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application à la dynamique de carbone dans le sol
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Abstract: Soil carbon is important not only to ensure food security via soil fertility, but also to potentially mitigate
global warming via increasing soil carbon sequestration. There is an urgent need to understand the response of the soil
carbon pool to climate change and agricultural practices. Biophysical models have been developed to study Soil Or-
ganic Matter (SOM) for some decades. However, there still remains considerable uncertainty about the mechanisms
that affect SOM dynamics from the microbial level to global scales. In this paper, we propose a statistical Bayesian
selection approach to study which forcing conditions influence soil carbon dynamics by looking at the depth distribu-
tion of radiocarbon content for 159 profiles under different conditions of climate (temperature, precipitation, etc.) and
environment (soil type, land-use). Stochastic Search Variable Selection (SSVS) is here applied to latent variables in
a hierarchical Bayesian model. The model describes variations of radiocarbon content as a function of depth and po-
tential covariates such as climatic and environmental factors. SSVS provides a probabilistic judgment about the joint
contribution of soil type, climate and land use on soil carbon dynamics. We also discuss the practical performance
and limitations of SSVS in presence of categorical covariates and collinearity between covariates in the latent layers
of the model.

Résumé : Le carbone du sol est important non seulement pour assurer la sécurité alimentaire en maintenant la fertilité
des sols, mais aussi pour limiter le réchauffement climatique en augmentant la séquestration du carbone dans le sol.
Il est urgent de comprendre la réaction du carbone du sol face au réchauffement climatique et au changement des
pratiques agricoles. Des modèles bio-physiques ont été développés depuis quelques décennies pour étudier la matière
organique du sol (SOM). Cependant, il existe encore une forte incertitude sur les mécanismes contrôlant la dynamique
de la SOM, du niveau microbien aux échelles globales. Dans cet article, nous proposons une approche statistique
bayésienne de sélection de variables pour mieux cerner la dynamique du carbone du sol en examinant la variation en
profondeur du radiocarbone pour 159 profils sous différentes conditions de climat (température, précipitations, ...) et
d’environnement (type de sol, type d’usage du sol, ...). La recherche stochastique de sélection de variables (SSVS)
est appliquée au niveau des variables latentes d’un modèle bayésien hiérarchique. Ce modèle décrit la variation du
radiocarbone en fonction de la profondeur et en tenant compte des covariables explicatives potentielles tels que
les facteurs climatiques et environnementaux. Cette approche nous permet d’avoir un jugement probabiliste sur la
contribution conjointe du type de sol, du climat et de l’usage du sol à la dynamique verticale du carbone dans le
sol. Nous discutons également de la performance pratique et des limitations de SSVS en présence de covariables
catégorielles et de la colinéarité entre certaines covariables quand elles interviennent au niveau d’une couche latente
d’un modèle bayésien hiérarchique.

1 Laboratoire des Sciences du climat et de l’environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université
Paris Saclay, F-91198 Gif-sur-Yvette, France.
E-mail: rana.jreich@lsce.ipsl.fr and E-mail: christine.hatte@lsce.ipsl.fr

2 AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75005 Paris, France.
E-mail: eric.parent@agroparistech.fr

3 Aix-Marseille Université, CNRS, Collège de France, IRD, INRA, CEREGE, 13545 Aix-en-Provence, France.
E-mail: jerome.balesdent@inra.fr

Journal de la Société Française de Statistique, Vol. 159 No. 2 128-155
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238

mailto:rana.jreich@lsce.ipsl.fr
mailto:christine.hatte@lsce.ipsl.fr
mailto:eric.parent@agroparistech.fr
mailto:jerome.balesdent@inra.fr


Bayesian selection model applied to soil carbon dynamics 129

Keywords: Bayesian selection approach, SSVS, spike and slab prior, hierarchical Bayesian model, latent variables,
organic carbon dynamics, radiocarbon
Mots-clés : méthode bayésienne de sélection de variables, recherche stochastique de sélection de covariables, modèle
hiérarchique bayésien, variables latentes, dynamique du carbone organique, radiocarbone
AMS 2000 subject classifications: 35L05, 35L70

1. Introduction

A significant current issue when trying to predict our planet’s future is to understand the feed-
back effects between climate evolution and the future soil carbon balance. Soil constitutes the
largest carbon pool in interaction with atmospheric carbon, containing 2000 to 2400 Gt of or-
ganic carbon in the first meter, i.e. at least the equivalent of 250 years of current fossil carbon
emissions that are estimated at 10±0.6 Gt/year (Stocker, 2014).
The stock of soil organic matter (SOM) has been defined as a balance between input of organic
matter through vegetation and loss through microbial decomposition. A large variation in the
soil organic carbon (SOC) stock amongst soil types and land use has been shown, ranging from
2 kg/m2 for arenosols to more than 10 kg/m2 for podzols (Batjes, 1996). Regarding land use,
Martin et al. (2011) show that relationships between soil organic carbon stocks and pedo-climate
depend on the type of land use and that they differ between forest and cultivated soil.

The global analyses carried out by Carvalhais et al. (2014) and He et al. (2016) point out the
lack of knowledge of carbon residence time in soil and an increasing concern about the impor-
tance of climate factors in the variability of carbon storage. For instance, a temperature increase
may clearly impact the activity of soil microorganisms and the subsequent organic carbon se-
questration by soils. Moreover SOM evolution plays a key role in the CO2 atmospheric content
since the soil is a crucial pool for CO2 emission or sequestration. No consensus has been reached,
however, on the relative importance of the various climatic factors that affect SOM dynamics,
such as temperature, precipitation, aridity, moisture, etc.

In fact, several questions remain unclear for soil scientists: Could soil capacity be durably
increased to sequestrate more carbon by changing land use? What quantitative changes in SOM
occur when modifying agricultural practices? Will that change the soil carbon stock/the organic
matter residence time? What is the contribution of each climatic or environmental factor to soil
carbon? Is the potential increment of the soil carbon stock to be considered as sustainable ?
These questions highlight the importance of assessing the uncertainties as well as understanding
the complex mechanisms of soil carbon dynamics. To investigate this point through data collec-
tion, in addition to soil carbon concentration, F14C measurements are also taken into account to
describe SOM dynamics on the grounds that radiocarbon content can be considered as a clock
that registers SOC residence time (Scharpenseel, 1971).

A worldwide meta-analysis of radiocarbon profiles is described in Mathieu et al. (2015). In
their study, a hierarchical non linear model is designed under the frequentist paradigm with in-
ference performed by the "Expectation-Maximization" algorithm. The radiocarbon dynamics is
parameterized as a smooth function of depth with random effects taking into account potentially
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explanatory climatic and environmental factors. Once calibrated, the model is used for statisti-
cal prediction along various typical scenarios of (modified) forcing conditions; according to an
expert interpretation of their predictive results, deep soil carbon dynamics is driven more by
soil type than by climate. Although such a result was based on a statistical model with unknown
parameters, there was no direct probabilistic judgment to assess the strength of their claim.
Our aim in this article is to scrutinize this claim more closely and check the robustness of the
statistical model in view of the many uncertainties: how confident can we be in the effective roles
of environmental covariates and climatic factors for the phenomenon under study? What are the
respective contributions of signal and noise in what we see? In this paper, we revisit Mathieu’s
approach under the Bayesian paradigm since Bayesian inference has the advantage of express-
ing the uncertainties on the unknowns throughout the statistical analysis. We re-parametrize the
model to obtain more directly interpretable parameters, change the error term structure to clarify
the different sources of uncertainties, and weight the influence of the climatic and environmental
drivers for prediction.
A Bayesian selection approach is hereby used in order to quantify the contribution of climatic and
environmental factors to soil carbon dynamics. Several Bayesian selection approaches for linear
models have been developed in the literature such as: Variable Selection for Regression Models
(VSRM) (Kuo and Mallick, 1998), Gibbs Variable Selection (GVS) (Dellaportas and Ntzoufras,
1997) and Stochastic Search Variable Selection (SSVS) (George and McCulloch, 1993).
These methods were applied within the framework of the linear model, where yi is the outcome
response for individual i (i = 1, . . . ,n) predicted by p potential explanatory covariates xi j for
j = 1, . . . , p. The intercept is expressed by α and the measurement error by ei.

yi = α +
p

∑
j=1

θ jxi, j + ei ei ∼ N(0,σ2),

with N(µ,σ2) referring to the Normal distribution with mean µ and variance σ2. In frequentist
selection methods, each variable combination corresponds to a different model, so the variable
selection chooses among all possible models the best sub-model based on criteria for model
selection such as: AIC, BIC and Mallows’s Cp. For a large number of covariates p, it is not
computationally achievable to consider all 2p possible sub-models.
The idea of Bayesian variable selection is to define a binary variable I j which indicates whether
a covariate x j is influential (I j 6= 0) or not influential (I j = 0) for the response y. I j is generated
from a Bernoulli prior.
The VSRM and GVS selection methods set θ j = I j×β j. For VSRM, I j and β j are considered
as independent and β j is sampled from a vague normal prior (Kuo and Mallick, 1998). For
GVS, β j is sampled from a conditional prior that depends on I j such as a Gaussian mixture
prior: P(β j|I j) = (1− I j)N(µ,S2)+ I jN(0,τ2), where µ,S2 and τ2 are hyperparameters chosen
to ensure good mixing of the Monte Carlo Markov Chains (MCMC) (Dellaportas and Ntzoufras,
1997). Therefore, these two Bayesian selection methods enable the best sub-model to be selected
by affecting null regression coefficients (I j = 0⇒ θ j = 0) for the non influential predictors.
SSVS considers a "slab and spike" prior which depends on I j for the regression coefficients
β j, with a spike around 0, and a flat slab elsewhere. Then if I j is null, we assign a value close
to 0 for θ j, which means that the corresponding covariate x j has no effect on response y. This
method was chosen for the present study. The major difference between the scope of the original
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SSVS and our specific case is that George and McCulloch (1993) designed the method to select
explanatory covariates directly linked to observed data whereas we will specify its use on latent
layers. Furthermore, we will evaluate the ability of SSVS to handle categorical covariates which
are more the rule than the exception when dealing with environmental data.

The paper is organized as follows: Section 2 describes the soil database and model structure,
and introduces the Bayesian variable selection to be applied to the latent variables of our non
linear multivariate hierarchical model. Section 3 focuses on SSVS: first, its performances and
limitations are exemplified on three sets of artificial data for a simple linear model with indepen-
dent quantitative covariates, correlated quantitative covariates and independent mixed covariates.
Then, SSVS is applied to the entire real data with the complex hierarchical model. Section 4
compares the result of the Bayesian selection model (SSVS) to that of a model including all
covariates via cross validation. In addition, this section highlights the challenges encountered by
applying SSVS and suggests how to set up solutions and extensions for this approach. The final
section briefly sums up our findings concerning the applicability of SSVS in our case study.

2. Materials and Methods

2.1. Data

FIGURE 1. Geographical locations of soil F14C sites.

Out of the 344 profiles extracted from 87 articles in the soil science and archeology/paleoclimatology
literature that constitute a database of available radiocarbon profiles of soil organic carbon (Math-
ieu et al., 2015), we selected 159 profiles from 50 articles. Several units are used to report ra-
diocarbon concentration. We chose here the F14C unit as recommended by (Reimer, 2004) for
environmental samples. F14C is a normalized radiocarbon concentration by reference to the at-
mospheric radiocarbon content in 1950. For a given site, each record of radiocarbon is given for
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a soil layer characterized by the depths of its top and bottom levels. Such a preliminary data
cleaning was based on the following criteria: i-) the radiocarbon data must have been acquired
on bulk organic carbon (not on specific fraction, nor specific molecule), ii-) sites must contain
more than 3 observations. Figure 1 shows the site locations where radiocarbon data at various
depths were collected. The number of observations varied from one site to another (from 3 to
88 measurements per site). For each of the 159 profiles, the following information of interest is
provided: sampling year, location, climate, soil type, land use, organic carbon content and radio-
carbon. Soil texture is not considered as it is poorly recorded in many articles from the literature.
More details on the database can be found in (Mathieu et al., 2015). In this study, the potential
climatic and environmental explanatory covariates are as follows:

• Mean annual precipitation (MAP), mean annual temperature (MAT), aridity index (AI),
and absolute shift between July and January temperatures (∆T) are included as representa-
tive of the average climate and seasonality of the site. The aridity index, defined by UNEP
as the ratio of annual precipitation to annual potential evaporation, was obtained from the
FAO 10-minute mean climate grids for global land areas for the period 1950–2000 (Tra-
bacco and Zomer, 2009).

• Latitude (Lat).
• The atmospheric radiocarbon of the sampling year (14Catm).
• Soil type with 13 different categories ordered alphabetically: andosol, arenosol, cambisol,

chernozem, ferralsol, fluvisol, gleysol, kastanozem, luvisol, nitisol, phaeozem, podzol,
vertisol. We pooled phaeozem and kastanozem soil types into chernozem due to simi-
lar characteristics, as they are poorly present in the database. Hereafter, soil type will be
considered as a categorical variable with 11 levels.

• Vegetation and land use were combined to form a new factor dubbed "ecosystem", with
originally 9 categories distinguished as follows: cultivated-field, cultivated-forest, cultivated-
grassland, forest, natural, natural-desert, natural-forest, natural-grassland and natural-savanna.
We pooled natural-desert into the "natural" ecosystem. Ecosystem will therefore be con-
sidered as a categorical variable with 8 levels.

Among the 159 profiles collected, 55 with missing climatic or environmental covariates were
removed from the database. After previous data cleaning, the dataset finally includes 104 sites

TABLE 1. Contingency table of pairwise combinations of levels between soil type and ecosystem. Abbreviation "C"
in column names refers to Cultivated and "N" to Natural.

C-Field C-Forest C-Grassland Forest Natural N-forest N-Grassland N-Savanna Total
Andosol 0 2 1 0 1 4 0 0 8
Arenosol 0 2 0 0 1 0 0 1 4
Cambisol 2 0 0 1 0 4 2 0 9

Chernozem 2 0 0 0 0 0 11 0 13
Ferralsol 0 0 0 1 0 9 1 2 13
Fluvisol 2 0 0 2 0 0 0 0 4
Gleysol 2 1 0 0 1 0 0 0 4
Luvisol 4 0 2 3 0 7 11 0 27
Nitisol 1 0 0 0 0 4 0 0 5
Podzol 0 3 1 0 0 6 1 0 11
Vertisol 3 0 3 0 0 0 0 0 6

Total 16 8 7 7 3 34 26 3 104
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and 951 records. The dataset results from an observational study, which may lead to some con-
fusion due to the spurious association between the correlated and/or the poorly contrasted co-
variates. The very small number of observations for pairwise- combinations of factors (even a
null number for many of them) rules out the possibility of including interactions between soil
type and ecosystem in the model (see Table 1). In addition, we anticipate a poor precision of the
estimates of the effects of categorical covariates since their design matrix, shown by Table 1, is
unfortunately very strongly unbalanced.

To illustrate the composition of the dataset, the boxplots in Figure 2 show the average F14C
variation versus the mean levels of non overlapping soil layers, for the most frequent types of
profiles collected. This figure only shows average profiles for some specific combinations and
prevents any strict interpretation as the number of observations differs from top to depth, and as
soil horizon width differs from one profile to another (we do not expect the intensity of processes
to be the same at the same depth between two profiles). Figure 2 shows as expected that the
radiocarbon decreases with depth: with higher input, topsoil OM is more rapidly renewed (and
thus shows a younger age) than deep soil OM.

2.2. A multivariate hierarchical non linear model

The statistical model structure that mimics (eqs 1 and 2) variations of F14C with depth along
a profile within a given site is similar to the one considered in Mathieu et al. (2015). It differs
only in the homogeneous variance for the measurement error and in the unit chosen to report
radiocarbon concentration.
Let S = 104 be the total number of carbon soil profiles under study. We note ms the number of
measurements available for site s. Therefore, for each site s∈ {1 : S} and each depth x∈ {1 : ms},
the F14C content experimental record y(s,x) is modeled by:

y(s,x) = g
(

φ(s),x
)
+ ε(s,x), ε(s,x)∼ N(0,σ2) (1)

g
(

φ(s),x
)
= φ1(s)+(φ2(s)−φ1(s))exp

[
−
(

x
φ3(s)

)φ4(s)
]

(2)

As indicated in Fig 3, the structure of the previous statistical model is interpreted:

— φ1 represents F14C in deep soil,

— φ2 refers to the topsoil F14C,

— φ3 is related to the depth at half maximum of the F14C peak,

— φ4 describes the more or less rapid decrease of F14C.

The ε terms represent the within-site discrepancies between the observed and the adjusted F14C
profiles.
To express the variability between the different sites, a linear link is considered between each of
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134 Jreich, Hatté, Parent and Balesdent

FIGURE 2. The variation of radiocarbon versus depth is represented on boxplots for the most frequent combinations
of ecosystem and soil types. Natural-grassland / chernozem (11 profiles), Natural-grassland / luvisol (11 profiles),
Natural-forest / luvisol (9 profiles), Natural-forest / podzol (6 profiles), Cultivated-field / luvisol (4 profiles)
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Bayesian selection model applied to soil carbon dynamics 135

FIGURE 3. Statistical profile of soil F14C versus depth obtained from Eq. 2.

the four latent variables φ1(s),φ2(s),φ3(s),φ4(s) and the explanatory climatic and environmen-
tal variables. We assume that the latent variables are a priori independent with a design matrix
X ∈MP,4(R) defined using a treatment contrast (one level for each categorical covariate is con-
sidered as a baseline), as a solution for the redundancy problem due to the presence of categorical
variables (soil type and land use) in the linear layer models (without interactions). To be more
specific, X is the design matrix with the following form:

X =



14Catm(1) MAT(1) . . . ∆T (1)
...

...
...

...
...

1soil 1eco
14Catm(s) MAT(s) . . . ∆T (s)

...
...

...
...

...
14Catm(S) MAT(S) . . . ∆T (S)


As a first trial, the four latent variables were estimated after a least square optimization to ad-
just (for each site independently) the curve of Fig 3 to the observations. The estimated variables
φ̂1, φ̂2, φ̂3 and φ̂4 were linked to X by four regressions in order to have a preliminary estimation
of the regression effects. The diagnostic plots for the linear model led us to perform logarith-
mic transformations of φ3 and φ4 in order to provide a better agreement with the homogeneous
variance hypothesis.

φi = Xβi +Ei, Ei ∼ NS(0,σ2
i I) i = 1,2 (3)

log(φi) = Xβi +Ei, Ei ∼ NS(0,σ2
i I) i = 3,4 (4)
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βi = (βi1, . . . ,βiP)
′ ∈ RP, where i = 1,2,3,4, represents the fixed covariate effect relative to

each latent variable, and Ei ∈RP the corresponding centered random effect. φi and Ei are defined
as the following vectors: φi = (φi(1),φi(2), . . .φi(S))′ and Ei = (Ei(1),Ei(2), . . . ,Ei(S))′. In this
case study, the number of columns P in the design matrix X is equal to 23 (P = 1+(11− 1)+
(8−1)+6). In fact, "1 + (11-1) + (8-1)" is the dimension of the two-way explanatory subspace
spanned by the categorical factors "Soil type " and "Ecosystem" that includes the constant. 6 is
the number of quantitative regressors. The quantitative regressors in X are normalized to allow
comparison of their effects in a rescaled unit. Due to the presence of dummy variables generated
by the two categorical factors, the number of columns of the design matrix (23) is greater than
the number of explanatory covariates (6+2).

Bayesian selection model: The variable selection procedure is expected to reveal the most in-
fluential explanatory variables for the assemblage of the four latent sub-models given with 2
categorical covariates and 6 quantitative ones by equation 3. The idea is to consider a "slab and
spike" prior (Dellaportas et al., 2000) for each βi parameter, with a spike centered at 0, and a
flat slab elsewhere. Each combination of included variables corresponds to a different model, so
variable selection amounts to choosing among all possible 2P sub-models if the model consid-
ered were a simple linear model with P regressors. For a large number of covariates P , it would
be therefore not feasible to consider each possible model separately. In our case, it may seem
at first glance that P = 8, leading to only 28 = 256 sub-models for each of latent model given
by Eqs.3 and 4. Hence the idea of a Bayesian variable selection, where we consider a stochastic
exploration of this immense combinatorial set of possible models (O’Hara et al., 2009).
In this article, we concentrate on the Stochastic Search Variable Selection introduced by George
and McCulloch (1993). This approach is applied to the latent layers φ1,φ2,φ3 and φ4, in presence
of categorical covariates.
For the selection procedure, we need to define an indicator variable Ii j where i = 1,2,3,4 and j =
1, . . . ,P as follows:

Ii j =

{
1 if variable X j has an effect on φi

0 otherwise

The mixture prior for βi j depends on Ii j:

P(βi j|Ii j) = (1− Ii j)N(0,τ2
i j)+ Ii jN(0,c2

i jτ
2
i j) (5)

where i = 1,2,3,4 and j = 1, . . . ,P. Based on this Gaussian mixture, τi j must be small, in order
to sample βi j around 0 in situations when variable X j is not influential, but not strictly restricted
to zero, though, otherwise the Gibbs sampler will rarely be able to flip from Ii j = 0 to visit Ii j = 1.
Furthermore, ci j must be large enough for β j to be given a flat prior when X j is needed in the
model. A semi-automatic approach to selecting τi j and ci j was proposed by George and McCul-
loch (1993) considering the interaction point and relative heights at 0 of the marginal densities.
They recommended "good" choices for the couple (σβi j/τi j,ci j), where σβi j is the observed stan-
dard error associated with the least squares estimate β̂i j. However, a more appropriate prior for
β suggested later is the hyper-g prior proposed by Liang et al. (2008) based on the g-prior in-
troduced by Zellner (1986). This extension of the g-prior has been widely studied and widely
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Bayesian selection model applied to soil carbon dynamics 137

used in a regression context. The specification of g is mostly based on a model selection criterion
such as the Akaike Information Criterion (AIC, see Burnham et al. (2011)), the Bayesian infor-
mation criterion (BIC, see Bhat and Kumar, 2010), the Deviance Information Criterion (DIC,
see Spiegelhalter et al., 2002), etc. Here, the β prior can be understood as a mixture of spike
and slab of g-priors. In order to specify g and to ensure a reasonable order of magnitude for
β , the hierarchical model without the selection step is first adjusted with a hyper-g prior (with
a vague uniform prior at the upper level of the hierarchy). The value of g will be fixed as the
posterior mean of this preliminary estimation and used afterwards for the Bayesian selection ap-
proach. In that respect, when Ii, j is equal to 1, βi, j will be generated from the following g-prior
N(0,giσ

2
i (X

′X)−1
j, j ), to be considered as the slab prior. In contrast, according to the concept of

the spike prior, which should be more centered at 0, the βi, j corresponding to Ii, j = 0, will be
generated from a g-prior, where the variance is much smaller N(0,(1/c) ∗ giσ

2
i (X

′X)−1
j, j ). The

hyperparameter c is specified by the user based on a model comparison with different values of c
according to the previously cited selection model criteria or to a cross validation study. A hyper
prior can also be proposed for c (uniform prior).
The model for Bayesian selection of variables can be finally summed up as follows:

• Likelihood:
for each site s ∈ {1 : S} and each depth x ∈ {1 : ms}:

y(s,x)∼ N(g(φ(s),x),σ2) with φ(s) = (φ1(s),φ2(s),φ3(s),φ4(s))

• Latent variables:

φi ∼ NS(Xβi,σ
2
i I) i = 1,2

log(φi)∼ NS(Xβi,σ
2
i I) i = 3,4

with φi = (φ1,i, . . . ,φs,i, . . . ,φS,i), φi ∈ RP.

• Priors:

• 1/σ2 ∼ G(0.001,0.001)

• 1/σ2
i ∼ G(0.001,0.001) for i = 1, 2, 3 and 4

G( , ) refers to the gamma distribution.

• An intercept is always included and common across all sub-models, for j = 1,2,3,4
β j1 ∼ N(0,10000)

• for quantitative covariates j = 2, . . . ,K

• β1 j|I1 j ∼ (1− I1 j)∗N(0,
g1σ2

1 (X
′X)−1

j, j
c1

)+ I1 j ∗N(0,g1σ2
1 (X

′X)−1
j, j )

• β2 j|I2 j ∼ (1− I2 j)∗N(0,
g2σ2

2 (X
′X)−1

j, j
c2

)+ I2 j ∗N(0,g2σ2
2 (X

′X)−1
j, j )

• β3 j|I3 j ∼ (1− I3 j)∗N(0,
g3σ2

3 (X
′X)−1

j, j
c3

)+ I3 j ∗N(0,g3σ2
3 (X

′X)−1
j, j )

• β4 j|I4 j ∼ (1− I4 j)∗N(0,
g4σ2

4 (X
′X)−1

j, j
c4

)+ I4 j ∗N(0,g4σ2
4 (X

′X)−1
j, j )
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For j = 2, . . . ,K and i = 1,2,3,4:

Ii j ∼B(pi j = p) with B(.) the Bernoulli distribution (6)

i.e. all models are a priori equiprobable.

• For the categorical covariates numbered j = K + 1, . . . ,P, with covariate C j having
n j levels, the algorithm ensures that the n j modalities are either taken or dropped all
together during Monte Carlo Markov Chain (MCMC) iteration:

• for each level s = 1, . . . ,n j:

• β1s|IC j,1 ∼ (1− IC j,1)∗N(0,
g1σ2

1 (X
′X)−1

j, j
c1

)+ IC j,1 ∗N(0,g1σ2
1 (X

′X)−1
j, j )

• β2s|IC j,2 ∼ (1− IC j,2)∗N(0,
g2σ2

2 (X
′X)−1

j, j
c2

)+ IC j,2 ∗N(0,g2σ2
2 (X

′X)−1
j, j )

• β3s|IC j,3 ∼ (1− IC j,3)∗N(0,
g3σ2

3 (X
′X)−1

j, j
c3

)+ IC j,3 ∗N(0,g3σ2
3 (X

′X)−1
j, j )

• β4s|IC j,4 ∼ (1− IC j,4)∗N(0,
g4σ2

4 (X
′X)−1

j, j
c4

)+ IC j,4 ∗N(0,g4σ2
4 (X

′X)−1
j, j )

For j = k+1, . . . ,P and i = 1,2,3,4:

IC j,i ∼B(pC j,i = p)

All levels of a categorical factor therefore receive the same prior selection probability,
but more informative priors can be designed, if prior expertise is available to tune the
respective importance of the explanatory variables.

The calculation of the posterior distributions of the parameters is based on MCMC algorithms
such as the Metropolis-Hastings and Gibbs Sampler (Dellaportas et al., 2000). The SSVS is
easily implemented in JAGS (Just Another Gibbs Sampler), as exemplified in Ntzoufras et al.
(2002, pp.13-17).

3. Results and Discussion

3.1. Performing SSVS on artificial data

In this section, we illustrate the performance of SSVS on latent layers for artificial data generated
according to the non linear multivariate statistical structure model (1)+(2)+(5)+(6) when:

1. all independent covariates are quantitative;

2. all covariates are quantitative, and some of them are correlated;

3. the covariates are mixed: some are quantitative and the others are categorical.

The purpose of this artificial data generation is to understand and study the challenges in the
application of SSVS when the selection aims at hidden sub-models and the model structure is
more complex than a simple univariate regression.
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SSVS on latent layer models with independent quantitative covariates:
• Example 1: The artificial dataset mimics the real one by taking the same number of sites

(104 sites) and depth measurements (951 records). In this example, 6 quantitative (contin-
uous) predictors are considered. The predictors are generated as independent standard nor-
mal vectors, X1, . . . ,X6 iid N104(0,1), so that they are practically uncorrelated. The regres-
sion effects are set to β1 = (0,1,0,1,0,1),β2 = (0,0,1,1,0,0),β3 = (1,0.8,0,0.7,0,1) and
β4 = (1,0,0,1,0.8,0.8) with standard deviations σ1 = σ2 = σ3 = σ4 = 0.1 and σ = 0.1.
The intercept is equal to 1 and will always be kept in the proposals of the latent layer
models.

SSVS on latent layers with correlated quantitative covariates:
• As shown in Fig 8, for the real case, covariates may be correlated. Example 2 is designed

to illustrate how SSVS reacts in the presence of high collinearity. The only difference with
example 1 is that the matrix design X contains 2 correlated explanatory variables. X5 and
X6 are defined as follows:

X5 = 2×X3

X6 = X2 +1.5×Z, Z ∼ N(0,1)

SSVS on latent layers with mixed covariates:
• Example 3 introduces categorical variables: this time, the latent linear models φ1,φ2,φ3

and φ4 contain 6 quantitative (X1, . . . ,X6) covariates and 2 qualitative factors (F1 and F2)
with respectively 8 and 11 levels. Contrast-sum coding was considered to remain co-
herent with the presence of quantitative covariates. Regression effects were set to β1 =
(1,0,0,1,0,1,0,1), β2 = (0,1,0,0,1,1,0,0), β3 = (1,1,1,0.8,0,0.7,0,1) and β4 =
(0,0,1,0,0,1,0.8,0.8). 0 and 1 are the index vectors of length 7 or 10 with 0 and 1’s corre-
sponding to categorical covariates (position 2 and 3 of the regression coefficients vector).
The first position in β1,β2,β3 and β4 is always equal to 1 and refers to the intercept. σi, i
=1,2,3,4 and σ are fixed as in Example 1. Similar to real data, the experimental design of
artificial data is strongly unbalanced.

3.1.1. Sensitivity analysis of the prior for SSVS latent layers on independent quantitative
covariates

In order to suggest reasonable values of g1,g2,g3 and g4 for the spike and slab g-priors on
the regression effect parameters, the inference of the linear model with a vague uniform prior
(gi ∼ U(10,1000), i = 1,2,3,4) on g was run. The posterior means of g1,g2,g3 and g4 were
plugged into the SSVS model.
The prior inclusion probability was fixed to 0.5 in the paper of George and McCulloch (1993).
This choice is common for Bayesian selection models since it ensures for all explanatory covari-
ates the same probability of being included in the model. Yet, this prior is informative and favors
sub-models with half of the covariates included. For the purpose of studying the impact of the
inclusion probability p on the selection results, the SSVS was tested under three different prior
specifications:
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TABLE 2. The DIC for three proposed priors on probability selection: 1- p is fixed at 0, 2- a Beta prior on p B(2,2)
3- a uniform prior on p U(0,1) . Models with smaller DIC should be preferred to models with larger DIC.

p DIC

fixed to 0.5 -1511
beta prior -1515

uniform prior -1512

TABLE 3. The posterior inclusion probability for the most frequent models among the 3000 MCMC iterations for
φ1,φ2,φ3 and φ4 latent linear models. The three proposed priors succeed in identifying correctly the best sub-models.

Most frequent model False detection p = 0.5 beta prior uniform prior

X2,X4,X6 0 0.73 0.66 0.63
X3,X4 0 0.44 0.46 0.48

X1,X2,X4,X6 0 0.78 0.61 0.52
X1,X4,X5,X6 0 0.72 0.53 0.44

1. p is fixed to 0.5 for all covariates,

2. a Beta distribution prior on p (p∼ B(2,2)),
3. a uniform distribution prior on p (p∼U(0,1)).

For these three tested models, the ci(i = 1,2,3,4) were fixed to 100 for the four latent linear
models. According to the Deviance Information Criterion (DIC) easily provided by JAGS, the
SSVS with a beta prior on p is preferred (see Table 2)

For a linear model with a large number of covariates, a uniform inclusion probability of 0.5
may bias the best sub-model by being too complex since it favors the sub-models with half of
the covariates selected. Figure 4 gives the total number of selected covariates identified among
MCMC iterations for the third latent linear model that involves 6 covariates. This result highlights
that the choice of 0.5 promotes the selection of sub-models with 3 covariates. The Beta and
Uniform distributions prior increase the probability selection of sub-models with more than half
the number of total covariates.

According to the result obtained, a prior Beta distribution will be proposed on the inclusion
probability p for the further SSVS models.

FIGURE 4. The number of selected covariates identified among the MCMC iterations (nb of iterations = 3000) for
the third latent variables (φ3) for the three proposed priors for the probability selection p.
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TABLE 4. SSVS evaluation for artificial data including only independent quantitative covariates. Panels a, b, c, d
are the results obtained for φ1,φ2,φ3 and φ4 latent layers, respectively. Rows give the three most visited sub-models.
Columns correspond to the different tested priors. F.C. (False Choice) sums up both false inclusion and false
exclusion. Prob. is the probability appearance of model subsets throughout iterations. The best sub-models detected
by the SSVS with the three proposed values of c do not contain any false detection.

a)

c = 10 c = 100 c = 1000 c = 5000
Prob F.C Prob F.C Prob F.C Prob F.C

0.31 - 0.66 - 0.81 - 0.84 -
0.13 X3 0.09 X3 0.06 X1 0.06 X3
0.12 X5 0.08 X1 0.05 X3 0.04 X5

b)

c = 10 c = 100 c = 1000 c = 5000
Prob F.C Prob F.C Prob F.C Prob F.C

0.30 - 0.46 - 0.40 - 0.39 -
0.10 X2 0.17 X2 0.25 X2 0.28 X2
0.08 X1 0.06 X6 0.08 X6 0.07 X6

c)

c = 10 c = 100 c = 1000 c = 5000
Prob F.C Prob F.C Prob F.C Prob F.C

0.33 - 0.61 - 0.72 - 0.74 -
0.23 X3,X5 0.16 X5 0.13 X5 0.12 X5
0.21 X3 0.14 X3 0.10 X3 0.11 X3

d)

c = 10 c = 100 c = 1000 c = 5000
Prob F.C Prob F.C Prob F.C Prob F.C

0.29 - 0.53 - 0.58 - 0.59 -
0.25 X2,X3 0.18 X2 0.17 X2 0.18 X2
0.21 X2 0.17 X3 0.16 X3 0.15 X3

3.1.2. Sensitivity analysis prior for SSVS latent layers on independent quantitative covariates

In this section, we test the "best" choice of the hyperparameter c for the β prior specification.
We consider the following values of c: 10, 100, 1000 and 5000. The MCMC is run for 30,000
iterations after a burn-in of 10,000 iterations. In addition, a Beta prior B(2,2) is proposed for
the inclusion probability p. The four panels in Table 4 show, for Example 1 of artificial data, the
SSVS performance under different priors on β1,β2,β3 and β4. These tables show the three most
frequent models with the false inclusion (False positive) or exclusion (False negative) rates of
predictors.

For the different spike and slab priors, SSVS performs extremely well for ci = 10, 100 and
1000 ( i = 1,2,3,4) since the best sub-models identified for each of the four latent layers contain

TABLE 5. Comparison between the three SSVS models with different values of c according to the DIC criterion. The
best model is identified by the lowest DIC estimation.

c DIC

10 -1513
100 -1515

1000 -1523
5000 -1520
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no false detections (see the first line of the panels a), b), c) and d)). The best sub-models do
not contain any false choice. As expected, as the value of c increases, the posterior distribution
becomes more peaked, which can be explained by the increase in probability appearance along
these settings. In fact, the probability of the most visited model increases with higher values of
c (see the probability values in the first row of the previous four tables). For example, in Table
2–(d), the best sub-model under c = 10 is visited 870 times throughout 30,000 iterations, while
the best sub-model under c = 5000 is visited 1770 times. The SSVS with c = 1000 is identified
as the best according to the DIC estimations. Moreover, a vague uniform prior can be proposed
on parameter c in order to have a better estimation. Generally speaking, SSVS performs well on
latent layer models with independent quantitative covariates.

3.1.3. The presence of collinearity increases false detection on SSVS in the latent layer

George and McCulloch (1993) showed that collinearity may reduce the efficiency of SSVS by
increasing the number of promising models in a linear model framework. Collinearity between
some covariates in a latent layer model can also increase the rate of false positives/negatives es-
pecially when one of the correlated covariates is influential but the other is not. The SSVS model
is now considered with a Beta prior on the probability selection p (p ∼ B(2,2)) and a vague
uniform prior on c (U(5,1000)).

Figure 5 illustrates how correlated covariates restrict SSVS performances. The SSVS model
provides a probability judgment about the most frequent explanatory covariates combination. In
addition to that, the SSVS also provides a probability judgment about the inclusion of each of the
explanatory covariates on the different sub-models identified throughout MCMC iterations. Here,
the Posterior Inclusion Probabilities (PIP) for each covariate separately are illustrated in Fig.5. In
the first and third panels, the selected covariates correctly specify the influential covariates taken
a priori into account to generate artificial data. Outputting, both X3 and X5 as non influential, and
X2 and X6 as influential for φ1 was expected since the correlated covariates were a priori both
influential/not influential at the same time. With regard to the second panel, φ2 was generated
taking into account X3, while X5 is omitted a priori. Therefore as X5 is correlated with X3, SSVS
misleads and selects X5. Likewise, X2 and X3 were not taken into account when generating φ4.
As a result, two false choices are reported, the exclusion of X5 and the inclusion of X2.

3.1.4. SSVS performance within latent layer mixed covariates (quantitative and qualitative)

The algorithm for mixed covariates was developed to give the same inclusion probability to
all levels of the same categorical covariate. The results obtained in Example 3 highlight some
limitations of SSVS with regards to the presence of categorical covariates in the latent layer.
It can be clearly seen that SSVS may fail to detect some influential explanatory categorical
covariates. However, SSVS does not seem to induce false choice inclusion. In our case study, it
considers a categorical covariate as influential only if it is actually influential: it can miss some
of them but does not induce false positives.
The new dummy covariates needed to handle the presence of categorical covariates F1 (8 levels)
and F2 (11 levels) strongly increase the dimensions of the space of competing models to be
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FIGURE 5. SSVS evaluation for artificial data including both independent and correlated quantitative covariates.
Panels a, b, c, d give the results obtained for the Posterior Inclusion Probability (PIP) separately for each covariate
throughout the sub-models identified by the MCMC iterations for the four latent layers. A PIP higher than 0.5 indi-
cates a strong probability of inclusion of the relative covariate in the best sub-model. The title of each graph reflects
the true value of the regression coefficients from which artificial data were generated: e.g. in Example 2, X5 was
correlated with X3, and X6 with X2. The red circle reflects false detection, for example false inclusion for X5 and X2
respectively in the φ2 and φ4 latent models.

stochastically explored. The selection results summarized in Table 6 were obtained after applying
the SSVS algorithm on the artificial data generated as Example 3:

TABLE 6. The selection results obtained by applying the SSVS on latent layers with mixed explanatory covariates.
For each latent layer, the real model from which the data was generated, the best sub-model detected with the
highest frequency of appearance throughout MCMC iterations and the false negative detections are given.

latent layers real model best model detected by SSVS false negative probability appearance

φ1 F1,F2,X2,X4,X5 F1,F2,X2,X4,X5 0 0.765

φ2 F1,F2,X1,X2,X3 F1,F2,X1,X2,X3 0 0.223

φ3 F2,X1,X2,X5,X6 X1,X2,X5,X6 F2 0.882

φ4 F2,X4,X5,X6 X4,X5,X6 F2 0.695

Results displayed in Table 6 show that SSVS is able to identify the influential quantitative
covariates (X1, . . . ,X6) (0 false detection for quantitative covariates). Moreover, for the first and
the second latent layers φ1 and φ2, the best sub-models detected by the SSVS are correct with
null false detections. In contrast, for φ3 and φ4, the categorical covariates F1 and F2 are detected
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as false negative detections respectively for φ3 and φ4 linear models. These results highlight a
limitation of SSVS related to the presence of categorical covariates in latent layers. It is clear that
SSVS fails to detect some influential explanatory categorical covariates. However, SSVS does
not induce false choice inclusion in this case study. In other words, it considers a categorical
covariate as influential only if it is actually influential.
Such avoidance of false choice inclusion might stem from the fact that SSVS with even prior
weights tends to dampen the selection probability of a categorical covariate with a big num-
ber of modalities. In fact, the prior distribution of βk ∈ RM when covariate k is selected (i.e.
Ik = 1) is proportional to 1

(gσk(X ′kXk)−1)M . Consequently, when M becomes large, the prior distri-
bution P(βk|Ik = 1) will vanish to 0. For that reason, SSVS may seem to be reluctant to select a
categorical covariate with a high number of levels.

3.1.5. Variance sensitivity analysis for SSVS

As mentioned above, George and McCulloch (1993) designed and applied SSVS to detect ex-
planatory covariates directly linked to the observed response whereas we applied it to covariates
buried in latent layers in the framework of a hierarchical Bayesian model. To complete the as-
sessment in our specific case, we evaluated the sensitivity of SSVS to the variance within the
latent layer.
Overall, sensitivity variance analyses highlight that an increase in variability between sites (ex-
pressed by the σ1,σ2,σ3 and σ4 of the latent layer models) does decrease SSVS robustness to
select the best subset of covariates.

In our specific case, two sources of variability are to be distinguished: variability between sites
expressed by σ1,σ2,σ3 and σ4 and variability within the same site expressed by σ . In order to test
SSVS sensitivity to intersite variability changes, we simplified the proposed statistical model by
fixing φ2,φ3 and φ4. SSVS was applied only on φ1, which has a linear effect on the F14C response.
We tested SSVS for four different values of σ1 = (0.01,0.1,2.5,3). Figure 6 shows the posterior
inclusion probability for one of the considered covariates "X2", for different σ1 settings. Figure
6 clearly illustrates the impact of σ1 on the posterior inclusion probability (PIP): the more σ1
increases, the more PIP decreases. It even reaches a PIP close to 0.5 for σ1 = 3, leading to a
potential false choice (exclusion) of an important variable.

3.2. SSVS on observed radiocarbon profiles

3.2.1. Application of SSVS on soil F14C profiles

The aim of this section is to highlight the contribution of SSVS to understanding which climatic
and environmental factors are likely to control soil carbon dynamics. Based on the results ob-
tained on artificial data, it can be claimed that the presence of categorical covariates in the model
can produce false exclusions of some of the influential categorical covariates. In addition, the
correlation between some covariates such as temperature and latitude, may yield false detection,
especially if they do not have the same effect on latent layers as we showed in subsection 3.1.3.
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FIGURE 6. Posterior inclusion probability in relation with σ1 value. The illustration here is for X2 included as a
descriptor of the φ1 latent layer model, φi for i = 2,3,4 being fixed. The posterior inclusion probability decreases
versus increasing values of σ1. The green dashed line represents the decision-making rule: for a posterior inclusion
probability higher than 0.5, the relative predictor is considered as influential.

Choice of c for regression effects prior
The SSVS was applied on real data by considering a beta prior B(2,2) on inclusion probability

with different values of c: 10, 100, 1000 and 5000. Furthermore, the model with uniform prior
U(10,10,000) on ci(i = 1, . . . ,4) was also tested.

TABLE 7. The DIC comparisons for five SSVS models under different prior specifications for ci (i =1, 2, 3, 4). The
table also summarizes the DIC for the full model containing all explanatory covariates.

SSVS models DIC

ci = 10 -1869
ci = 100 -1806

ci = 1000 -1890
ci = 5000 -1855

Uniform prior on ci -1860

Full model -1726

All SSVS models returned a better adjustment than the full model, according to the DIC cri-
terion. The best model is identified by the lowest value of DIC. The SSVS model on radiocarbon
profiles will thus be established with ci equal to 1000 for i = 1,. . . ,4.
To investigate the predictive power of the SSVS models, a cross validation procedure was con-
ducted. SSVS models were adjusted on the same learning sets (70% of studied sites) and 30% of
data were used as validation sets. The average Posterior Relative Errors (PRE) for all sites under
the different depth measurements are summarized in the following Table 8. Here, the difference
of the PRE among the SSVS models is very small. According to the results on Tables 7 and 8,
hyperparameter c is to be fixed to 1000.
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TABLE 8. Posterior Relative Error (PRE) computed for all sites and for all depth measurements throughout MCMC
iterations. The PRE difference between the models is very small. The best model has the lowest PRE on the
validation sets.

SSVS models Posterior Relative Error on learning sets Posterior Relative Error on validation sets

ci = 10 0.225 0.406
ci = 100 0.230 0.402
ci = 1000 0.234 0.413
ci = 5000 0.238 0.416

uniform prior on ci 0.235 0.417

Results of Posterior Inclusion Probability (PIP) for covariates among the sub-models iden-
tified by MCMC simulations

FIGURE 7. Posterior inclusion probabilities for all explanatory covariates obtained by applying the SSVS to the
entire real database. The size of points depends on the importance of the posterior inclusion probability.

Panels 1, 2, 3 and 4 of Fig 7, show the Posterior Inclusion Probabilities (PIP) for each cate-
gorical covariate throughout the different sub-models visited by the Markov chains. According
to the selection results obtained on artificial data with mixed covariates in subsection 3.1.4, the
SSVS provides a good performance on quantitative covariates (no false detection). However, it
can miss some significant categorical covariates. Panels 1 and 2 indicate that the seasonal shift
and the temperature are included with probabilities 90% and 73% respectively throughout the

Journal de la Société Française de Statistique, Vol. 159 No. 2 128-155
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238



Bayesian selection model applied to soil carbon dynamics 147

visited sub-models for φ1 and φ2. φ1 and φ2 are respectively related to the deep and topsoil F14C.
All explanatory covariates are selected for φ3 in its latent model. All the categorical covariates
(land use or soil type) selected with a probability higher than 0.5 are included in the best sub-
model. So, land use is very surely included in the best sub-models of φ1, φ3, φ4 and soil type
in the φ3 best sub-models. In contrast, every categorical covariate not selected (PIP smaller than
0.5), may be significant for the model since the SSVS approach can yield negative false detection
for categorical covariates. For example, soil type is a priori not included in the best sub-model of
φ1 but might still be significant to explain deep soil radiocarbon.
Moreover, a posterior probabilistic beliefs on the association of explanatory covariates is pro-
vided by looking at the most frequent covariate combinations throughout the MCMC iterations
(see Table 9).

Results of 2 most frequent combinations of covariates identified by Stochastic Search Vari-
able Selection

TABLE 9. High 2 frequency models (Model1 and Model2) for each of the latent linear models. It represents the 2
most frequent combinations of explanatory covariates among all the MCMC iterations. The linear models with all
explanatory covariates are identified for φ2,φ3 and φ4.

Latent linear model High frequency model frequency (n.iter = 180,000)

φ1 Model1: land use, temperature and seasonal shift 12,549
Model2: land use, seasonal shift 10,822

φ2 Model1: all covariates 6,606
Model2: seasonal shift 4,272

φ3 Model1: all covariates 36,819
Model2: all covariates except land use 12,587

φ4 Model1: all covariates 14,782
Model2: land use, F14C atmospheric, latitude 7,336

According to the Table 9, the frequency visits to the best sub-models are very small with re-
spect to the total number of iterations (180,000) and maybe not all the sub-models are explored
by the MCMC. Moreover, the full models are detected as the best sub-models for three of the la-
tent layers φ2,φ3 and φ4. However, the covariates Posterior Inclusion Probabilities (PIP) highlight
that the best model chosen should contain the covariates with a PIP higher than 0.5. Furthermore,
for more detailed investigations, the unknown parameters of the statistical radiocarbon model are
re-estimated, taking into account all the covariates for which the PIP is higher than 0.5 (see Fig.
7). In addition, as the SSVS may miss the inclusion of some influential categorical covariates,
one may wonder whether the soil type has really no effect on the φ1 latent linear linear model
or whether it is perhaps simply not detected by the SSVS model. The answer to this question is
reported in the following table.
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Comparison of DIC for 5 sub-models taking into account for some sub-models the draw-
back of SSVS when categorical covariates are present in the model

TABLE 10. Model* contains the explanatory covariates with a PIP higher than 0.5. To investigate whether a non
selected categorical covariate is significant, we add respectively to Model*, the non included categorical covariates
(land use or ,soil type) identified with a PIP smaller than 0.5. The Table displays the DIC criteria comparisons
between the different models.

Models DIC

Most frequent model (denoted Model1 for each of latent layers in Table 9) -1703
Model* = the model adjusted on the covariates where their PIP are higher than 0.5 (see Fig.7) -1837

Model* + considering the soil type for φ1 -1897
Model* + considering the soil type for φ1 and φ2 -1890

Model* + considering the land use for φ2 and soil type for φ1 -1968
Model* + considering the soil type for φ1 and land use for φ2 and φ4 -1879

The DIC comparison in Table 10, shows that the best model is the one that includes both PIP>
0.5 detected explanatory covariates, i.e. "soil type" for deep soil radiocarbon (φ1) and "land use"
for topsoil radiocarbon (φ2) (DIC = -1968). In addition, this result highlights that the SSVS is
misleading in that it detects two significant categorical covariates (2 false negatives). The final
selection of covariates for the radiocarbon model is summed up in Table 11.

Selection results for the best sub-model: the climatic and environmental factors that affect
soil radiocarbon dynamics

TABLE 11. The final selected covariates for each of the four latent layer models φ1,φ2,φ3 and φ4. For the third
latent layer φ3 all explanatory covariates are selected. Furthermore, for φ1 and φ4 four covariates are identified
among 8 as significant while 5 covariates are detected for φ2 as influential towards the 8 potential climatic and
environmental factors.

Best model final selected covariates

φ1 land use, soil type, temperature, seasonal shift
φ2 land use, atmospheric F14C , temperature, seasonal shift and aridity
φ3 land use, soil type, atmospheric F14C, temperature, aridity, precipitation, latitude and seasonal shift
φ4 land use, latitude, atmospheric F14C , temperature

A further point is the correlation among covariates. For example, temperature and seasonal
shift are positively correlated (see Fig.8). This could suggest that temperature may not be really
influential for φ1 as its inclusion may be the result of its correlation with the highly influential
covariate "seasonal shift". However, if we take a look at the second panel of Fig 7, we can see
that seasonal shift has an effect on φ2, which is not the case for temperature, indicating that the
correlation between temperature and seasonal shift does not seem to affect SSVS performance
that much.
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FIGURE 8. Correlation matrix of the six quantitative explanatory covariates. The darker the color (red or blue), the
stronger the correlation between the variables (positive or negative)

Posterior Predictive Checking
To build additional confidence in our selected model, a predictive posterior check is useful.

It compares data replications yrep according to the SSVS model (c = 1000 and p ∼ Beta(2,2))
governed by parameter θ , with the observed data y. The behavior of a model with regard to a
feature of interest is quantified by a discrepancy measure T (y,θ). Here, the T (y,θ) quantity is
the average of the squared difference between y and the non linear predicted mean g(θ), where
θ = (β1,β2,β3,β4,σ1,σ2,σ3,σ4). After computing T(y,θ ) and T(yrep,θ ), a posterior predictive
p-value is defined as Pr[T (yrep,θ) > T (y,θ)|y] (Gelman et al., 2013). The posterior predictive
p-value is not as strictly used as in the classic procedure comparing a statistic with some Type
1 error. Gelman et al. (2013) interpret the posterior predictive p-value as the proportion of data
replications according to the proposed model T (y,θ) that exceeds T (yrep,θ). A model is rejected
if the Bayesian p-value is rather small. In our case, the posterior predictive p-value is equal to
0.47! (see Fig.9)

FIGURE 9. The discrepancy measures T (X ,yrep,θ) calculated on replicated data and parameters model θ versus
T (X ,y,θ) calculate on real data and θ . The estimated Bayesian p-value is equal to 0.47.
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Better understanding of the climatic and environmental factors that affect soil radiocarbon
dynamics

Besides detecting whether a covariate has an influence or not on φ1,φ2,φ3 and φ4 , quantifying
the effect of each influential covariate is also of interest. For example, it would be useful to know
what happens to φ1 (representing radiocarbon content in deep soil) if there is a strong rise in
temperature due to global warming. The answer to this question is given by the posterior dis-
tribution of regression coefficients β1,β2,β3 and β4 corresponding to the significant explanatory
covariates (see Fig.10 and 11).

FIGURE 10. The posterior distribution of the regression effects corresponding to the significant numerical covariates
for the deep soil radiocarbon (φ1) latent model: mean annual temperature and seasonal shift.

TABLE 12. The significant explanatory numerical covariates for deep radiocarbon with their posterior mean
estimations and their posterior probabilities of the sign of their relative effects throughout MCMC iterations.

Covariates posterior probability (to be + or -) posterior mean estimation

mean annual temperature 0.99 (+) +0.12
seasonal shift 0.80 (-) -0.03

FIGURE 11. The posterior distribution of the regression effects corresponding to the significant numerical covariates
for topsoil radiocarbon latent model (φ2): atmospheric radiocarbon, seasonal shift, aridity index and mean annual
temperature.
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TABLE 13. The significant explanatory numerical covariates for topsoil radiocarbon with their posterior mean
estimations and their posterior probabilities of the sign of their relative effects throughout MCMC iterations.

Covariates posterior probability (to be + or -) posterior mean estimation

atmospheric radiocarbon 0.86 (-) -0.018
seasonal shift 0.95 (-) -0.028

mean annual temperature 0.70 (-) -0.011
aridity index 0.92 (+) +0.017

Interpreting the posterior effect of radiocarbon profiles is not straightforward because of the
very high variability of atmospheric radiocarbon concentration with time. A massive change
occurred in the 1960s with atmospheric tests of nuclear weapons that doubled the radiocarbon
concentration in the atmosphere, leading to a so-called "radiocarbon bomb peak" (see panel a of
Fig. 12). Topsoil already incorporates peak-bomb-derived radiocarbon whereas deep soil is still
free of radiocarbon enriched components (see panel b of Fig.12). The interpretation of radiocar-
bon changes differs greatly, therefore, depending on whether it is related to top soil or to deep

FIGURE 12. The first graph a shows the variation of the atmospheric F14C concentration over time. The soil was
affected specially by above-ground nuclear testing from about 1950 until 1963. Panel b highlights the variation of
radiocarbon amount between deep and topsoil. The last 2 panels c and d show the impact of physical processes on
deep and topsoil radiocarbon. Furthermore, all panels provide an indication on age distribution since the radiocarbon
is an indicator of the mean residence time of soil carbon.
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soil.
An increase in microbial activity that leads to higher mineralization will result in a weaker weight
of older components relative to newly input ones in the age distribution of the mixture of soil
components within the same soil layer (panel c in Fig.12). This will result in an increase of ra-
diocarbon in deep soil but a decrease in topsoil radiocarbon where the weight of the peak-bomb
derived components decreases due to a higher mineralization (panel c in Fig.12). We face the
opposite effect in the case of processes that will enhance the organic matter stabilization and will
better preserve old material (panel d in Fig.12).
Keeping in mind that point, our results for the deep soil highlight a positive posterior effect of
mean annual temperature and a negative posterior effect of seasonal shift. In practice, an in-
crease of 1°C in the mean annual temperature will result in an increase of radiocarbon of 0.12
and an increase of 1°C between the highest and the lowest monthly temperature will result in
a decrease of radiocarbon by 0.03. This increase of deep soil radiocarbon with temperature is
in agreement with a higher mineralization associated to an enhancement of microbial activity
under higher temperature. Likewise the decrease of radiocarbon with seasonality matches what
is known about the impact of seasonality on soil dynamics with much younger soils, i.e. with a
higher turnover under the tropics than in boreal, i.e. continental areas, where soil shows a much
lower turnover and thus yields much lower radiocarbon.
Topsoil is negatively impacted by atmospheric radiocarbon, seasonal shift and mean annual tem-
perature and positively impacted by aridity. Most of the profiles included in the database were
sampled posteriorly to the 1960s, i.e. for years during the bomb peak decrease with an overrep-
resentation of the 1990s. The bomb peak gradually penetrates into soil layers with a time lag
that depends of the mean residence time of components in the different layers. With a mean
residence time of 100 yrs, the maximum of F14C will be in the early 2000’s. Thus, the nega-
tive impact of the atmospheric F14C reflects the fact that an increase in the atmospheric F14C
means that sampling was made some years before, when the bomb peak had not yet reached its
maximum in soil. The dilution effect of bomb-peak derived components is thus higher, yielding
a lower (closer to 1) mean radiocarbon. However, this effect remains very low (-0.01 decrease
of topsoil radiocarbon associated to an increase of atmospheric radiocarbon by 1) reflecting the
dilution effect of the bomb-peak and the disequilibrium of the database in which sites sampled
in the 1990s are overrepresented. Negative impacts of seasonal shift and mean annual tempera-
ture by -0.02 and -0.01 respectively are the counterpart for topsoil of what is observed for deep
soil. An higher mineralization for the mean annual temperature, leading for an higher loss of
bomb-derived organic matter and a better preservation for seasonal shift yielding for a relative
gain of the oldest components. It is noteworthy that impacts for topsoil appear much smaller
than for deep soil. This result is counter-intuitive and no reason for that can be advanced. The
positive impact of aridity is in agreement with a well-known low microbial efficiency in arid
environments compared to humid ones. An increase in aridity results in a better preservation of
the bomb-peak derived components and thus to an increase in the topsoil radiocarbon. The effect
of aridity remains very low at +0.01.
A large difference exists between the magnitudes of the posterior estimation of the influential
covariates of the latent variable for topsoil and deep soil. While an explanation stemming from
the database disequilibrium can be put forward to explain the low magnitude of atmospheric
radiocarbon, no clear evidence can be provided for the other covariates.
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4. Extensions and challenges

Database: To better predict the evolution of soil carbon dynamics with climate change and land
use change practices, there is a need to collect more data for the type of soil (arenosol, fluvisol
and gleysol) and ecosystem (natural/savanna, cultivated/grassland and forest) about which we
do not have much information. In this study, the experimental design was strongly unbalanced,
which affects the precision when estimating the quantities of interest: φ1,φ2,φ3 and φ4. Further-
more, optimization of the experimental design should take into account the type of contrast used
to solve the redundancy of the model caused by the presence of categorical explanatory covari-
ates. An interesting new track will be to know where to take new samples and for which climatic
and environmental conditions in order to improve the overall estimation. Another issue associ-
ated with data is correlation. Some of the explanatory covariates are naturally correlated (see
Figure 8).
For example, the aridity index (AI) is proportional to the mean annual precipitation (MAP) by
definition (see eq. 4) since:

AI =
MAP
ETp

ETp : potential evapotranspiration rates

SSVS is sensitive to the presence of correlated covariates as already seen in Section 3.1.3 (see
Fig 8). More investigation can be done considering other Bayesian predictive criteria for model
selection according to the paper by Piironen and Vehtari (2017).
Improving the Bayesian selection model. The test carried out on artificial data shows that
SSVS does not always detect influential categorical explanatory covariates. This issue could
be thoroughly explored using the Bayesian effect fusion approach introduced by Pauger and
Wagner (2017). They proposed a Bayesian approach for a sparse representation of the effect of
a categorical predictor in linear models. The originality of their work is that it not only allows
selection of categorical covariates but also induces fusion among the categorical covariate levels
which have essentially the same effect on the response. Besides this approach, Bayesian variable
selection for group Lasso presented in the paper by Xu et al. (2015) selects variables both at the
group level and also within a group. Revisiting the traditional Bayesian approach to the group
Lasso problem, they developed a Bayesian group Lasso model with spike and slab priors for
problems that also require selection of categorical explanatory variables.

5. Conclusion

In this paper, we have discussed the performance and limitations of SSVS on latent layers in the
framework of a hierarchical Bayesian model applied to soil radiocarbon. The results on artificial
data show that collinearity may lead to false inclusion or exclusion in the best sub-model selected.
Besides collinearity, if variability on the latent model response is high, the posterior inclusion
probability may blur the effect of influential explanatory covariates as exemplified in Section
3.1.5. Furthermore, SSVS is not always able to select the influential categorical covariates, but at
least does not seem to consider a covariate as influential unless it is indeed the case. Despite the
complexity of SSVS compared to the full model, we show that the Bayesian selection approach
has a better adjustment and prediction level in our case study. Finally, the application of SSVS to
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soil F14C profiles highlighted the influence of soil types on soil carbon dynamics by impacting
deep soil F14C, topsoil F14C and F14C incorporation. Our results also indicate that temperature
affects deep soil F14C more than topsoil.
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