Fractal description of fouling deposits in boiling heat transfer modelling - Archive ouverte HAL Access content directly
Journal Articles International Journal of Heat and Mass Transfer Year : 2019

Fractal description of fouling deposits in boiling heat transfer modelling

Abstract

A novel methodology is developed for predicting the thermal impact of fouling in Steam Generators (SG). The originality of this methodology is to resort to fractal and statistical theories to depict the porous structure of the deposits. The proposed Statistical Fractal methodology (SF) accounts for the heat transfer driven by the liquid-vapor phase change inside the deposits. It simulates the complex intricate networks of sinuous open pores of different scales, with liquid inflows (capillaries) and vapor outflows (steam-chimneys). The multi-layered representation of fouling deposits allows to mimic aging mechanisms such as densification which occur during SG operation.The SF predictions are consistent with experimental data. The deposit thickness and the profile of porosity are found to be the most influential fouling properties on the heat exchange. The methodology is capable to simulate the experimentally observed heat transfer enhancement for thin and porous deposit as well as the heat exchange decline for thick and dense deposit.
Fichier principal
Vignette du fichier
S0017931019332624.pdf (9.78 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-02467974 , version 1 (21-12-2021)

Licence

Identifiers

Cite

T. Dupuy, T. Prusek, F. Oukacine, M. Lacroix, A. Kaiss, et al.. Fractal description of fouling deposits in boiling heat transfer modelling. International Journal of Heat and Mass Transfer, 2019, 145, pp.118722. ⟨10.1016/j.ijheatmasstransfer.2019.118722⟩. ⟨hal-02467974⟩
80 View
30 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More