and only if one knows the joint BBA m(·) (or
equivalently the joint belief) defined over the powerset of the Cartesian space Θ = Θ1 ×Θ2.

8 CONDITIONAL BELIEF FUNCTIONS BASED ON TBT
In this section we show how FaginHalpern belief conditioning formulas can be established di-
rectly from TBT. This result is important because its provides a solid construction of FH formulas
and it justifies its use for applications where belief conditioning is necessary. For deriving FH
formulas from TBT we consider a partition {Ai, Āi} of the FoD Θ and a subset B of Θ. Using
TBT, one has

Bel(B) = Bel(Ai ∩B) +Bel(Āi ∩B) + U(A∗ ∩B) (52)

where FA∗(m) , FΘ(m)−FAi(m)−FĀi
(m) and

U(A∗ ∩B) ,
∑

X∈FA∗ (m)|X∈FB(m)

m(X). (53)

Hence
Bel(B)− U(A∗ ∩B) = Bel(Ai ∩B) +Bel(Āi ∩B) (54)

At this stage, one may be tempted to divide right and left side of previous equality by Bel(B)−
U(A∗ ∩B) (assuming its positiveness) to get

1 =
Bel(Ai ∩B)

Bel(B)− U(A∗ ∩B)
+

Bel(Āi ∩B)

Bel(B)− U(A∗ ∩B)

which would suggest to define Bel(Ai|B) by taking

Bel(Ai|B) = Bel(Ai ∩B)/(Bel(B)− U(A∗ ∩B)) (55)

Unfortunately, it can be seen from Ellsberg’s urn example that the conditional belief defined
by (55) is inconsistent with bounds of imprecise conditional probabilities. Therefore, we need
to go one step beyond in the calculus for defining consistent conditional belief and plausibility
functions. Because by definition U((Āi ∩B)

∗
) , Pl(Āi ∩B)−Bel(Āi ∩B), we have

Bel(Āi ∩B) = Pl(Āi ∩B)− U((Āi ∩B)
∗
) (56)

Putting this expression of Bel(Āi ∩B) into (54) and rearranging terms, we get

Bel(B) + ∆(U) = Bel(Ai ∩B) + Pl(Āi ∩B) (57)

with ∆(U) , U((Āi ∩B)
∗
)− U(A∗ ∩B) and ∆(U) ∈ [0, 1] (see proof in appendix).

Assuming Bel(B) > 0, and dividing each side of (57) by Bel(B) + ∆(U), we get

1 =
Bel(Ai ∩B)

Bel(B) + ∆(U)
+

Pl(Āi ∩B)

Bel(B) + ∆(U)
(58)



or equivalently
Bel(Ai ∩B)

Bel(B) + ∆(U)
= 1− Pl(Āi ∩B)

Bel(B) + ∆(U)
(59)

Because the general relationship Bel(X) = 1 − Pl(X̄) between the belief and the plausi-
bility must always be satisfied for any X ⊆ Θ, the equality (59) allows to define the conditional
belief Bel(Ai|B) and Pl(Āi|B) by taking

Bel(Ai|B) , Bel(Ai ∩B)

Bel(B) + ∆(U)
(60)

Pl(Āi|B) , Pl(Āi ∩B)

Bel(B) + ∆(U)
(61)

Using equality (57), the previous conditioning formulas can be rewritten equivalently as

Bel(Ai|B) =
Bel(Ai ∩B)

Bel(Ai ∩B) + Pl(Āi ∩B)
(62)

Pl(Āi|B) =
Pl(Āi ∩B)

Bel(Ai ∩B) + Pl(Āi ∩B)
(63)

In replacing Āi by Ai in notations of formulas (61)–(63) we get15 the conditional plausibility
Pl(Ai|B) as

Pl(Ai|B) , Pl(Ai ∩B)

Bel(B) + U((Ai ∩B)∗)− U(A∗ ∩B)
=

Pl(Ai ∩B)

Bel(Āi ∩B) + Pl(Ai ∩B)
(64)

Formulas (62) and (64) coincide with Fagin-Halpern formulas 4 which were originally pro-
posed from essentially a very good intuition. In this work, we have derived Fagin-Halpern for-
mulas only from TBT using the proper decomposition of the set of focal elements of the a priori
BBA. Note that the definition of Bel(Ai|B) given in (60) satisfies the conditions Bel(∅|B) = 0,
Bel(Θ|B) = 1, and Bel(Ai|B) ∈ [0, 1]. To prove that Bel(Ai|B) defined by (62) is a belief
function one must prove that it is also an n-monotone (n ≥ 2) Choquet’s capacity 36 on the finite
set Θ, or equivalently that the following inequality holds for any B ⊆ Θ with Bel(B) > 0 and
for any collection A1,. . . ,An of subsets of Θ

Bel(A1 ∪ . . . ∪An|B) ≥
∑

I⊂{1,...,n}
I≠∅

(−1)|I|+1Bel(∩
i∈I

Ai|B)

The proof of this inequality is complicate. However, three very different proofs have already
been given by Fagin and Halpern 3, Jaffray 6, and Sundberg and Wagner 7, the latter one being the
clearest of fashion.

9 GENERALIZATION OF BAYES’ THEOREM
In this section and thanks to the previous results, we generalize Bayes’ Theorem (BT) in the
framework of belief functions. Assuming Bel(B) > 0, we have shown that Fagin-Halpern
expression of Bel(Ai|B) given by

Bel(Ai|B) =
Bel(Ai ∩B)

Bel(Ai ∩B) + Pl(Āi ∩B)
(65)

15It is worth to note that one has always U(A∗) = U(Ai
∗) = U(Ā∗

i ) when partitioning Θ as {Ai, Āi}
because U(Ai

∗) = Pl(Ai)−Bel(Ai) = (1−Bel(Āi))−(1−Pl(Āi)) = Pl(Āi)−Bel(Āi) = U(Ā∗
i ).



is equal to the formula (60), i.e.

Bel(Ai|B) =
Bel(Ai ∩B)

Bel(B) + U((Āi ∩B)
∗
)− U(A∗ ∩B)

(66)

In replacing Bel(B) by the expression (40) of TBT we get

Bel(Ai|B) =
Bel(Ai ∩B)∑

i=1,...,k Bel(Ai ∩B) + U((Āi ∩B)
∗
)

(67)

Assuming Bel(Ai) > 0, Fagin-Halpern expression of Bel(B|Ai) given by

Bel(B|Ai) =
Bel(B ∩Ai)

Bel(B ∩Ai) + Pl(B̄ ∩Ai)
(68)

is equal to

Bel(B|Ai) =
Bel(B ∩Ai)

Bel(Ai) + U((B̄ ∩Ai)
∗
)− U(B∗ ∩Ai)

(69)

where

U((B̄ ∩Ai)
∗
) , Pl(B̄ ∩Ai)−Bel(B̄ ∩Ai) =

∑
X∈F(B̄∩Ai)

∗ (m)

m(X) (70)

with F(B̄∩Ai)∗(m) = FΘ(m)−FB̄∩Ai
(m)−FB∪Āi

(m), and where

U(B∗ ∩Ai) ,
∑

X∈FB∗ (m)|X∈FAi
(m)

m(X) (71)

with FB∗(m) = FΘ(m)−FB(m)−FB̄(m).

From (69), one obtains

Bel(Ai ∩B) = Bel(B|Ai)[Bel(Ai) + U((B̄ ∩Ai)
∗
)− U(B∗ ∩Ai)]

By replacing the above expression of Bel(Ai ∩B) into (67), we obtain

Bel(Ai|B) =
Bel(B|Ai)q(Ai, B)∑k

i=1 Bel(B|Ai)q(Ai, B) + U((Āi ∩B)
∗
)

(72)

where the factor q(Ai, B) introduced here for notation conciseness is defined by

q(Ai, B) , Bel(Ai) + U((B̄ ∩Ai)
∗
)− U(B∗ ∩Ai) (73)

This result allows us to establish the following Generalized Bayes’ Theorem (GBT).

Generalized Bayes’ Theorem (GBT): For any partition {Ai, i =, . . . , k} of a FoD Θ, any
belief function Bel(·) : 2Θ 7→ [0, 1], and any subset B of Θ with Bel(B) > 0, then one has

Bel(Ai|B) =
Bel(B|Ai)q(Ai, B)∑k

i=1 Bel(B|Ai)q(Ai, B) + U((Āi ∩B)
∗
)

(74)

where U((Āi ∩B)
∗
) ,

∑
X∈F(Āi∩B)∗ (m) m(X) = Pl(Āi ∩ B)− Bel(Āi ∩ B), and where

q(Ai, B) = Bel(Ai) + U((B̄ ∩Ai)
∗
)− U(B∗ ∩Ai).



Lemma: GBT reduces to Bayes’ Theorem if Bel(·) : 2Θ 7→ [0, 1] is a Bayesian belief function.

Proof: See appendix.

When Ai ⊆ Θ1 and B ⊆ Θ2 with Θ1 ̸= Θ2, we must work in the Cartesian product space
Θ = Θ1×Θ2 and the GBT formula is similar to (74) in replacing Ai by Ai×Θ2, B by Θ1×B,
and where

U((Āi ∩B)
∗
) ,

∑
X∈F((Āi×Θ2)∩(Θ1×B))∗ (m)

m(X)

= Pl((Āi ×Θ2) ∩ (Θ1 ×B))−Bel((Āi ×Θ2) ∩ (Θ1 ×B)) (75)

and where the factor q(Ai, B) must be replaced by

q(Ai ×Θ2,Θ1 ×B) , Bel(Ai ×Θ2) + U((B̄ ∩Ai)
∗
)− U(B∗ ∩Ai) (76)

with

U((B̄ ∩Ai)
∗
) ,

∑
X∈F(Θ1×B̄)∩(Ai×Θ2)∗ (m)

m(X)

= Pl((Θ1 × B̄) ∩ (Ai ×Θ2))−Bel((Θ1 × B̄) ∩ (Ai ×Θ2)) (77)

U(B∗ ∩Ai) ,
∑

X∈FΘ1×B∗ (m)|X∈FAi×Θ2
(m)

m(X) (78)

and FΘ1×B∗(m) = FΘ1×Θ2(m)−FΘ1×B(m)−FΘ1×B̄(m).

In the formulas (75)–(78), X is an elementary element of the Cartesian space Θ = Θ1×Θ2,
and m(X) is the (joint) BBA value of X defined on the power set of Cartesian product space.

The application of GBT formula when working with Ai ⊆ Θ1 and B ⊆ Θ2 with Θ1 ̸= Θ2 is
not easy in general because it requires the knowledge of joint BBA m(·) defined over 2Θ1×Θ2

which is rarely known in practice. If the joint BBA m(·) can be expressed (or approximated) as a
function of two marginal BBAs mΘ1(·) and mΘ2(·) (assumed to be known) defined respectively
over Θ1 and Θ2, then GBT formula should become tractable.

10 ILLUSTRATIVE EXAMPLE OF GBT
In this section, we provide a complete quite simple illustrative example to show how belief
conditioning formulas work and how to apply GBT.

Let us consider the FoD Θ = {θi, i = 1, . . . , 7} and the set of focal elements FΘ(m) =
{X1, X2, . . . , X9} of a BBA m(·) defined over 2Θ given in Table III. Let’s consider the partition
{A1, A2, A3} of Θ with A1 = θ1∪θ3∪θ4∪θ7, A2 = θ2∪θ5 and A3 = θ6, and let consider the
subset B = θ4∪θ5∪θ6∪θ7 of Θ having positive belief Bel(B) = m(X4)+m(X6)+m(X9) =
0.39. Table IV summarizes the belief and plausibility values of different subsets of Θ which are
needed in the derivations.



Table III: Focal elements and their masses.
Focal element X BBA m(X)
X1 = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ7 m(X1) = 0.01
X2 = θ1 ∪ θ2 ∪ θ3 ∪ θ4 m(X2) = 0.02
X3 = θ3 ∪ θ5 ∪ θ6 m(X3) = 0.03
X4 = θ4 ∪ θ7 m(X4) = 0.04
X5 = θ2 m(X5) = 0.20
X6 = θ6 ∪ θ7 m(X6) = 0.30
X7 = θ2 ∪ θ3 ∪ θ7 m(X7) = 0.20
X8 = θ1 ∪ θ4 ∪ θ6 m(X8) = 0.15
X9 = θ6 m(X9) = 0.05

Table IV: Belief and plausibility values used for the derivations.
Subsets of Θ Bel(·) Pl(·)
B = θ4 ∪ θ5 ∪ θ6 ∪ θ7 Bel(B) = 0.39 Pl(B) = 0.80
A1 = θ1 ∪ θ3 ∪ θ4 ∪ θ7 Bel(A1) = 0.04 Pl(A1) = 0.75
A2 = θ2 ∪ θ5 Bel(A2) = 0.20 Pl(A2) = 0.46
A3 = θ6 Bel(A3) = 0.05 Pl(A3) = 0.53
A1 ∩B = θ4 ∪ θ7 Bel(A1 ∩B) = 0.04 Pl(A1 ∩B) = 0.72
A2 ∩B = θ5 Bel(A2 ∩B) = 0 Pl(A2 ∩B) = 0.04
A3 ∩B = θ6 Bel(A3 ∩B) = 0.05 Pl(A3 ∩B) = 0.53
Ā1 ∩B = θ5 ∪ θ6 Bel(Ā1 ∩B) = 0.05 Pl(Ā1 ∩B) = 0.54
Ā2 ∩B = θ4 ∪ θ6 ∪ θ7 Bel(Ā2 ∩B) = 0.39 Pl(Ā2 ∩B) = 0.80
Ā3 ∩B = θ4 ∪ θ5 ∪ θ7 Bel(Ā3 ∩B) = 0.04 Pl(Ā3 ∩B) = 0.75
A1 ∩ B̄ = θ1 ∪ θ3 Bel(A1 ∩ B̄) = 0 Pl(A1 ∩ B̄) = 0.41
A2 ∩ B̄ = θ2 Bel(A2 ∩ B̄) = 0.20 Pl(A2 ∩ B̄) = 0.43
A3 ∩ B̄ = ∅ Bel(A3 ∩ B̄) = 0 Pl(A3 ∩ B̄) = 0

In this example, one has

FB(m) = {X4, X6, X9} and FB̄(m) = {X5}
FB∗(m) = FΘ(m)−FB(m)−FB̄(m) = {X1, X2, X3, X7, X8}
FA1(m) = {X4} and FĀ1

(m) = {X5, X9}
FA2(m) = {X5} and FĀ2

(m) = {X4, X6, X8, X9}
FA3(m) = {X9} and FĀ3

(m) = {X1, X2, X4, X5, X7}
FA∗(m) = FΘ(m)−FA1(m)−FA2(m)−FA3(m) = {X1, X2, X3, X6, X7, X8}

• Results with Fagin-Halpern conditioning formulas

Using Fagin-Halpern conditioning formulas (62) and (68) and the fact that Pl(Ai|B) =
1 − Bel(Āi|B) and Pl(B|Ai) = 1 − Bel(B̄|Ai), we obtain in this example the conditional
belief and plausibility values given in Tables V–VI



Table V: Bel(Ai|B) and Pl(Ai|B) with Fagin-Halpern conditioning.
Subsets of Θ Bel(Ai|B) Pl(Ai|B)
A1 Bel(A1|B) ≈ 0.0690 Pl(A1|B) ≈ 0.9351
A2 Bel(A2|B) = 0 Pl(A2|B) ≈ 0.0930
A3 Bel(A3|B) ≈ 0.0625 Pl(A3|B) ≈ 0.9298

Table VI: Bel(B|Ai) and Pl(B|Ai) with Fagin-Halpern conditioning.
Subsets of Θ Bel(B|Ai) Pl(B|Ai)
A1 Bel(B|A1) ≈ 0.0889 Pl(B|A1) = 1
A2 Bel(B|A2) = 0 Pl(B|A2) ≈ 0.1667
A3 Bel(B|A3) = 1 Pl(B|A3) = 1

To apply and verify GBT on this example, one needs to compute Bel(Ai), U((B̄ ∩Ai)
∗
) and

U(B∗ ∩ Ai) to calculate q(Ai, B) factors and also U((Āi ∩B)
∗
) because they enter in GBT

formula (74). These values are listed in Table VII for convenience.

Table VII: Values of q(Ai, B) and U((Āi ∩B)
∗
) for GBT formula.

Subsets of Θ q(Ai, B) U((Āi ∩B)
∗
)

A1 0.45 0.49
A2 0.43 0.41
A3 0.05 0.71

The value q(A1, B) = 0.45 appearing in Table VII has been calculated as follows

q(A1, B) , Bel(A1) + U((B̄ ∩A1)
∗
)− U(B∗ ∩A1) = 0.45

because

Bel(A1) = 0.04

U((B̄ ∩A1)
∗
) = Pl(B̄ ∩A1)−Bel(B̄ ∩A1) = 0.41

U(B∗ ∩A1) =
∑

X∈FA1
(m)|X∈FB∗(m)

m(X) = 0

The value U((Ā1 ∩B)
∗
) = 0.49 appearing in Table VII is calculated as follows

U((Ā1 ∩B)
∗
) = Pl(Ā1 ∩B)−Be(Ā1 ∩B) = 0.54− 0.05 = 0.49

Other values of Table VII are calculated similarly.



One verifies that GBT formula (74) works because we retrieve correct values obtained with
FH formula, given in Table V. Indeed, one has

Bel(A1|B) =
Bel(B|A1)q(A1, B)∑3

i=1 Bel(B|Ai)q(Ai, B) + U((Ā1 ∩B)
∗
)

≈ 0.0889 · 0.45
(0.0889 · 0.45) + (0 · 0.43) + (1 · 0.05) + 0.49

≈ 0.0690

Bel(A2|B) =
Bel(B|A2)q(A2, B)∑3

i=1 Bel(B|Ai)q(Ai, B) + U((Ā2 ∩B)
∗
)

≈ 0 · 0.43
(0.0889 · 0.45) + (0 · 0.43) + (1 · 0.05) + 0.41

= 0

Bel(A3|B) =
Bel(B|A3)q(A3, B)∑3

i=1 Bel(B|Ai)q(Ai, B) + U((Ā3 ∩B)
∗
)

≈ 1 · 0.05
(0.0889 · 0.45) + (0 · 0.43) + (1 · 0.05) + 0.71

≈ 0.0625

• Results with Shafer’s conditioning formulas

Using Shafer’s conditioning formulas (30) and (31), we obtain in this example the condi-
tional belief and plausibility values given in Table VIII and IX.

Table VIII: Bel(Ai|B) and Pl(Ai|B) with Shafer’s conditioning.
Subsets of Θ Bel(Ai|B) Pl(Ai|B)
A1 Bel(A1|B) = 0.3250 Pl(A1|B) = 0.9000
A2 Bel(A2|B) = 0 Pl(A2|B) = 0.0500
A3 Bel(A3|B) = 0.0625 Pl(A3|B) = 0.6625

Table IX: Bel(B|Ai) and Pl(B|Ai) with Shafer’s conditioning.
Subsets of Θ Bel(B|Ai) Pl(B|Ai)
A1 Bel(B|A1) ≈ 0.4533 Pl(B|A1) ≈ 0.9600
A2 Bel(B|A2) ≈ 0.0652 Pl(B|A2) ≈ 0.0870
A3 Bel(B|A3) = 1 Pl(B|A3) = 1

As shown in the previous Ellsberg’s urn example, one knows that Shafer’s belief condition-
ing formulas are inconsistent with lower and upper bounds of imprecise conditional probabilities,
and with this example one shows that Shafer’s belief conditioning is also incompatible with GBT
formula (74). We emphasize that GBT has been established by a constructive manner from TBT



using a direct and relatively simple calculus16 without need of rule of combination of basic be-
lief assignments. When using Shafer’s belief conditioning formulas, one sees that the conditional
values are not coherent since they do not verify GBT because we obtain in this example

Bel(A1|B) = 0.3250 (from the results in Table VIII using eq. (31))

̸= Bel(B|A1)q(A1, B)∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā1 ∩B)

∗
)

≈ 0.4533 · 0.45
(0.4533 · 0.45) + (0.0652 · 0.43) + (1 · 0.05) + 0.49

≈ 0.2642

Bel(A2|B) = 0 (from the results in Table VIII using eq. (31))

̸= Bel(B|A2)q(A2, B)∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā2 ∩B)

∗
)

≈ 0.0652 · 0.43
(0.4533 · 0.45) + (0.0652 · 0.43) + (1 · 0.05) + 0.41

≈ 0.0405

Bel(A3|B) = 0.0625 (from the results in Table VIII using eq. (31))

̸= Bel(B|A3)q(A3, B)∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā3 ∩B)

∗
)

≈ 1 · 0.05
(0.4533 · 0.45) + (0.0652 · 0.43) + (1 · 0.05) + 0.71

≈ 0.0504

Ellsberg’s urn example and this example show clearly that Dempster’s rule of combination
used by Shafer to establish his belief and conditioning formulas does not provide coherent and
satisfactory results since they are inconsistent with lower and upper bounds of imprecise condi-
tional probabilities and they do not satisfy GBT also.

11 CONCLUSION
In this paper new important results for reasoning with belief functions were obtained and dis-
cussed. The Total Belief Theorem (TBT) was established from a simple decomposition of the
set of focal elements of any basic belief assignment. TBT is a generalization of Total Proba-
bility Theorem for belief functions, and based on it we are able to derive conditional belief and
conditional plausibility functions that coincide with Fagin-Halpern conditioning formulas and
which are coherent with lower and upper bounds of imprecise conditional probability. Hence,
this work provides a solid justification of the establishment of formulas presented by Fagin and
Halpern. The TBT has been generalized for dealing with different frame of discernments as well
thanks to the Cartesian product space. Also as a direct consequence of TBT, we have presented
a generalization of the well-known Bayes’ Theorem for the framework of belief functions called
the Generalized Bayesian Theorem (GBT). We have proved that TBT and GBT reduce to TPT
and BT respectively as soon as we work with Bayesian belief function because in this case the
Bayesian belief function is homogeneous to a probability measure. On the base of Ellsberg’s
urn an example and an illustrative example we have shown that Dempster’s rule of combina-
tion used by Shafer to establish his belief and conditioning formulas does not provide coherent
and satisfactory results because they are inconsistent with lower and upper bounds of imprecise
conditional probabilities and because they do not satisfy GBT also. These new theoretical re-
sults should (we hope) reconcile the Bayesian reasoning practioners with evidential reasoning
practioners and bring new foundations for reasoning with uncertainty thanks to belief functions.

16assuming Bel(B) and Bel(Ai) being positive to have well defined expressions as it is for this example.
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APPENDIX
Proof of TBT

From the basic definition of Bel(B) one has for any B ⊆ Θ, Bel(B) =
∑

X∈FΘ(m)|X⊆B m(X).
Because the set of focal elements FΘ(m) can always be decomposed as the union FΘ(m) =
FA1(m) ∪ . . . ∪ FAk (m) ∪ FA∗(m), then one can always decompose the previous sum as
follows

Bel(B) =
∑

X∈FΘ(m)|X⊆B

m(X)

=
∑

X∈FA1
(m)|X∈FB(m)

m(X) + . . .

+
∑

X∈FAk
(m)|X∈FB(m)

m(X)

+
∑

X∈FA∗ (m)|X∈FB(m)

m(X)

= Bel(A1 ∩B) + . . .+Bel(Ak ∩B) +
∑

X∈FA∗ (m)|X∈FB(m)

m(X)

=
∑

i=1,...,k

Bel(Ai ∩B) + U(A∗ ∩B)

where U(A∗ ∩B) ,
∑

X∈FA∗ (m)|X∈FB(m) m(X), which completes the proof of TBT.

Proof of the corollary of TBT
If m(·) is Bayesian then any focal element X of FΘ(m) is a singleton of 2Θ which either belongs
to Ai, or to Āi (but it cannot belong to both). Therefore, FΘ(m) = FA1(m) ∪ . . . ∪ FAk (m)
and FA∗(m) = ∅. TBT formula applies with17 U(A∗∩B) =

∑
X∈FA∗ (m)|X∈FB(m) m(X) =∑

X∈∅|X∈FB(m) m(X) = 0 and thanks to TBT one has in this case for any partition {A1, . . . , Ak}
of Θ and any subset B of Θ the following equality satisfied

Bel(B) =
∑

i=1,...,k

Bel(Ai ∩B) (79)

When m(·) is Bayesian, its corresponding belief function Bel(·) is homogeneous to a probability
measure P (·) 1, and therefore the previous equality is consistent with TPT formula (13), which
completes the proof of the corollary of the TBT.

17We recall that if a summation has no term then its value is set to zero.



Proof of TPlT
From equality Pl(B) = 1−Bel(B̄) and TBT, one has

Pl(B) = 1−Bel(B̄)

= 1−
∑

i=1,...,k

Bel(Ai ∩ B̄)− U(A∗ ∩ B̄)

= 1−
∑

i=1,...,k

(Bel(Ai ∩ B̄) + 1− 1)− U(A∗ ∩ B̄)

= 1−
∑

i=1,...,k

(−1 +Bel(Ai ∩ B̄) + 1)− U(A∗ ∩ B̄)

= 1−
∑

i=1,...,k

(−(1−Bel(Ai ∩ B̄)) + 1)− U(A∗ ∩ B̄)

= 1 +
∑

i=1,...,k

Pl(Ai ∩ B̄)− k − U(A∗ ∩ B̄)

=
∑

i=1,...,k

Pl(Āi ∪B) + 1− k − U(A∗ ∩ B̄)

which completes the proof of TPlT.

Proof that ∆(U) ∈ [0, 1]

∆(U) , U((Āi ∩B)
∗
)− U(A∗ ∩B)

= [Pl(Āi ∩B)−Bel(Āi ∩B)]− [Bel(Ai ∩B) +Bel(Āi ∩B)−Bel(B)]

= Pl(Āi ∩B)−Bel(Āi ∩B) +Bel(B)−Bel(Ai ∩B)−Bel(Āi ∩B)

To prove that ∆(U) ≥ 0, one must prove equivalently that

Pl(Āi ∩ B) − Bel(Āi ∩ B) + Bel(B) ≥ Bel(Ai ∩ B) + Bel(Āi ∩ B) (80)

Using TBT, one has

Bel(B) = Bel(Ai ∩B) +Bel(Āi ∩B) + U(A∗ ∩B)

Replacing expression of Bel(B) in inequality (80), one must verify if the following equality is
satisfied

Pl(Āi ∩B)−Bel(Āi ∩B) +Bel(Ai ∩B) +Bel(Āi ∩B) + U(A∗ ∩B)

≥ Bel(Ai ∩B) +Bel(Āi ∩B)

After simplification, we have to prove that the following inequality holds

Pl(Āi ∩B) + U(A∗ ∩B) ≥ Bel(Āi ∩B)

Because Pl(Āi ∩ B) = Bel(Āi ∩ B) + U((Āi ∩B)
∗
), one has to verify if the following

inequality holds

Bel(Āi ∩B) + U((Āi ∩B)
∗
) + U(A∗ ∩B) ≥ Bel(Āi ∩B)



After simplification (omitting both Bel(Āi ∩ B) in left and right side of the previous in-
equality), one has to prove that the inequality below is satisfied to prove that ∆(U) ≥ 0

U((Āi ∩B)
∗
) + U(A∗ ∩B) ≥ 0

Because U((Āi ∩B)
∗
) ∈ [0, 1] and U(A∗ ∩ B) ∈ [0, 1], the previous inequality always

holds which proves that U((Āi ∩B)
∗
) − U(A∗ ∩ B) ≥ 0. Moreover because U(A∗ ∩ B) ∈

[0, 1], then −U(A∗ ∩ B) ∈ [−1, 0]. Because U((Āi ∩B)
∗
) ∈ [0, 1], one deduces that

U((Āi ∩B)
∗
)− U(A∗ ∩B) ≤ 1. This completes the proof.

Proof of Lemma
If Bel(·) : 2Θ 7→ [0, 1] is a Bayesian belief function, then all focal elements of its corresponding
BBA m(·) are singletons of 2Θ. In this case Bel(·) and Pl(·) functions coincide and therefore
one has U((Āi ∩B)

∗
) = Pl(Āi ∩ B) − Bel(Āi ∩ B) = 0 and U((B̄ ∩Ai)

∗
) = Pl(B̄ ∩

Ai) − Bel(B̄ ∩ Ai) = 0. Any focal element (singleton) of m(·) is either a subset of B or
a subset of B̄ of the FoD Θ. Therefore, FB∗(m) = ∅, which implies U(B∗ ∩ Ai) = 0, so
that q(Ai, B) = Bel(Ai). The GBT formula (74) with in this case q(Ai, B) = Bel(Ai) and
U((Āi ∩B)

∗
) = 0 reduces to formula

Bel(Ai|B) =
Bel(B|Ai)Bel(Ai)∑k
i=1 Bel(B|Ai)Bel(Ai)

which coincides with formula (20) because Bel(·) (being a Bayesian belief function) is homo-
geneous to a probability measure P (·). This completes the proof that GBT formula is consistent
with Bayesian Theorem formula when the Belief function is Bayesian.
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