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Abstract

Using a continuous representation of dislocations in elastoplastic polycrystals,
we investigate slip transfer at grain boundaries by assessing the compatibility of the
slip system shear rates with tangential continuity of the plastic distortion rate ten-
sor at these interfaces. Fulfillment of this tangential continuity condition is needed
for consistency of the continuous description of dislocations in polycrystals. We
show that, in f.c.c. materials at moderate temperatures, this condition unequivo-
cally translates into constraints on the slip rates on both sides of grain boundaries.
Appended to the elastoplastic boundary value problem, it allows a complete deter-
mination of the slip system shear rates. An algorithm enabling the implementation
of compatible slip transfer in both the finite element methods and the spectral meth-
ods based on Fast Fourier Transforms is provided in both standard crystal plasticity
and the mechanics of dislocations fields.

1 Introduction

Grain boundaries have a significant impact on plasticity mediated by dislocation glide.
By acting as barriers to dislocation motion, they may limit the mean free path of dis-
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locations and hinder plasticity. The Hall-Petch law [Hal51; Pet53], which describes the
evolution of the yield stress as a function of the inverse square root of the average grain
size, is a well-known manifestation of this limiting effect. Nevertheless, dislocations may
be transferred across grain boundaries, either indirectly, because their accumulation in
pile-ups on one side of the boundary may induce large internal stresses able to activate
dislocation glide or even new dislocation sources on the other side, or directly because
they may interact with the boundary, be absorbed and re-emitted on a different slip sys-
tem, while leaving a residual part along the boundary. The present understanding of
slip transmission across boundaries has been developed through numerous investigations
of particular grain boundaries, from which several slip transfer criteria have been pro-
posed [LC57; LR85; SWC86; LRB90; LM95]. In these papers, different aspects of the
phenomenon were invoked to predict the experimentally observed slip transfer reactions.
[LC57] assumed tangential continuity of the plastic strain tensor field across the boundary
and drew the consequence that at least four slip systems have to operate between the two
crystals, distributed either with two in each crystal or with three in one and one in the
other. However, as we shall see below, they did not recognize the slip incompatibility
possibly arising from the tangential discontinuity of the plastic rotation field and failed to
follow further that path. Instead, they proposed a criterion based on the resolved shear
stress being the largest on the outgoing slip system. [SWC86] combined two criteria: in
the first one, the angle between the emission and pile-up slip planes should be minimized,
and in the second one, the outgoing slip direction should maximize the resolved shear
stress, as previously conjectured by [LC57]. [LR85] suggested that the residual disloca-
tion left in the grain boundary plane also plays a role in slip transfer: not only the angle
of the slip planes in both crystals, but also the slip directions angle should be minimized
to promote slip transfer. Thus, Burgers vector conservation is involved in slip transfer.
Burgers vector conservation and tangential continuity of the plastic distortion are closely
related as will be recalled below, implying an intimate connection between the results
in [LR85] and the context set forth in [LC57]. To predict which outgoing slip system is
favorable, [LRB90] proposed a cumulative set of criteria closely related to the above ones,
namely: (1) the angle between the lines of intersection of the incoming and outgoing slip
planes with the boundary should be as small as possible; (2) the resolved shear stress
acting on the possible outgoing slip systems should be as large as possible and (3) the
magnitude of the Burgers vector of the residual dislocations left at the grain boundary
should be a minimum. Since then, these criteria have been qualitatively confirmed by
experimental observations in various materials [BEZ+14; KR14; HNV18; BAPnOL19].

Predominantly, the above slip transfer criteria are motivated by slip system and grain
boundary geometry as well as the state of internal stress within a continuum framework.
They do not resolve atomic level interactions between dislocations and grain boundaries.
An additional level of analysis is made possible by simulations at atomic scale, e.g. using
molecular dynamics (MD) simulations. Atomistic simulations provide approaches where
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the grain boundary core structure can be thoroughly described at a resolution length scale
of the order of inter-atomic spacing [CMS06; FFVS06; TZM10]. The goal of such simula-
tions in the field of slip transfer has been to explore the atomic interactions over a wide
range of metallic materials and grain boundary structures in order to improve the accu-
racy of slip transfer prediction criteria (see for example [DC07a; DC07b; DC11] and the
review in [SS14]). However, from the possible five degrees of freedom of a grain boundary,
an infinite space of possible slip transfer configurations exists, while only a relatively small
amount has been analyzed with MD simulations. A more complete survey of the pertinent
variables is needed to probe more completely the space of slip transmission events, which
clearly represents an overwhelming challenge to the MD community. Therefore, con-
tinuum models built either by embedding the three main slip transfer criteria indicated
above, or by proposing model mechanisms for grain boundary and dislocation interactions
are of great interest in complement to atomistic simulations. They are able to encompass
all these situations, and may in addition allow tackling large polycrystalline samples sub-
mitted to realistic loading. Common to all continuum crystal plasticity models solving
boundary value problems is the incorporation of the resolved shear stresses due to the
inherent modeling of plastic slip, which can be either combined with an introduction of
the geometric transfer criteria, or with a continuous model for the description of grain
boundaries and dislocations [BMRB16].

Models aimed at describing slip transfer across grain boundaries from a continuum
perspective include surface-dislocation density based approaches, non-exhaustively repre-
sented here by reference [Gur08]. In these models, surface-dislocation densities are defects
designed to accommodate tangential discontinuities of the plastic distortion [Fra50; Bil55].
Their support is limited to the infinitely thin interface itself. Such a description may be
taken more or less literally and accepted in certain circumstances: electron microscopy
has revealed that the structure of low angle boundaries or semi-coherent interfaces actu-
ally involves dislocations [PB79; CMU11]. In most cases however, the so-called surface-
dislocations cannot be identified with observable dislocations and reduce to being only
mathematical artefacts. For example, they cannot represent the actual structure of high
angle boundaries, because their spacing would have to be so small that their cores would
overlap [Li72; Pri13]. As a result, surface-dislocation-based modeling approaches fail to
account for the structure and energy of high-angle boundaries, because they overlook their
core properties. In addition, by allowing the accommodation of any tangential discontinu-
ity of the elastic/plastic distortion and distortion rate, they tend to reduce grain-to-grain
interactions, even for low-angle boundaries, with consequences on the prediction of texture
evolution [MBA10], size and Bauschinger effects [PDA11; RWF11; TCF+15] and plastic
strain localization [TCF16]. Here we similarly foresee consequences on slip transfer.

In the present work, we also have in mind a mesoscale representation where the spatial
resolution length scale is not sufficiently small to reveal the core structure of the grain
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boundaries, but allows instead encompassing large polycrystals at relatively low cost. In-
deed, we partly see grain boundaries as interfaces of vanishingly small thickness, across
which the stress, total distortion, elastic/plastic distortion and distortion rate compo-
nents may experience a discontinuity. However, following [Ach07; FTUC12], we contend
that all such discontinuities are not acceptable and that some continuity is mandatory
for consistency of a field approach to dislocations. Besides tangential continuity of the
total distortion/distortion rate tensor - the so-called Hadamard compatibility conditions
[Had03], which ensures continuity of the body across the interface, and normal continu-
ity of the stress tensor (the traction vector needs to be continuous across the interface
to respect mechanical equilibrium), we require tangential continuity of the plastic distor-
tion/distortion rate tensors across the interface, thus following the steps taken in the early
work of [LC57] on slip transfer. Such a statement induces non-locality of the elasto-plastic
response of the polycrystal across the interface, because elastic/plastic distortion values
from the left of the interface have to be equal to their counterparts from the right. It
amounts to viewing the dislocations that accumulate at grain boundaries as a continu-
ous density field defined over a finite boundary layer, perhaps of a small thickness - but
definitely not vanishingly small. Such non-locality was shown to have a strong impact
on the elastic/plastic strain and rotation fields, both in the vicinity of grain boundaries
and throughout the body. As already suggested above, it allowed retrieving such complex
features as size and morphology effects, loading path-dependency, the Bauschinger effect
and directional hardening in the plastic response of particle-reinforced alloys and thin
polycrystalline fims [RWF11; PDA11; TCF+15], overall texture intensity and a β fiber
more consistent with experimental observation in f.c.c. metals than the Taylor models
[MBA10], and shear strain localization in lamellar Al-Cu-Li alloys that conventional crys-
tal plasticity fails to capture [TCF16].

In the present paper, slip transfer at grain boundaries, from grain to grain at the
level of each slip system, is described on the basis of Burgers vector conservation and
tangential continuity of the plastic distortion rate at interfaces. The model is grounded
in the mechanical theory of continuously distributed dislocations [Kr8; Kr1; Ach01], but
it may also be applied to crystal plasticity appended with tangential continuity of the
plastic distortion rate. The outline of the paper is therefore as follows. After setting up
notations in Section 2, a primer for the mechanics of dislocation fields is presented in
Section 3 and tangential continuity conditions on the plastic/total distortion/distortion
rate tensors across interfaces are reviewed in Section 4. Section 5 presents the application
to slip transfer. In Section 6, numerical procedures are proposed for the implementation
of the model in both standard crystal plasticity and the mechanics of dislocation fields.
Conclusions on the potential applicability of the analysis to the plasticity of polycrystals
follow.
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2 Notations

A bold symbol denotes a tensor, as in: A. When there may be ambiguity, an arrow
is superposed to represent a vector: ~V. The transpose of tensor A is At. All tensor
subscript indices are written with respect to the basis (ei, i = 1, 2, 3) of a rectangular
Cartesian coordinate system. Vertical arrays of one or two dots represent contraction of
the respective number of ”adjacent” indices on two immediately neighboring tensors, in
standard fashion. For example, the tensor A.B with components AikBkj results from the
dot product of tensors A and B, and A : B = AijBij represents their inner product. The
cross product of a second order tensor A and a vector V, the div and curl operations
for second order tensors are defined row by row, in analogy with the vectorial case. For
example:

(A×V)ij = ejklAikVl (1)

(div A)i = Aij,j (2)

(curl A)ij = ejklAil,k. (3)

where ejkl = ej.(ek × el) is a component of the third-order alternating Levi-Civita tensor
X, equal to 1 if the jkl permutation is even, −1 if it is odd and 0 otherwise. In the
component representation, the comma followed by a component index indicates a spatial
derivative with respect to the corresponding Cartesian coordinate as in relations (2,3). A

vector ~A is associated with tensor A by using the inner product of A with tensor X:

(~A)k = −1

2
(X : A)k = −1

2
ekijAij (4)

(A)ij = −(X.~A)ij = −eijk(~A)k. (5)

The symmetric and skew-symmetric parts of tensor A are denoted Asym and Askew re-
spectively. Given a unit vector n normal to an interface I in a domain D and orienting I
from sub-domain D− to sub-domain D+, the normal part An and tangential part At of
tensor A are

An = A.n⊗ n (6)

At = A−An = A.(I− n⊗ n), (7)

where I− n⊗ n is an operator performing tangential projection. For a vector V:

Vn = (V.n)n = Vnn (8)

Vt = V −Vn. (9)

The discontinuity of a tensor A at the interface I is denoted JAK = A+−A−, where A−

and A+ are the limits of tensor A when evaluated at limit points on the interface along
direction n in D− and D+, respectively. A superposed dot represents a material time
derivative.
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3 Mechanics of dislocation fields

In the present framework, continuity of the displacement vector field u along with conti-
nuity of its derivatives, is assumed at any point in a simply-connected body undergoing
elasto-plastic deformation, except perhaps along interfaces where continuity of the deriva-
tives may not hold. Consequently, the distortion tensor can be defined as the gradient of
the displacement U = grad u. As such, it is curl-free:

curl U = 0. (10)

Eq.(10) is a necessary condition for the integrability of the displacement u and a compati-
bility condition for the distortion U. However, in the presence of dislocations, the elastic,
Ue, and plastic, Up, components of U are incompatible. Indeed, if dislocations thread a
patch S in the body, a constant discontinuity b in the elastic displacement exists across
S, and manifests itself as a closure defect along the circuit C surrounding S:

b = JueK =

∫
C

Ue.dl. (11)

C is referred to as a Burgers circuit and b as the Burgers vector of this dislocation
ensemble. By virtue of Stoke’s theorem:∫

C

Ue.dl =

∫
S

curl Ue.ndS, (12)

the discontinuity b can be characterized in a pointwise continuous manner by the tensor
α:

curl Ue = α (13)

such that

b =

∫
S

α.ndS. (14)

α is known as Nye’s dislocation density tensor [Nye53]. In its presence, there is an
incompatible (non curl-free) part, U⊥e , of the elastic distortion tensor. By invoking the
Stokes-Helmholtz decomposition of a square-integrable tensor field with square-integrable
first order derivatives [Jia98], it is possible to find uniquely the square-integrable tensor
and vector fields φ and z such that the elastic distortion field Ue reads as the sum:

Ue = curlφ + grad z. (15)

Taking the curl of Ue in Eq.(15) extracts curlφ and discards grad z, whereas taking its
divergence extracts grad z and eliminates curlφ. Therefore, Eq.(13) actually involves
only curlφ, which we identify as the incompatible part U⊥e of Ue:

curl U⊥e = curl curlφ = α. (16)
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In addition, grad z can be identified as the compatible part U
‖
e of the elastic distortion Ue,

while z is the compatible elastic displacement u
‖
e, up to a constant. However, Eq.(16) is

still insufficient to determine U⊥e from a given dislocation field α. To ensure correctness
of this identification, U⊥e must vanish identically throughout the body when α = 0.
Following [Jia98; AR06], we therefore augment Eq.(16) with the side conditions

div U⊥e = 0 and U⊥e .n = 0, (17)

the latter being imposed on the external boundary ∂B with unit normal n, to ensure that
its solution does not contain a gradient part. Taking the curl of Eq.(16), we then find:

curl curl U⊥e = grad div U⊥e − div grad U⊥e = curlα, (18)

and therefore, using the side conditions (17):

div grad U⊥e = −curlα, U⊥e .n = 0 on ∂B. (19)

Eq.(19) is a Poisson equation for the unknown U⊥e whose solution under the above bound-
ary condition vanishes identically throughout the body when α = 0, as required. Similarly,
we could have evidenced the existence of an incompatible part of the plastic distortion,
U⊥p , opposite to the incompatible elastic distortion U⊥e and such that lattice continuity is

maintained. Further, a curl-free compatible component, U
‖
p of the plastic distortion Up,

may also exist, as well as a compatible plastic displacement u
‖
p. The following relations

are therefore satisfied:

U = Ue + Up (20)

Ue = U⊥e + U‖e (21)

Up = U⊥p + U‖p (22)

0 = U⊥e + U⊥p (23)

if infinitesimal transformations are assumed. Using Eqs.(16,23), it is readily seen that the
relation

α = −curl U⊥p (24)

is equivalent to Eq.(16), and that similarly the equation

α = −curl Up (25)

is also valid. Note that the continuity condition:

divα = 0 (26)

follows directly from Eqs.(13,16).
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The kinematics of dislocation densities derives from the conservation of the Burgers
vector during their motion across arbitrary material patches. Consider a material surface
S bounded by a closed curve C. Let f be the dislocation flux field used to measure the rate
of inflow into S of dislocation lines, carrying along with them their corresponding Burgers
vectors through a line element dx of curve C. Let V be the velocity of the dislocations
with respect to the lattice. In the absence of dislocation sources, the conservation of the
Burgers’ vector content demands that the rate of change of the Burgers’ vector of all
dislocation lines threading S be equal to the total dislocation flux across curve C:

d

dt

∫
S

α.ndS =

∫
C

f .dx. (27)

Due to Stokes’ theorem, the point-wise statement corresponding to (27) is, for small
transformations:

α̇ = curl f (28)

where α̇ represents the time derivative of the dislocation density tensor. As shown in
[Ach11]:

f = −α×V. (29)

Consequently, the local statement of balance (28) becomes:

α̇ + curl (α×V) = 0. (30)

Eq.(30) is referred to as a transport law for the dislocation density tensor α. It can be
understood as an evolution equation for α when the dislocation velocity V is provided as
a function of the stress state and dislocation character through constitutive statements.
With this information, Eq.(30) constitutes a natural basis for the dynamic description of
dislocation microstructures. Its meaning is that, through the curl term, the incompat-
ible part of the dislocation flux incrementally feeds the dislocation density. Comparing
Eqs.(25,30) it follows, after time derivation of Eq.(25), that the cross product α×V can
be identified with the plastic distortion rate tensor U̇p, up to a gradient:

α̇ + curl U̇p = 0 (31)

U̇p = α×V + grad u̇∗p. (32)

At microscale, there is no physical mechanism that could be described by the term
grad u̇∗p, which has therefore to be cancelled. Eq.(32) then describes plasticity solely
from α dislocation motion. At mesoscale grad u̇∗p can be given the significance of a sta-
tistical plastic distortion rate, meaning that plasticity may be obtained even when the

8



dislocation density tensor vanishes at this scale. Indeed, using space-time running av-
erages of the dislocation density tensor α, dislocation velocity V and plastic distortion
rate tensor U̇p over a domain of mesoscopic size, allows writing the mesoscopic plastic

distortion rate U̇p as:

U̇p = α×V = α×V + Lp, (33)

where overbars indicate averaged variables [AR06]. It is seen that U̇p may be non-zero
when the net dislocation density vanishes at mesoscale (α = 0), in which case it becomes:

U̇p = Lp, (34)

and is to be physically interpreted as the distortion rate produced by the so-called ”sta-
tistical dislocations”. Dropping the overbars for convenience, the plastic distortion rate
may be written at this scale as:

U̇p = α×V + Lp. (35)

Averaging in space thus provides a link with conventional crystal plasticity: Lp may
be derived from well-established slip system-based constitutive relationships for the vis-
coplasticity of crystalline materials. At microscale, the relation U̇p = α × V may be
seen as a tensorial Orowan relationship in the continuum, not making reference to the
cristallography and slip systems of the material. However, we look here for a microscale
expression of U̇p, such that Lp = 0 and V 6= 0, but with such an explicit reference to
cristallography through the incoming and outgoing slip systems at grain boundaries. This
is different from the averaged point of view of [MBA10] who assumed instead Lp 6= 0 and
V = 0. Consider f.c.c. materials: on the one hand, they feature four < 111 > slip planes
with unit normal vectors ms, each with three [110] slip directions ss, and therefore twelve
slip systems with Schmid tensors Ps = ss ⊗ms, s ∈ (1, 12). In each slip plane, only two
out of three slip directions are independent, and therefore only eight slip systems out of
twelve are independent. On the other hand, U̇p has eight independent components if
pressure independence of plasticity is assumed. In such conditions, the relation

U̇p =
∑

s∈(1,8)

γ̇sPs, (36)

between the components of the plastic distortion rate U̇p and the shear rates γ̇s on the
independent slip systems Ps, s ∈ (1, 8) is a full rank linear algebraic system of eight
equations for the eight unknowns γ̇s, allowing to describe uniquely plasticity mediated by
dislocation glide in terms of slip system shear rates [RWF11]. Assuming pressure inde-
pendence implies that Eq.(36) does not account for dislocation climb. However, it still
accounts for cross-slip. In b.c.c. and h.c.p. materials, the number of independent slip
systems is material-dependent, and it may be as high as 48 in α− Fe in b.c.c. materials
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and twelve in h.c.p. materials, thereby obviously precluding any such one-to-one corre-
spondence.

In a small pertubation setting, the rest of the equations of the mechanics of dislocation
fields is not different from standard crystal plasticity, to which the theory reduces when
the dislocation density tensor is formally set to zero. Assuming linear elasticity, the
stress tensor T is obtained from the tensor C of elastic moduli and elastic strain tensor
εe = Usym

e as
T = C : εe. (37)

Neglecting inertial forces and any volumetric force density as unessential for the present
purposes, it satisfies the balance of momentum equation

div T = 0. (38)

Complemented with constitutive relations for the dislocation velocity V as a function of
the stress and dislocation density tensors and for the shear strain rates γ̇s involved in the
plastic velocity gradient Lp as a function of the stress tensor, Eqs.(19,20-23,31,35,37,38)
form a complete set of equations, of hyperbolic character, for the evolution of the dis-
placement and dislocation density fields. Boundary conditions comprise the conventional
stress and displacement conditions.

4 Tangential continuity constraints along interfaces

Material properties and/or field variables, such as the elastic/plastic displacement and dis-
tortion/distortion rate fields or the dislocation density field may encounter discontinuities
across surfaces such as grain boundaries in polycrystals. However, as indicated above, not
all discontinuities are admissible in the present framework: mechanical balance, the conti-
nuity of matter and the conservation of the Burgers vector across such interfaces mandate
satisfaction of partial continuity conditions. To recall these conditions, we assume the
existence of a surface of discontinuity I separating the body B into two sub-domains B−
and B+. At any point P on I, the unit normal vector n to the interface is oriented from
B− toward B+, and we denote by l and τ = n× l two unit vectors belonging to the inter-
face (see Fig.1). In the absence of cracks and shocks, continuum mechanics respectively
requires that the displacement u and traction vector t = T.n be continuous across the
interface: JuK = 0, JtK = 0. The continuity of the traction vector is reflected as well by
the continuity of the normal part, Tn = T.n⊗ n, of the stress tensor: JTnK = 0, whereas
the tangential part Tt = T−Tn of the latter may be discontinuous across the interface.
Continuity of the displacement at the interface requires that the total distortion U be a
gradient tensor and therefore satisfy ∫

C

U.dx = 0 (39)
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along the rectangular closed circuit C lying across the interface as shown in Fig.1. When
C is collapsed onto point P by letting L → 0, h− → 0, h+ → 0, the limit of the above
integral provides the interfacial relation

∀l ∈ I, JUK.l = 0, (40)

whose meaning is tangential continuity of the total distortion. This property is also
rendered more compactly as:

JUK× n = 0, (41)

or as
JUtK = JU−U.n⊗ nK = 0. (42)

The discontinuity of the distortion is therefore limited to its normal part JUnK. Eqs.(41,42)
are known as Hadamard’s compatibility conditions [Had03]. By differentiating Eq.(39)
with respect to time, tangential continuity is also found to apply to the total distortion
rate U̇:

∀l ∈ I, JU̇K.l = 0 (43)

JU̇K× n = 0, (44)

whereas the normal part U̇n of the distortion rate tensor may encounter a discontinuity.
Of course, the satisfaction of relations (41,42,44) precludes any occurrence of matter dis-
ruption mechanisms at interfaces, such as grain boundary sliding or cavitation. However,
Hadamard’s compatibility equations (41,42) do not impose any constraint on the plastic
distortion tensor Up at the interface. We show below that tangential continuity conditions
on Up arise at the interface if the choice is made to represent continuously the dislocations
in the interface area by adopting a small resolution length scale [Ach07].

With this aim, we consider again the rectangular closed circuit C lying across the
interface in the manner shown in Fig.1. The intersection of surface S and interface I
defines a curve C on I, to which the orthonormal frame D = (P, e1 = l, e2 = τ , e3 = n) is
a natural frame at point P . A bulk areal dislocation density field α is assumed to take
place over surface S, and a surface-dislocation density αS(I) is provisionally allowed to
exist along the interface I. To first comment on the role of the surface-dislocation density
αS(I), we consider the limit of the Burgers vector content of circuit C

b = −
∫
C

Up · lds =

∫
S

α · τdS . (45)

when C is collapsed onto point P by letting L → 0, h− → 0, h+ → 0 as previously. We
find:

∀l ∈ I, −JUpK.l = αS(I).τ . (46)
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Figure 1: Burgers circuit C = U+ ∪ R+ ∪ R− ∪ B− ∪ L− ∪ L+ across an interface I
separating the body B into domains B−, B+. l is the unit tangent to curve C, n is the
unit normal to interface I, and τ = n× l the ”tangent normal” to the bounded surface S
and curve C.
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This relation is nothing else than the celebrated Frank’s relation of the theory of disloca-
tions [Fra50; Bil55], which provides

αS(I) = JUpK× n. (47)

Its meaning is that, whatever the tangential discontinuity JUpK of the plastic distortion, it
can be accommodated by an appropriate surface-dislocation density tensor αS(I). Note
that αS(I) is referred to as the ”grain boundary Burgers tensor” in [Gur08]. It must be
borne in mind that αS(I) and the dislocation density tensor α are mathematical objects
of a different nature. Whereas α (expressed in units of Burgers vector length per unit
surface) is a continuously defined field representing a volumetric dislocation ensemble in
the bulk of the material, αS(I) (in units of Burgers vector length per unit length, i.e. non
dimensional) is a surfacic density field supported by the singular interface I. As indicated
in the introduction Section, these surface-dislocations cannot be identified with observable
dislocations. They usually reduce to being only mathematical artefacts whose role is, as
already stated, to accommodate a tangential discontinuity of the plastic distortion across
the interface. In order to restore tangential continuity of the plastic distortion, we shall
instead assume αS(I) = 0 in the following, in sharp contrast with Gurtin’s model. Thus,
we set the condition

∀l ∈ I, JUpK.l = 0. (48)

A more compact way of stating this property is alternatively:

JUpK× n = 0, (49)

or, using the tangential part JUp,tK of JUpK:

JUp,tK = JUp −Up.n⊗ nK = 0. (50)

Eqs.(48,49,50) are regularity conditions for the computation of the dislocation density
tensor α through Eq.(25). Only when they are satisfied can a continuous dislocation
density tensor be defined across the interface [FB19]. As already suggested, the effect
of such a constraint is to distribute smoothly the dislocation density arising from plastic
distortion incompatibility at the interface over a finite width volumetric boundary layer.
In doing so, nonlocal interactions between domains B− and B+ across the interface are
enhanced, because values of the plastic distortion at limit points on either sides of the
interface have to be equal. Of course, the interface conditions (48,49,50) do not put
constraints on the normal discontinuity JUp,nK = JUp.n⊗ nK, which generally involves a
plastic shear jump with components in the local frameD (Jεp13K = Jεp31K, Jε

p
23K = Jεp32K), a tilt

rotation jump (Jωp
1K, Jω

p
2K) and a normal stretch jump Jεp33K in pressure-sensitive materials.

However, compatibility conditions between these normal discontinuies arise when several
interfaces with respective discontinuities of the plastic distortions JUpKi, i ∈ (1, 2..., N)
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connect along a multiple-line, in practice a triple-line with N = 3 in polycrystals. Indeed,
closure requires that the sum of all discontinuities vanish at the multiple-line:

N∑
i=1

JUpKi = 0 (51)

because the same grain is used to start and finish a closed circuit around the multiple-line.
Summing the relations (49) for all interfaces, and using Eq.(51), it is seen that the normal
discontinuities in the plastic distortion need to satisfy a Kirchhoff-type relation at the
multiple-line:

N∑
i=1

JUpKi.ni ⊗ ni = 0. (52)

When all normals ni are coplanar, Eq.(52) reduces to an Herring-type relationship at the
multiple-line [FTUC12].

Now, performing the time-derivative of the net Burgers vector obtained from the circuit
C in Eq.45, collapsing C onto point P ∈ I by letting again L → 0, h− → 0, h+ → 0, we
obtain the jump condition

∀l ∈ I, JU̇pK.l = 0, (53)

which reflects both Burgers vector conservation at the interface and tangential continuity
of U̇p [Ach07]. Eq.(53) may alternatively read in compact form:

JU̇pK× n = 0 (54)

or equivalently
JU̇p,tK = JU̇p − U̇p.n⊗ nK = 0, (55)

or else:
U̇−p,t = U̇+

p,t. (56)

Since the interface conditions (54,55,56) ensure consistency of a field description of
dislocations in a polycrystalline body, they must be appended to the boundary value
problem in the mechanics of dislocation fields. They may also be appended to standard
crystal plasticity, in which case the latter is augmented into a nonlocal model accounting
for grain interactions [TCF16].

5 Slip transfer

The tangential plastic distortion rate tensor has only six independent components. There-
fore, six independent slip systems are required to enforce its continuity across an interface.

14



This is in contrast with the four slip systems needed in [LC57] to fulfill tangential con-
tinuity of the plastic strain rate tensor, i.e. the symmetric part of the plastic distortion
rate tensor. As already suggested, this last requirement overlooks the slip incompatibility
possibly arising from the tangential discontinuity of the plastic rotation rate field, i.e. the
skew-symmetric part of the plastic distortion rate tensor. Using Eqs.(36,55), tangential
continuity of the plastic distortion rate may read in f.c.c. materials:

J
∑

i∈(1,8)

γ̇sPs.(I− n⊗ n)K = 0. (57)

We insist again that, in contrast with [MBA10], Eq.(57) is not to be understood as an
averaged equation. It represents a full rank algebraic linear system of six independent
equations for the eight unknown shear rate jumps Jγ̇sK. Using Eq.(36), the projection γ̇
of the plastic distortion rate tensor U̇p on any slip system with Schmid tensor P = s⊗m
is

γ̇ = U̇p : P =
∑

i∈(1,8)

γ̇s(ss ⊗ms) : (s⊗m) =
∑

i∈(1,8)

γ̇s(ss.s)(ms.m). (58)

Note from this relation that for multislip, γ̇ is generally different from the shear rate on
this particular slip system. It may be decomposed into its tangential part, γ̇t = U̇p,t : P,
and normal part, γ̇n = U̇p,n : P. We are concerned here only with the tangential part
γ̇t, as the normal part γ̇n is left unaffected by Eqs.(54-57). On any incoming slip system
with Schmid tensor P− = s− ⊗m−, the tangential part of the projection is

γ̇−t = U̇−p,t : P−, (59)

and on any outgoing slip system with Schmid tensor P+ = s+ ⊗m+:

γ̇+t = U̇+
p,t : P+. (60)

Substracting Eq.(59) from Eq.(60), we find

Jγ̇tK = U̇+
p,t : P+ − U̇−p,t : P− = JU̇p,t : PK, (61)

which is also, by decomposing the jump of the product:

Jγ̇tK = U̇+
p,t : P+ − U̇−p,t : P+ + U̇−p,t : P+ − U̇−p,t : P− = JU̇p,tK : P+ + U̇−p,t : JPK, (62)

and finally, using Eqs.(55,56):

Jγ̇tK = U̇−p,t : JPK = U̇+
p,t : JPK. (63)

Eq.(63) is a relation constraining slip transfer from any incoming slip system P− to any
outgoing slip system P+. Once the tangential part of, say, the incoming plastic distortion
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rate is known, the slip discontinuity Jγ̇tK is found from its contracted product with the
jump of the Schmid tensor. In full detail, the left hand side relation in Eq.(63) is also

Jγ̇tK = (U̇p − U̇p.n⊗ n)− : JPK =
∑

i∈(1,8)

γ̇−s s−s ⊗ (m−s − (m−s .n)n) : Js⊗mK, (64)

and

Jγ̇tK =
∑

i∈(1,8)

γ̇−s J(s−s .s)((m−s − (m−s .n)n).m)K =
∑

i∈(1,8)

γ̇−s J(s−s .s)(m−s,t.m)K, (65)

where m−s,t = m−s − (m−s .n)n is the tangential part of m−s . We observe from Eq.(63) that
the same is true for the outgoing side of the interface:

Jγ̇tK =
∑

i∈(1,8)

γ̇+s J(s+s .s)(m+
s,t.m)K, (66)

and note that, in terms of the slip plane orientation and slip direction jumps, respectively
JmK and JsK, another expression for Eq.(65) is

Jγ̇tK =
∑

i∈(1,8)

γ̇−s ((s−s .s
−)(m−s,t.JmK) + (s−s .JsK)(m

−
s,t.m

−) + (s−s .JsK)(m
−
s,t.JmK)). (67)

The slip discontinuity Jγ̇tK is therefore a quasi-linear function of the slip plane orien-
tation and slip direction jumps, with a nonlinear term in (JsK, JmK) suggesting that
the criteria on slip plane orientation and slip direction are generally not independent
of one another. Eq.(67) is qualitatively consistent with the geometric criteria proposed
by [LR85; SWC86; LRB90; LM95], but it provides a much more detailed quantitative
description of slip transfer.

We now examine several simple examples to probe further Eqs.(65,66,67):

1. Assume first that the incoming and outgoing slip planes are parallel, with slip plane
normals in the same direction: JmK = 0. Then, according to Eq.(67),

Jγ̇tK =
∑

i∈(1,8)

γ̇−s (s−s .JsK)(m
−
s,t.m

−). (68)

If in addition the slip direction is unchanged: JsK = 0, then Jγ̇tK = 0, meaning that there
is no change in the tangential slip rate on this slip system across the boundary. Thus,
dislocations can slip across the boundary as if it were invisible and, for single slip, the
shear rate on this slip system is unchanged, as could be expected. If both slip planes are
parallel to the interface: m−s,t = 0, then Jγ̇tK = 0, meaning again that the tangential slip
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rate does not change across the boundary, but now whatever the slip directions. Instead,
assume that both slip planes are normal to the interface: m−s,t.m

− = 1. Then slip transfer
depends only on the jumps JsK of the slip direction and orientation angles φs = (s, ss):
Jγ̇tK =

∑
i∈(1,8) γ̇

−
s (s−s .JsK) =

∑
i∈(1,8) γ̇

−
s JcosφsK. Finally, assume that both slip planes

are inclined at angle θ with the interface: m−s,t.m
− = cosθ. Then the slip transfer varies

smoothly with θ as Jγ̇tK = cosθ
∑

i∈(1,8) γ̇
−
s JcosφsK between the last two configurations.

2. Assume now that the probed slip directions are orthogonal: s−.s+ = 0. Then,
Eq.(65) provides

Jγ̇tK = −
∑

i∈(1,8)

γ̇−s (s−s .s
−)(m−s,t.m

−) = −cosθ
∑

i∈(1,8)

γ̇−s (s−s .s
−), (69)

showing that slip is hindered at the interface. The extreme situation is obtained in the
presence of single slip: s− = s−s when the incoming slip plane is normal to the interface:
cosθ = 1. Then the slip discontinuity is maximized: Jγ̇tK = −γ̇−s , meaning that slip is
fully blocked at the interface, as could be expected.

We now assume that a non-trivial solution to the geometrical constraints (57) has
been found, by using some yet unknown method, at all points of all interfaces in the
body, such that all tangential jumps Jγ̇tK satisfy the transfer relations (67) and all shear
rate jumps (Jγ̇sK, s ∈ (1, 8)) satisfy the tangential continuity conditions (57). Any set of
shear rate jumps (Jλγ̇sK, s ∈ (1, 8), λ ∈ R) proportional to this first solution also leads to a
solution of Eq.(57). These λs can in fact be seen as stress-dependent coefficients, and the
actual λ value should allow satisfying the balance of momentum equations and boundary
conditions for the whole body. Thus, the geometric constraints (57) only provide a set of
admissible shear rates, among which the actual values are obtained by using the stress field
derived from the solution of the mechanical boundary value problem. Hence, the latter
actually consists in the field equations for the unknown variables, subjected to standard
initial and boundary conditions, and complemented with the interfacial constraints (57).
Such a complexity of the problem may not have always been recognized in the literature
devoted to slip transfer.

6 Numerical procedures

In this Section, we are interested in designing an approximate numerical method to de-
termine slip transfer across grain boundaries based on the developments in Section 5.
The method should be sufficiently versatile to allow its implementation in both a finite
element framework and a spectral FFT-based method. Previous work on the account
of tangential continuity of the plastic distortion rate include the finite element simula-
tions of [RA05; RA06; VBAF06; PDA11; RWF11] and [TCF+15; TCF16]. In a Galerkin
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scheme for the solution of Eq.30, tangential continuity of the plastic distortion rate is
naturally obtained in a weak sense from the choice of continuous test functions. In nodal
finite element implementations, continuity of the compatible/incompatible elastic/plastic
displacements is further assumed at all nodes along element interfaces, which implies
tangential continuity of the corresponding elastic/plastic distortions, exactly at nodes
and approximately between nodes. [PDA11] uses additional multipoint constraints in a
Galerkin-Least-Squares formulation [RA05; VBAF06]. Element interfaces coincide with
grain boundaries and double nodes are defined along the boundaries with a different
number on either side of the boundary. The involved fields are defined at each node
and constrained to be equal at the double nodes, which allows modeling both the free
flow of dislocations across the boundary and a completely blocked flow on either side
of the boundary. Here, we follow the work of [TCF+15; TCF16] where the surfaces of
discontinuity do not necessarily coincide with element interfaces and do not necessarily
contain nodes. This is of interest in spectral FFT-based methods where plain rectangular
grids are used, or in a finite element framework when possibly transgranular surfaces of
discontinuity form during loading, as in shear banding [TCF16]. We start with a solution
of the elastoplastic boundary value problem in the polycrystalline body, not accounting
for tangential continuity of the plastic distortion rate at grain boundaries. As a result,
surface-dislocation densities are present along boundaries to accommodate the plastic
distortion rate incompatibilities that have been arising between grains. We first manage
to convert these surface-dislocations into a volumetric dislocation density distribution in
the neighboring regions, then remove this distribution from the dislocation density field
together with the corresponding incompatible plastic distortion rate (see details below).
Updates of the dislocation density and incompatible plastic distortion rate fields are then
needed throughout the body, and consequently the elasto-plastic solution of the boundary
value problem also needs to be updated. Tangential continuity of the plastic distortion
rate and slip transfer relations may then be checked at interfaces, and the procedure it-
erated until convergence if some residual discontinuity is found. The solutions provided
in [TCF16] in the context of augmented crystal plasticity show that, at convergence, tan-
gential continuity of the plastic distortion rate is satisfied at grain boundaries. Further,
transgranular shear band localization occurs that conventional crystal plasticity fails to
predict. In [TCF+15], the solutions provided in the context of the mechanics of dislocation
fields show that consequences of tangential continuity include the occurrence of disloca-
tion pile-ups at grain boundaries, the activation of slip across boundaries, sample and
grain size effects on mechanical behavior and induced anisotropy of hardening, i.e. the
Bauschinger effect. As discussed in [TCF16], the dislocation density and internal stress
fields are very likely underestimated in augmented crystal plasticity. In the mechanics of
dislocation fields, tangential continuity of the plastic distortion rate ensures continuity of
the dislocation density field at interfaces, and it is likely that a more complete account of
internal stresses and slip transfer is reached. The foreseeable consequences on slip transfer
were not thoroughly examined in these papers.

18



We now provide details on the enforcement of tangential continuity of the plastic dis-
tortion rate and surface-dislocation removal. Interfaces possibly cross mesh elements in
finite element methods and certainly cross grids in FFT-based spectral methods. In the
corresponding ”boundary elements”, nodes (or voxels in FFT) pertain to the grain on
the left of the interface, others to the grain on the right, but they usually do not belong
to the interface. Since all variables are actually known from their nodal values, it seems
reasonable to consider the grain boundaries as spreading in practice over the closest nodes
in these boundary elements. Hence, the surface-dislocation density satisfying the interfa-
cial relation (54) also spreads over nodes in this area, and finding α̇S(I) is numerically
equivalent to incrementing a volumetric dislocation density ∆αI through Eq.(31). In
other words, the geometrically necessary dislocation density field ∆αI identified at nodes
on both sides of the interface reflects the interfacial density α̇S(I) spread out over the
same nodes. Thus, removing the surface-dislocation density α̇S(I) from the interface, is
also numerically equivalent to removing the volumetric dislocation density ∆αI from its
close neighborhood. The benefit brought by this surfacic-to-volumetric conversion is that
it allows substracting the corresponding incompatible plastic distortion rate field U̇I,⊥

p

from the existing approximation of the plastic distortion rate field in the body. Thus, the
following steps should be implemented at each time increment ∆t of an explicit code:

(1): compute the plastic distortion rate tensor U̇p using the stress field obtained from the
solution of the elastic-plastic problem at the previous time step and update the plastic
distortion tensor Up in the body,
(2): compute the increment ∆α = α̇∆t in the body through Eq.(31),
(3): select the nodes surrounding the interfaces and define the increment ∆αI = ∆α at
these nodes, ∆αI = 0 elsewhere,
(4): update α in the whole body using the increment ∆α −∆αI (implying that ∆α is
set to zero at the selected boundary nodes),
(5): compute the incompatible plastic distortion U⊥,Ip associated with the increment ∆αI

by solving the corresponding Poisson equation (19),
(6): substract U⊥,Ip from Up in the whole body,
(7): update the stress field by solving again the elasto-plastic boundary value problem,
(8): update the U̇p field, check for tangential continuity and slip transfer,
(9): go to step (2) if residual discontinuity.

The steps (5,6,7) suggest that tangential continuity may have a long-range impact in the
body, because removing the U⊥,Ip field modifies the plastic distortion and stress fields in
the entire body. In contrast, incrementing α through steps (1,2) and ignoring steps (3-7),
as commonly practiced in standard crystal plasticity simulations to provide an evaluation
of the dislocation density field, yields an α-field localized in the vicinity of the interfaces
and associated with undue tangential discontinuity of the plastic distortion rate.
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7 Concluding remarks

The present analysis of slip transfer is made in the generic context of a field theory of
dislocations [Kr1; Ach01; Ach07]. We posit Burgers vector conservation, which implies
tangential continuity of the plastic distortion rate at grain boundaries, serving in turn
as a basis for slip transfer predictions. In addition to being reasonable from a physical
point of view, this fundamental postulate warrants smoothness of the dislocation density
tensor field across interfaces and therefore consistency of the present continuous approach.
The predictions are qualitatively consistent with the commonly accepted criteria for slip
transfer [LR85; SWC86; LRB90; LM95], which adds confidence in the Burgers vector
conservation postulate. Moreover, they complement these criteria with a detailed quanti-
tative content based on slip system and interface geometry. However the shear rates on the
slip systems involved in Burgers vector conservation/tangential continuity of the plastic
distortion rate are stress dependent, which implies that slip transfer at grain boundaries
does not depend only on interfacial conditions, but also on the solution of the complete
elasto-plastic boundary value problem.

The present model for slip transfer is consistent with the existence of a continuous
dislocation density tensor field throughout the body, including at surfaces of discontinu-
ity, because the latter are required to involve only normal discontinuities of the plastic
distortion and distortion rate. In contrast, models where the grain boundaries are seen as
singular interfaces supporting surface-dislocations are inconsistent with a bulk description
featuring a volumetric dislocation density tensor field because continuity of the latter is
not verified at interfaces. The present slip transfer analysis is also consistent with crys-
tal plasticity appended with tangential continuity of the plastic distortion rate, and it
may be implemented in this context. Crystal plasticity augmented in this manner has
nonlocal character through grains interacting with their neighbors, and the slip transfer
relationships reflect these nonlocal interactions. However, the internal stresses associated
with dislocation pile-ups at grain boundaries are likely to be more correctly estimated
in the mechanics of dislocation fields [Ach01; Ach07] than in this augmented version of
crystal plasticity, because the incompatible elastic strains associated with the presence
of dislocations are not accounted for in the latter, with predictable consequences on slip
system activity on both sides of the interfaces.

In the present paper, the slip transfer model is restricted to pressure-insensitive f.c.c.
materials. Dislocation climb is ruled out to preserve pressure independence of the plastic
behavior, which implies moderate temperatures. However, out-of-plane motion of dislo-
cations through cross-slip of screws is permitted. The model may be extended to specific
b.c.c. and h.c.p. materials provided they feature 8/9 independent slip systems. To take
advantage of the gains in computing costs obtained from the spectral FFT-based methods
[RPLS20], further work will be devoted to the implementation of tangential continuity
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of the plastic distortion rate and slip transfer relationships in the spectral methods re-
cently developed for the numerical solution of periodic boundary value problems in the
mechanics of dislocation fields [BTDF14; DTBF15; UCT+16; DVT+17]. Simulations of
relatively large polycrystalline samples will be undertaken, either in augmented crystal
plasticity or in the mechanics of dislocation fields, to investigate at once numerous grain
boundary/slip system configurations while keeping computation costs acceptable.
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