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Abstract

Sound wave propagation in a shallow water environment is complex due to e.g. the uncertainties of sound

speed profile being inhomogeneous and imprecisely measured, the bottom reflections, etc. The propagation

and influence of several uncertainty parameters are quantified in this paper. A four-layer model, which

can approximately represent a wide range of shallow water environments, is considered; six parameters

representing sound speed profile and water depth are considered as random variables. We investigate how

the wave field (pressure) in this model is influenced by these uncertainties. For this purpose, the sound

field is computed for different realizations of the random variables, when the medium is excited with sources

whose frequencies are appropriate, for example, for marine seismic exploration applications. Since classical

Monte Carlo methods require a huge sample size to converge, we use three surrogate modeling techniques

(Kriging, Polynomial Chaos, and Polynomial Chaos-based Kriging). The proposed methods require much

smaller sample sizes, which makes the uncertainty quantification (UQ) possible. Wavelength-to-depth ratio

(λ/d) is introduced as the key parameter that defines the degree of interaction (reflection and transmission)

of the sound waves with the boundaries of the shallow water waveguide. The results show that for small

and large values of λ/d, the wave field is more sensitive to the variations of the water depth and the velocity

of the bottom layer, respectively. The robustness (precision) of the surrogate models is shown to decrease

for lower values of λ/d. The proposed UQ methodology can be used for more complicated underwater

environments; it is even more advantageous because it can efficiently deal with a large number of model

uncertainty parameters and identify the most influential ones.
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Introduction

Knowledge of the Green’s function (impulse response) of the medium is essential in the majority of wave

propagation applications, for instance medical imaging, underwater communication and structural health

monitoring, among others. In order to model the acoustic wave field (pressure or velocity) [4, 6, 22, 30, 32, 33,

38], one should precisely define the values of the environmental parameters (typically velocity and density at

each point) and the boundary and/or initial conditions. The physical properties of the propagation medium

are inherently inhomogeneous. For instance, in ocean acoustics, depth, pressure, salinity and temperature

are among the influencing factors on the propagation velocity [21]. Drastic variations on the sound speed

profiles are observed particularly near the sea surface. Hence, the environmental parameters are spatially

varying and only their statistical information might be provided [24, 52]. Taking into account this spatial

variability plays an important role in modeling of both direct and inverse (source identification) problems.

The values of the input parameters of the above-described inhomogeneous medium are usually under-

sampled and poorly known. As a result, the uncertainties due to our lack of knowledge should be accounted

for in the modeling process. This adds a probabilistic dimension to the classical wave propagation equation.

The mentioned uncertainties exist also in boundary and initial conditions. In this regard, Khazaie et al.

[24] studied acoustic wave propagation, accounting for the uncertainties related to the source. However, the

uncertainties related to the boundary and initial conditions are out of the scope of the present paper and

the main focus is on inserting uncertainty on the physical properties of the propagation medium.

In this work we consider an axisymmetric model which is also known as 2.5-D and therefore it can

describe a 3-D inhomogeneous shallow water environment with an underlying semi-infinite ocean layer. The

spatial variations on the density are considered as negligible compared to that of the sound speed so that it

is considered as a constant for each layer. The inhomogeneous shallow water sound speed is considered to be

only depth-dependent (horizontally invariant) and is characterized with two constants along with a (quasi-

)linear variation in between. The velocity and density of the ocean layer are both constants. This model

was elaborated in Wang et al. [55] and was shown to efficiently approximate shallow water environments in

particular during summer [27].

The uncertainty on the aforementioned sound speed profile of the whole system is modeled via six random

variables with given lower and upper bounds. These random variables correspond to: (i) two constant sound

speeds of the shallow water; (ii) the sound speed of the ocean bottom; and (iii)three layer depths in the

shallow water. One of the objectives of this work is to propagate the input uncertainties through the system

and to classify the input parameters in terms of their contribution to the variance (uncertainty) of the wave
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field via a sensitivity analysis. For instance [36] used the same approach for wave propagation through

poroelastic environments. It should be noted that hereinafter the wave field means the absolute value of

the Fourier transform of the temporal pressure field filtered around the dominant frequency of the source.

The relatively high number of random variables involved in this problem forces us to solve deterministic

realizations of the problem at least several thousands times to obtain a wave field with converged statistics.

On the other hand, the computational cost of the wave field modeling for each particular realization of such

a medium is a priroi high, particularly in three-dimensional problems. To cope with this problem, we use

the fast algorithm proposed in [55] to solve the wave equation. This method is based on the wavenumber

integration [6, 33, 54] and provides a semi-analytical Green’s function for the system that enables drastic

reductions of the computational costs. As a result, we can use classical sampling methods such as Quasi

Monte Carlo (QMC) to calculate the statistics of the random wave field.

Several studies have been devoted to assessing the uncertainty effects on the pressure wave field. For

instance, Lermusiaux et al. [31] studied the sensitivity of the transmission loss (TL) to several factors such

as uncertainties in geoacoustic parameters, seabed thickness and bathymetry. Spectral stochastic method

has been used to predict the sound pressure in an uncertain waveguide [10–12, 25]. In these works, the UQ

analysis is done using a Polynomial Chaos Expansion (PCE) method without any further discussion about

its robustness nor about the output sensitivity with respect to the input randomness. However, Gerdes and

Finette [13] studied the relative importance of tidal forcing, source depth and seabed parameters on the

spatial structure and variance of intensity using a PCE method. The PCE method has been used in Pekeris

waveguides to identify the sound field uncertainties arsing from the environmental ones [19]. The former

has also been used as a substitute for the perturbation technique which is limited to weak uncertainties [37].

The Kriging surrogate model is also used to quantify the sound pressure uncertainty [17]. Wang et al. [53]

performed a two-parameter UQ using the Kriging method in the context of the sound source localization in

shallow water environments. Our paper aims at introducing the randomness on the parameters of the four

layer model introduced in Wang et al. [55] and then doing a full UQ analysis using and comparing three

approaches: the PCE, Kriging and PCE-based Kriging. It should be noted that the methodology could be

used for more complicated environments but here for comparison with the QMC results, we consider the

four layer model for which the semi-analytical Green’s function is derived in [55]. Kriging yields a local

interpolation of the random pressure and provides a local error estimate. While PCE approximates the

global behavior of the computational model. The PCE-based Kriging has both of these features and can

thus be expected to generate better results. The robustness of the results obtained by these methods is
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found to be determined by the wavelength-to-depth ratio. The latter also shows to be influential on the

sensitivity indices.

The outline of the paper is the following. In Section 2, we recall the model of the propagation medium

and the calculation of its Green’s function. We then specify the parameters that will be modeled as random

variables based on some given statistical parameters. In Section 3, the classical uncertainty quantification

methods used in ocean acoustics are briefly recalled. In Section 4 we then present the numerical case studies

and the results obtained based on the UQ methods. Conclusions are drawn in Section 5.

2. Sound propagation in a four-layer shallow water environment

The sound speed in shallow water region {r = (x, y, z) : z ∈ [0, d]}, where d ∈ R
+ is the water depth, is

horizontally stratified and vertically follows a three-layer profile consisting of two separate constant layers,

with a layer varying linearly with respect to k2(z) sandwiched in between, as shown in Figure 1. Here,

k(z) = 2πf/v(z) is the wavenumber, v(z) is the sound speed, and f is the frequency. The bottom is

assumed to be an infinite fluid halfspace {r = (x, y, z) : z ∈ [d,∞)} where the sound speed is constant. The

sound speed function with respect to the depth z is concluded as follows:

v(z) =















































v1, z ∈ [0, d1)
√

1

az + b
, a > 0, z ∈ [d1, d2)

v2, z ∈ [d2, d)

v3, z ∈ [d,∞)

, (1)

where the coefficients a and b are

a =
v21 − v22

v21v
2
2(d2 − d1)

, b =
v22d2 − v21d1
v21v

2
2(d2 − d1)

, (2)

such that the sound speed is continuous at z = d1 and z = d2. In both the water column and the ocean

bottom regions, the density is constant:

ρ(z) =











ρ1, z ∈ [0, d]

ρ2, z ∈ (d,∞)

. (3)
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Figure 1: Shallow water environment with a four-layer sound speed profile v(z).

The Helmholtz equation for the displacement potential, being a function of the spatial coordinate r = (x, y, z)

and the frequency f , reads
(

∇2 + k2(z)
)

ψ(r, f) = δ(r− r0)Sf , (4)

where Sf is a deterministic function and r0 = (x0, y0, z0), z0 ∈ (0, d) is the source position. The sound

pressure is obtained from the displacement potential as p(r, f) = ρω2ψ(r, f) where ω = 2πf is the angular

frequency. The Helmholtz equation (4) can be solved via a wavenumber integration approach [55], whose

computation is fast but still needs a one-fold numerical integration. This method is used in this paper to

compute the sound propagation in the four-layer model.

3. Surrogate modeling and sensitivity analysis for uncertainty quantification

In this section, the uncertainty quantification methods used in this paper are introduced. Consider the

random pressure field (at any point x) or any other scalar stochastic output quantity of interest (QoI) Y

as a function of a vector of M input random variables X = {X1, X2, ..., XM}⊤ ∈ R
M , i.e. Y = P(r,X).

Hereinafter the dependence on r is omitted for clarity purposes. Classical sampling techniques such as Monte

Carlo (MC) simulation, which takes random samples from X, could be used to estimate the probabilistic

content of the QoI. However, for large stochastic dimensionsM , a relatively high number of samples is needed

to guarantee the convergence. This implies high computational costs which makes MC methods intractable,

even if the solution of the wave equation is semi-analytical (i.e. only a one-fold numerical integration is

required). Hence, meta-models could alternatively be used to build fast-to-evaluate surrogate models from a

limited number of calls to the numerical solver. In this work, Kriging [40, 41, 43, 49] and Polynomial Chaos

Expansion (PCE) [1, 3, 15, 50] as two popular surrogate models will be used. The PCE-based Kriging
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method [45, 46] will also be employed as a variant of the Kriging method. These surrogate models will be

briefly discussed in Sections 3.1–3.3. Based on the three surrogate modeling methods, we further introduce

the Sobol index to quantify the global sensitivities in Section 3.4.

3.1. Kriging (Gaussian process regression)

Kriging is based on the decomposition of the QoI into a deterministic mean which is referred to as trend

or regression part, and a residual stochastic term that is assumed to be a Gaussian process [43]:

PK(x) = a⊤f(x) + σZ(x; ℓ) (5)

wherein x is a realization of the random vector X, E[PK ] = a⊤f(x) is the mean of the QoI, represented

by a set of predefined shape functions fi, i ∈ {0, ..., P − 1} and coefficients vector a, and Z(x; ℓ) is a zero-

mean, unit-variance stationary Gaussian random field. The standard deviation of the Kriging’s residual is

denoted by σ. Note that the superscript ⊤ represents the tranpose operation. The random field Z(x; ℓ) is

fully described by its auto-correlation function (ACF) R(x,x′; ℓ) = E[Z(x; ℓ)Z(x′; ℓ)]. The ACF is often

considered as a function of the lag distance d = |x − x′| and a vector ℓ = {ℓ1, ..., ℓM}⊤ also called the

correlation distance, i.e. R(x,x′; ℓ) = R(d; ℓ). The vector ℓ is oftentimes unknown and should be estimated

from the pressure measurements. Some frequently used ACF models are introduced in [23, 26].

The objective is to evaluate the unknown parameters using a sample of size N (aka experimental design),

X = {x1, ...,xN} and the corresponding pressure measurements Y = {y1, ..., yN}⊤ in which yj = P(xj),

j ∈ {1, ..., N} is the recorded pressure for jth realization of input parameters. The Kriging predictor at any

point (realization of input parameters) x is a Gaussian random variable Ŷ (x) ∼ N (µ
Ŷ
(x), σ

Ŷ
(x)). The

least-squares estimate of the P × 1 coefficients vector a is â = (F⊤R−1F )−1F⊤R−1Y in which the N × P

matrix F is defined as Fij = fj(xi), i ∈ {1, ..., N}, j ∈ {1, ..., P} and R is the correlation matrix whose

components are Rij = R(|xi − xj |; ℓ), i, j ∈ {1, ..., N}. Note that the dependence of the correlation matrix

R on ℓ is omitted for the sake of clarity. The mean and variance of the Kriging estimator could be obtained

as a function of ℓ (see [43] for more details):

µ
Ŷ
(x) = f(x)⊤â+ r(x)⊤R−1(Y − F â), (6)

σ2
Ŷ
(x) = σ2

(

1− r(x)⊤R−1r(x) + u(x)⊤(F⊤R−1F )−1u(x))
)

, (7)

in which r(x) specifies the correlation between each realization point xi and the prediction point x, i.e.
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ri(x) = R(|x − xi|; ℓ), i ∈ {1, ..., N} and the P × 1 vector u(x) is defined as u(x) = F⊤R−1r(x) − f(x).

Note also that the mean Kriging estimator interpolates the data, i.e. µ
Ŷ
(xi) = P(xi) and σ2

Ŷ
(xi) = 0,

i ∈ {1, ..., N}. The main steps of the Kriging method are summarized bellow.

The first step consists in choosing the trend function. Constant, linear or higher order polynomials are

often used. We employ an unknown constant so that a⊤f(x) = a0 is to be determined. This variant of the

Kriging method is referred to as ordinary Kriging. The second step consists in choosing a model for the ACF,

R. The von Kármán ACF will be used in this work [26], i.e. R(η = h/ℓ,H) = 2(
√
Hη)HKH(2

√
Hη)/Γ(H)

wherein H is the shape parameter, KH is the modified Bessel function of the second kind and of order H, Γ is

the Gamma function and ℓ = ℓi, i ∈ {1, ...,M}. We use a shape parameter ofH = 1.5. The next step consists

in setting an optimization problem and solve it for the vector ℓ using the experimental design X and the

values of the QoI Y . For this purpose, maximum likelihood and cross-validation are frequently used [7, 35].

In this work, the maximum likelihood method will be used that leads to the following optimization problem

for the vector ℓ [28]:

ℓ = arg min
Dθ=R+M

(

1

2
log(det(R)) +

N

2
log(2πσ2) +

N

2

)

. (8)

In this study, a hybrid genetic algorithm [9] with upper and lower bounds of [0.001, 10] for each ℓi (1 ≤

i ≤ M) is used to solve the optimization problem (8) via Matlab’s built-in optimization functions. Finally,

one should use the optimal values of ℓ to estimate the coefficients of the trend â, the mean µ
Ŷ
(x) and the

variance σ2
Ŷ
(x) of the Kriging predictor.

A leave-one-out (LOO) cross-validation error estimator ǫLOO is frequently used to assess the quality of

the meta-models and/or to chose the best meta-model among several candidates. It is based on the creation

of N surrogate models each of which lacks one point of the experimental design, i.e. X
(−j) = {xi, i =

1, ..., N, i 6= j}. One should then compare the corresponding predictions with the real value of the QoI

at the excluded point [2]. Dubrule [8] derived an analytical solution for ǫKLOO without computing the N

meta-models.

3.2. Polynomial Chaos Expansion (PCE)

PCE belongs to the spectral stochastic methods [14, 29] and is based on a functional representation of the

random QoI. It consists in expanding any second-order random variable into an infinite linear combination

of orthogonal polynomials [44]. The orthogonality is with respect to the PDFs of the input parameters. A

truncated form of the PCE of the random pressure field in which polynomials of total degree not larger than
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p are used, reads:

PPCE
p (x) =

∑

α∈AM,p

aαΨα(ζ) ≡
P−1
∑

i=0

aiΨi(ζ) = a⊤Ψ(ζ), where AM,p =

{

α ∈ N
M : 0 ≤

M
∑

j=1

αj ≤ p

}

,

(9)

which includes P =
(

p+M
p

)

polynomials and coefficients that are put on the column vectors Ψ and a,

respectively. Hence, P grows rapidly with p and M implying the necessity of large number of model

resolutions. This issue makes this method less interesting for large stochastic dimensions (say, M > 10

which is not the case in this study) [39]. The standard random vector ζ = (ζ1, ..., ζM ) is related to the

random input vector via an isoprobabilistic transformation T , i.e. X = T (ζ). In (9), the PCE is expressed

in terms of the M -tuples α = (α1, ..., αM ) along with the simple indices ranging from 0 to P − 1. Moreover,

Ψα (α ∈ AM,p) are multidimensional orthonormal polynomials under the inner product defined with the

joint PDF of the random vectorX as the weight function, i.e. 〈Ψα,Ψβ〉fX(x) = δαβ being 1 when α = β and

vanishes otherwise. The family of the orthonormal polynomials will be chosen based on the marginal PDFs

of the input random variables. For instance, Hermite, Legendre, Laguerre and Jacobi polynomials are used

for Gaussian, uniform, Gamma and beta random variables. For independent input random variables, the

basis functions are constructed by tensorizing one dimensional bases, i.e. Ψα(ζ) = ΠM
i=1ψαi

(ζi). Different

methods to calculate the expansion coefficients are summarized in [29] from which we adopt a non-intrusive

least squares approach. The latter gives the estimation â = (F⊤F )−1F⊤Y in which the N × P matrix F

is defined as Fij = Ψj(ζi). A sample size larger than (M − 1)P is empirically recommended in order to

prevent the matrix F⊤F to be singular. Once the coefficients are calculated, the mean and variance of the

random QoI could be estimated directly via E[PPCE
p ] = a0 and Var[PPCE

p ] =
∑P−1

i=1 a2i , respectively.

Since the least-squares minimization method is employed to calculate the coefficients, one can show that

similar to the Kriging method, it is unnecessary to construct N meta-models to calculate the LOO error.

To choose the appropriate PCE degree p, we use a degree-adaptive PCE approach with degrees varying

from 1 to 5. Since the least-square minimization approach allows to get an estimation of the LOO error,

this approach adaptively returns the best value for the polynomial degree (in the chosen interval) that

minimizes the error. Apart from the aforementioned parameters of the QoI, the sensitivity indices could

also be calculated directly from the coefficients of the PCE. This will be discussed in Section 3.4.

3.3. PCE-based Kriging

The Kriging method interpolates the local variations of the QoI as a function of the neighboring exper-

imental design points. On the other hand, the PCE captures its global behavior using a set of orthogonal

8



polynomials. The PCE-Kriging method combines these two meta-modeling techniques. This allows to ap-

proximate the global behavior of the QoI using orthonormal polynomials in the trend part of the Kriging

method and the local variabilities using the Gaussian process [45, 46]. The main assumption of this method

is that one can directly use the optimal set of polynomials obtained in the context of pure PCE as the

optimal trend for the PCE-based Kriging model. This meta-model could thus be written as

PPCEK(x) = a⊤Ψ(ζ) + σZ(x; ℓ). (10)

There are two main steps to construct a PCE-based Kriging meta-model. First, determination of the

optimal set of polynomials in the trend part and second, the estimation of the vector ℓ as well as other

Kriging parameters {a, σ}. The readers are referred to Schöbi et al. [45] for further details about different

numerical approaches for these estimations. In this work, we use a sequential PCE-Kriging approach that

allows to sequentially calculate the set of polynomials and the Kriging meta-model. The main hypothesis

of this approach is that the optimal set of polynomials obtained in the context of pure PCE can be directly

used as the optimal trend for the PCE-based Kriging model. The calibration of the meta-model as a classical

Kriging model is subsequently carried out.

3.4. Sensitivity analysis

A summary of some efficient methods to calculate the sensitivity indices are introduced in [42]. In this

study we compute the Sobol sensitivity indices [48] through quasi Monte Carlo estimators [42] for Kriging

and PCE-Kriging methods. However, the PCE model allows to obtain analytical formulas for sensitivity

indices explicitly in terms of the PCE coefficients.

3.4.1. QMC-based sensitivity indices for Kriging and PCE-Kriging

Let Ξ1 and Ξ2 be two independent quasi Monte Carlo samples of random parameters whose dimension

is N ×M , N and M are the number of samples and the number of uncertain parameters, respectively. If

we define Ξi
1 the matrix Ξ1 whose i-th column is replaced by the i-th column of Ξ2, an estimation for the

Sobol index of the random variable Xi (1 ≤ i ≤M) writes:

Si =
σ2
i

σ2
P̂

≃ 1

Nσ2
P̂

N
∑

j=1

P̂j(Ξ2)
(

P̂j(Ξ
i
1)− P̂j(Ξ1)

)

, 1 ≤ i ≤M (11)
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wherein σ2
P̂
= Var[P̂ ] is the estimate of the total variance of the random wave field and σ2

i = Var[E[P̂ |Xi]]

is the partial variance with respect to the random variable Xi or the share of variance of P̂ that is due to

Xi. The second order index Sij describes the sensitivity of the wave field (QoI) to the interactions between

the random variables Xi and Xj (1 ≤ i 6= j ≤M) without their marginal effects, i.e.

Sij =
σ2
ij

σ2
P̂

=
Var[E[P̂ |XiXj ]]

Var[P̂ ]
− Si − Sj , 1 ≤ i 6= j ≤M (12)

The higher order interactions could be defined by similar coefficients which all lie between [0, 1] and the

higher values imply higher contribution to the wave field uncertainty (variance). There are 2M − 1 Sobol

indices that can be defined in whichM is the stochastic dimension of the problem. In the numerical examples

considered in this paper in Section 4,M = 6 in this work which yields 63 Sobol indices. Since large stochastic

dimensions imply high number of Sobol indices, Homma and Saltelli [18] introduced the total Sobol indices

to decrease the computational costs and make the interpretation easier. These total indices describe the

total contribution of any random variable Xi (marginal and joint) to the variance of the random output

(wave field) and are defined as:

STi
= Si +

∑

i 6=j

Sij +
∑

(j<k) 6=i

Sijk + ..., 1 ≤ i ≤M (13)

An estimation for the total Sobol index reads:

STi
≃ 1

2Nσ2
P̂

N
∑

j=1

(

P̂j(Ξ
i
1)− P̂j(Ξ1)

)2

, 1 ≤ i ≤M (14)

3.4.2. Analytical sensitivity indices for PCE

For PCE, one can analytically obtain the Sobol sensitivity indices of any order, instead of taking Quasi

Monte Carlo samples of the underlying meta-model. The analytical formulas are derived in Sudret [50]

in terms of particular sums of squared PCE coefficients. The first-order and total Sobol indices are given

as [16, 50]:

Si =
∑

α∈Ai

a2
α /

∑

α∈A, α6=0

a2
α where Ai =

{

α ∈ A : αi > 0, αj 6=i = 0
}

, 1 ≤ i ≤M, (15)
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and

STi
=

∑

α∈Atot
i

a2
α /

∑

α∈A, α6=0

a2
α where Atot

i =
{

α ∈ A : αi > 0
}

, 1 ≤ i ≤M. (16)

4. Numerical results

4.1. Setup

In this section, the characteristics of the sound velocity profile are modeled by six independent random

variables. For the sake of simplicity, the uncertainty is put only on the sound speed profile and the water

depth. However, the extension to more complicated cases, for instance when the density of the propagation

medium or the properties of the bottom layer are uncertain, is straightforward. In this study, the densities

of the water column and the bottom layer are considered as homogeneous and equal to ρ1 = 1000 kg.m−3

and ρ2 = 1800 kg.m−3, respectively. Table 1 summarizes the range of variation for each uncertain parameter

that are taken from [51].

Table 1: Lower and upper bounds for the random parameters considered in this paper.

Characteristic of the velocity profile min value max value
Medium depth d [m] 97.5 102.5
First layer depth d1 [m] 17.5 22.5
Third layer depth d2 [m] 57.5 62.5
First layer sound speed v1 [m.s−1] 1535 1540
Third layer sound speed v2 [m.s−1] 1507.5 1512.5
Bottom layer sound speed v3 [m.s−1] 1750 1850

Since the only available information about these parameters is their lower and upper bounds, based on

the maximum entropy principle [20], the best probability density function (PDF) to be used is the uniform

distribution. As such, these parameters are assumed to be independent uniform random variables. For

instance, the depth of the propagation medium follows the uniform distribution d ∼ U(97.5, 102.5)m.

In this paper, two different scenarios are considered and the influence of the random parameters are

discussed for each case. These two cases correspond to large and small values of the wavelength to depth

ratio λ
d
= v

df0
which is the key factor in this work. Indeed, λ

d
→ ∞ (or λ≫ d) implies no reflection at the top

and bottom boundaries which means a smoothly varying wave field following x direction. On the contrary,

the asymptotic limit λ
d
→ 0 (or λ ≪ d) means high degrees of reflection at the boundaries which implies

in particular a highly fluctuating wave field along the path of the wave propagation. To distinguish these

cases, the sound waves are generated via a source located at (x0, y0, z0) = (0, 0,−50)m with two different

frequencies of f0 = 10 Hz and f0 = 50 Hz. One of the major applications of this range of frequencies is
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Microphones

Source ∆x = 25m

z = -50m z = -49m

PML

PML

Figure 2: The configuration of the source and the microphones.

in marine seismic exploration where an image of the underlying geology (elastic bottom layer of our model

which could also be considered as multiple layers) is constructed by emitting the acoustic energy through

the water and then recording the energy that is reflected and refracted by the bottom rock layer(s) back to

the receivers. In this case, the conventional acquisition systems work with frequencies under 100 Hz [34].

401 measurement stations are assumed at (25(m− 1), 0,−49) m, m = 1, 2, ..., 401, to record the wave field.

The length of the medium in x direction is thus 10 km. This configuration is depicted in Figure 2. The

simulation of sound wave propagation is realized by the wavenumber integration method implemented by a

numerical code developed by the authors, its accuracy is justified in [55].

4.2. Results of the quasi Monte Carlo method

Following the distributions given in Table 1, 50000 realizations of the random velocity profile are drawn

using a quasi Monte Carlo (QMC) sampling method. The random wave field recorded at the point r =

(x, y, z) is denoted by P(r) which is a positive, second-order, mean-squared continuous stochastic field

indexed on R
+ and defined on a probability space (Ω,F ,P). The ensemble average of P at each point r is thus

defined as E[P(r)] =
∫

Ω
P(r)dP. Figure 3 shows the convergence of the normalized mean E[P(r)]/E[P(0)]

(plots a and d), normalized standard deviation
√

Var[P(r)]/
√

Var[P(0)] (plots b and e) and the coefficient

of variation δ(r) =
√

Var[P(r)]/E[P(r)] (plots c and f) of the wave field for the frequencies f0 = 10 Hz

(plots a,b and c) and f0 = 50 Hz (plots d, e and f). The convergence of these statistics are represented

in terms of the number of QMC samples for the wave field recorded at 4 different stations located at

12



(x ∈ {1, 2500, 5000, 10000}, y = 0, z = −49) m. These figures reveal that one needs large sample sizes (larger

than 104) to guarantee the convergence of the first and second order statistics of the recorded wave field.

This justifies the importance of using surrogate models in which we aim at approximating the probabilistic

content of the random wave field using significantly smaller sample sizes.
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Figure 3: Convergence of the normalized average (a,d), normalized standard deviation (b,e) and coefficient of variation (c,f)
of the wave field recorded at x = 1 m (solid lines), x = 2500 m (dashed lines), x = 5000 km (dotted lines) and x = 10000 m
(dash-dot lines) for the frequencies of 10 Hz (a,b,c) and 50 Hz (d,e,f).

4.3. Results of the surrogate models

In the sequel, we use the methods introduced in Section 3 in order to construct meta-models of the

random wave field at each recording point. Kriging, PCE and PCE-Kriging methods are thus used to

estimate the statistics of the wave field and the results are compared to those obtained from the QMC

method. We used in-house Matlab-based scripts to construct our meta-models along with the subsequent

global sensitivity calculations. The readers can use software like UQLab (available at uqlab.com) and

OpenTURNS (openturns.org) in order to reproduce the results.

A sample size of 500 realizations based on Sobol sequences (which are an example of quasi-random

low-discrepancy sequences as explained in [47]) is taken from the six input random variables to build each

surrogate model. Figure 4 shows for both frequencies, the mean, standard deviation and coefficient of

variation of the wave field in terms of the station position. The black, blue, red and green curves correspond

to the QMC (with a sample size of N = 50000), Kriging, PCE and PCE-Kriging methods (each with N =

500), respectively. As it can be observed from the plots (a,b,c), all surrogate models appropriately estimate

the first and second order statistics of the wave field when the source’s central frequency is f0 = 10 Hz. In
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this case, the ratio λ/d ≈ 1.53 is large enough so that the influence of the reflections and transmissions at the

boundaries on the wave field’s fluctuations become very small (see the smooth variation of the mean field in

plot (a)). The black curves (QMC results) in plots (c) and (f) show a reduction in the fluctuation amplitudes

after some travel distance. This reduction could be justified by the fact that at short travel distances the

wave field is reflected by and transmitted into the interface. By contrast, at long travel distances, the energy

of the initial waves is attenuated due to the transmissions at the interface and absorption at the level of

the PMLs and the wave front is like a wave packet whose shape remains almost unchanged. Figure 4(d, e

and f) shows the same results for f0 = 50 Hz in which the ratio λ/d ≈ 0.31 is much lower compared to the

previous case so that the interactions of the waves with the boundaries of the medium become substantial

and thus the wave field fluctuates more. In this case, deviations from the QMC results become apparent

for the second order statistics. These deviations start from the source-station distances above 4500 m and

2500 m for Kriging and PCE methods, respectively. On the contrary, the PCE-Kriging method appears

to yield the results closer to the QMC (green curves in the plots (e,f)). Figure 5 depicts, for the both

frequencies, the snapshots of the wave field (pressure) near and far away from the source which is located at

r0 = (0, 0,−50)m. Note that these simulations are carried out using the open-source code SPECFEM2D [5]

which is based on the spectral element method and is available at geodynamics.org. This software simulates

the sound wave propagation in the time domain.

To assess quantitatively the meta-models, Figure 6 shows the LOO error estimates (in percent) in terms

of the recording point position for both cases. In the case f0 = 10 Hz, the PCE-Kriging method gives

errors less than 1% almost everywhere while the other two methods result in relatively larger errors. For

f0 = 50 Hz, Figure 6(b) reveals acceptable errors only within the interval (0, 2000)m. Above 2000 m, the

LOO error of the PCE quickly becomes very large and the PCE-Kriging provides overall smaller errors

compared to the Kriging method. This drastic increase on the surrogate model errors compared to the case

f0 = 10 Hz results from the fact that smaller values of the ratio λ/d imply more interactions between the

waves and the boundaries of the medium. Hence, in the recorded signals at long propagation distances,

the direct waves are highly mixed with the reflected waves. This will result in noticeable fluctuations of

the wave field as it could be observed from Figure 4(d) (compared to Figure 4(a)). This irregularity of

the wave field at long distances is the main reason that the surrogate models could not yield reasonable

errors. However, as far as the first and second order statistics are considered, the Kriging and PCE-Kriging

methods approximate well the QMC results.

In order to compare the results more precisely, the PDFs of the wave field normalized by the corresponding
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(e) f0 = 50 Hz, standard deviation
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(f) f0 = 50 Hz, coefficient of variation
Figure 4: Mean, standard deviation and coefficient of variation of the wave field in terms of the source-station distance for
QMC (blue curves), Kriging (black curves) and c-APK (red curves) methods.

(a) f0 = 10 Hz, near field (b) f0 = 10 Hz, far field

(c) f0 = 50 Hz, near field (d) f0 = 50 Hz, far field
Figure 5: Snapshots of the wave field near (a,c) and far (b,d) from the source for f0 = 10 Hz (a,b) and f0 = 50 Hz (c,d).

mean value, i.e. P(r)/E[P(r)], are computed at two different distances from the source, |r−r0| ∈ {1, 5000}m

and the results are displayed in Figure 7 for both source central frequencies. The black, blue, red and green

curves correspond to QMC, Kriging, PCE and PCE-Kriging methods, respectively. This figure reveals

that the near-field is almost deterministic (see for instance the Dirac delta-like function in plot b) which

becomes more randomized in the far-field. This figure also shows that larger source-station distances imply

lower accuracy of the surrogate models, especially at higher source frequencies. For f0 = 50 Hz, the PCE

method fails to satisfyingly estimate the wave field. One solution is to employ the experimental designs with

significantly larger sizes which is against the main interest of the meta-modeling.
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(b) f0 = 50 Hz
Figure 6: LOO erros (in percent) in terms of different surrogate models in terms of the source-station distance for f0 = 10 Hz(a)
and f0 = 50 Hz(b).
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(b) f0 = 50 Hz
Figure 7: PDFs of the normalized wave field recorded at two different distances from the source whose central frequency
is 10 Hz(a) and 50 Hz(b). Black, blue, red and green curves represent the results obtained by QMC, Kriging, PCE and
PCE-Kriging methods, respectively. Solid and dashed dotted lines correspond to |r − r

0| = 1 m and |r − r
0| = 5000 m.

4.4. Sensitivity analysis

The objective of this section is to identify how the uncertain parameters describing the sound source

profile along with the depths, i.e. d, d1, d2, v1, v2 and v3 contribute to the variability of the wave field

recorded at different distances from the source. Some of the objectives of such a study are: (i) identification

of less influential parameters in order to reduce the stochastic dimension of the problem and (ii) reduction of

the variance of the recorded wave field (in the forward (direct) problem) by minimizing the variance of the

most influential parameters. This variance reduction is crucial for getting better estimations when solving

the inverse source localization problem is regarded.

Figures 8 and 9 display for f0 = 10 Hz the variation of the Sobol and total Sobol sensitivity indices in

terms of the source-station distance obtained by the QMC (black curves), ordinary Kriging (blue), PCE (red)

and PCE-Kriging (green) methods. It turns out that the most influential factor is the velocity of the bottom

layer v3. Then, the depth of the shallow water d plays the most important role on the variance of the recorded
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pressures. The other 4 random variables (d1, d2, v1, v2) could therefore be considered as uninfluential. Thus,

one should try to decrease the uncertainty on v3 and d in order to reduce the uncertainty on the sound

pressure. Moreover, the difference between the single and total Sobol indices shows that the interaction

terms do not contribute to the output’s uncertainty. An important result that could be drawn from these

figures is the good accuracy of the PCE method to estimate the Sobol indices. As stated in Section 3.4.2, the

Sobol indices could be analytically derived from the PCE coefficients which is not the case for the Kriging

and PCE-Kriging methods.

Figures 10 and 11 show the same results for the source’s central frequency of f0 = 50 Hz. In this case,

the PCE method fails to appropriately estimate the Sobol indices. The reason is that the wave field is

such irregular that it could not be approximated by a polynomial function. It can be observed that the

PCE-Kriging method returns the best results. Similar to the case where f0 = 10 Hz, the most influential

parameters are v3 and d. However, the total sensitivity indices indicate that the interaction terms now play

an important role on the uncertainties of the parameters v1 and v2.
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Figure 8: Variation of the Sobol sensitivity indices of all random variables in terms of the source-station distance for f = 10 Hz.
Black, blue, red and green curves represent the results obtained by QMC, Kriging, PCE and PCE-Kriging methods, respectively.

5. Conclusions and perspectives

The robustness of the Kriging, PCE and PCE-based Kriging methods for uncertainty quantification

(UQ) in acoustic wave propagation through shallow water environments has been investigated. It is shown
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Figure 9: Variation of the total Sobol sensitivity indices of all random variables in terms of the source-station distance for
f = 10 Hz. Black, blue, red and green curves represent the results obtained by QMC, Kriging, PCE and PCE-Kriging methods,
respectively.
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Figure 10: Variation of the Sobol sensitivity indices of all random variables in terms of the source-station distance for f = 50 Hz.
Black, blue, red and green curves represent the results obtained by QMC, Kriging, PCE and PCE-Kriging methods, respectively.
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Figure 11: Variation of the total Sobol sensitivity indices of all random variables in terms of the source-station distance for
f = 50 Hz. Black, blue, red and green curves represent the results obtained by QMC, Kriging, PCE and PCE-Kriging methods,
respectively.

that the accuracy of these methods in the case of a shallow water with a layered sound velocity profile highly

depends on the wavelength-to-depth ratio. Indeed, the latter defines the degree of interaction between the

waves and the boundaries. Larger (resp. smaller) values of this ratio yield better (resp. worse) accuracies of

the UQ methods in terms of the LOO error. Overall, the PCE-based Kriging has been shown to give better

results since it has both the local and global interpolation properties of the Kriging and PCE methods. The

variance-based sensitivity analysis has also shown the importance of the depth of the shallow water and the

velocity of the bottom layer on the uncertainties of the recorded sound pressure.

In this paper, an underwater wave propagation model with six independent uncertain parameters is

considered. The proposed UQ methods can be tested for more complicated cases, e.g. 3D wave propagation

in range-dependent environment with irregular sound speed profile, non-flat water bottom and more layer

numbers. In these cases, more uncertain parameters with interdependence must be considered, which is

more challenging for UQ tools.
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