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Abstract:

Conventional wastewater treatment plants (WWTPs) discharge a highly diverse range of organic
contaminants in aquatic environments, including marine waters. The health of marine ecosystems could
be threatened by contaminants release. Environmental metabolomics can be helpful to assess the effects
of multi-contamination on marine organisms without any a priori information since it is able to provide
meaningful information on the biochemical response of organisms to a stress. The aim of the present
study was to evaluate the potential of metabolomics to highlight key metabolites disrupted by a WWTP
effluent extract exposure and then elucidate the biological effects of such exposure on Mediterranean
mussels (Mytilus galloprovincialis). Exposed male mussels showed numerous metabolites altered in
response to WWTP effluent exposure. The highlighted metabolites belong mainly to amino acids
metabolism (e.g. tyrosine, phenylalanine, leucine, proline, etc.), neurohormones (dopamine and a
serotonin metabolite), purine and pyrimidine metabolism (e.g. adenosine, adenine, guanine, uracil etc.),
citric acid cycle intermediates (e.g. malate, fumarate), and a component involved in oxidative stress
defense (oxidized glutathione). Modulation of these metabolites could reflect the alteration of several

biological processes such as energy metabolism, DNA and RNA synthesis, immune system,
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osmoregulation, byssus formation and reproduction, which may lead to a negative impact of organism

fitness. Our study provided further insight into the effects of WWTP effluents on marine organisms.

Keywords: metabolomics; LC-HRMS; wastewater treatment plant effluent; adverse effects; marine
mussel; Mytilus galloprovincialis

1. Introduction

Conventional wastewater treatment plants (WWTPs) are not yet able to completely remove
organic contaminants (Bolong et al., 2009; Deblonde et al., 2011; Loos et al., 2013). Hence, numerous
contaminants are discharged in the aquatic environment, including a highly diverse range of
pharmaceutically active compounds (PhACs), pesticides, polycyclic aromatic hydrocarbons,
plasticizers, etc. (Fent et al., 2006; Kolpin et al., 2002; Loos et al., 2013). However, wastewater
volumes have been rising proportionately to the quickly growing global human population (Sato et al.,
2013). Due to the high demographic pressure, coastlines are affected by the discharge of contaminants
through the development of WWTP sea outfalls and also by the rivers discharging in the area. Marine
organisms are then chronically exposed to low concentrations (ng-pug/L) of a mixture of contaminants
(dos Santos et al., 2018; Vidal-Dorsch et al., 2012). Moreover, the coastal environment, especially
transition zones between continental and marine waters, constitute key environments for the breeding
of many species and biodiversity conservation. The health of those important ecosystems could be
threatened by contaminants release.

So far, scientific evidence has highlighted the bioaccumulation and toxicological effects of
contaminants carried through WWTP effluents in the aquatic environments (Dodder et al., 2014; Fent
et al., 2006; Mezzelani et al., 2018a; Picot Groz et al., 2014; Sanchez-Avila et al., 2012). WWTP
effluents effects are mostly described on freshwater organisms, showing endocrine disruption, impacts
on immune and reproductive system, neurotoxicological effects, oxidative stress induction, survival
and growth reduction (Bouchard et al., 2009; Gagné et al., 2007, 2004; Gillis et al., 2014; Nobles and
Zhang, 2015). New approaches are needed to evaluate these various effects of multi-contamination,

without preconceived assumptions about the expected effects.



Recent studies have shown the interest of omics approaches to highlight effects from multi-
contamination, either metabolomics (Berlioz-Barbier et al., 2018; David et al., 2017; Simmons et al.,
2017), transcriptomics (Ings et al., 2011) or proteomics (Bebianno et al., 2016; Simmons et al., 2017).
Among them, metabolomics is an efficient approach to assess the health status of organisms based on
the identification of low molecular weight metabolites (50-1500 Da), whose production and levels
vary with the physiological, developmental or pathological state of cells, tissues, organs or whole
organisms (Courant et al., 2014; Lin et al., 2006). Hence, environmental metabolomics is commonly
applied to more deeply investigate and unravel the unknown toxicological effects and mechanisms of
single contaminants or mixtures (Lankadurai et al., 2013; Lin et al., 2006; Miller, 2007). As an
example of metabolomics application in the case of a multi-contamination, David et al. (2017)
identified changes in the exposome and metabolome of roaches (Rutilus rutilus) exposed for 15 days
to a WWTP effluent. They revealed the bioaccumulation of 31 PhACs and metabolites of
biodegradation in plasma and tissues. Meanwhile, they demonstrated that effluent exposure resulted in
a reduction in prostaglandin levels, as well as tryptophan/serotonin, bile acid and lipid metabolism
disruption in fish. Such studies will likely advance our understanding of the link between exposure to
complex mixtures of contaminants and their adverse effects, by its ability to screen alterations of
multiple metabolic pathways. Moreover, it could constitute a first step forward by highlighting key
events that may result in adverse outcomes which could be further used in risk assessment and
environmental monitoring (Bundy et al., 2009; Martyniuk, 2018; Van Aggelen Graham et al., 2010).

In marine ecotoxicology and biomonitoring, Mytilus spp. mussels are extensively used as wild
species to assess environmental health, especially the impact of chemical contamination in estuarine
and coastal ecosystems (Farcy et al., 2013; Fasulo et al., 2012). This is due to their wide geographical
distribution, sessility, ability to tolerate a range of environmental conditions and suitability for caging
experiments at field sites (Fasulo et al., 2012). Furthermore, mussels can tolerate and accumulate
xenobiotics in their tissues at levels higher than those present within the aquatic environment (Faggio
et al., 2018). In studies conducted in field, it is difficult to establish causal relationships between
effects and particular contaminants, because of the multitude of interacting environmental factors
(abiotic factors, food availability, predation pressure, etc.). Laboratory experiments are then
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sometimes necessary for first reducing confounding factors and understand how organisms respond to
contaminants.

The aim of the present study was to evaluate the potential of metabolomics to highlight key
metabolites disrupted by WWTP effluent exposure and then elucidate the biological effects of such
exposure on Mediterranean mussels (Mytilus galloprovincialis). Mussels were exposed for 7 days to a
WWTP effluent extract corresponding to an environmental dilution of 5%. Metabolic fingerprints
were generated from control and exposed organisms by liquid chromatography combined with high
resolution mass spectrometry (LC-HRMS) and processed to highlight potential metabolic alterations.
Disrupted metabolites along with their metabolic pathways were then linked to biological effects on
this organism. Moreover, the WWTP effluent extract was chemically characterized to better

understand these observed effects, based on the screening of 80 contaminants.

2. Materials and methods
2.1 Chemicals

Ultrapure water was generated by a Simplicity UV system from Millipore (Bedford, MA, USA)
with a specific resistance of 18.2 MQ.cm at 25°C. Pesticide analytical-grade solvents (methanol,
dichloromethane and ethanol) and LC/MS grade solvents (water, acetonitrile, formic acid 99%) were
from Carlo Erba (Val de Reuil, France). Analytical pure standards used for identification at level one
(Sumner et al., 2007) were obtained from the four following suppliers: Sigma-Aldrich (now part of

Merck), Santa Cruz Biotechnology, Toronto Research Chemicals and LGC Standards.

2.2  WWTP effluent extract preparation

24-hour composite samples were collected over 3 days for a total of 15 L of effluent from an urban
WWTP (470,000 population equivalent) in Hérault (France). Since PhACs consumption has been
rising during the last decades, they may constitute a large class of contaminants present in the WWTP
effluent. The following WWTP effluent preparation was focused on the extraction of dissolved

hydrophilic compounds.



After filtration through GF/C filters (1.2 um), effluent (15 L) was concentrated on 30 SPE
cartridges (Oasis HLB 500 mg, 6 cc) which allow extracting soluble substances from medium to high
polarity. The cartridges were conditioned with 5 mL. methanol and 5 mL distilled water. 500 mL of
WWTP effluent was deposited on each cartridge. The cartridges were then washed (5 mL Milli Q
water), dried and eluted each with 2 x 5 mL of methanol. The eluate of all cartridges were evaporated
until 3 mL of concentrated extract was obtained. In addition, two cartridges were also prepared in the
same condition, substituting effluent by 500 mL Milli Q water deposited on each cartridge, to get an
analytical blank.

The solution (for exposure experiment) was prepared extemporaneously every day from 20 pL
of concentrated extract to which 80 puL of methanol was added. In order to obtain a final effluent

dilution of 5% in the aquarium, 100 uL of the solution was added to 2 L of seawater during exposure.

2.3  Animals and experimental design

Mpytilus galloprovincialis mussels (n=50) were obtained from a Mediterranean Sea mussel
culture (Bouzigues, France) in April 2016. Mussels were cleaned and uniformly selected according to
their shell size (5.3-7.5 cm). They were randomly distributed in 10 glass aquaria (five mussels per
glass aquarium) with 2 L of filtered seawater (which is provided, and already filtered, sterilized and
degassed, by IFREMER Palavas, France). During a 7-day acclimatization period, filtered seawater was
continuously aerated and renewed daily (static renewal). After 7 days, five aquaria (n = 25 mussels)
underwent solvent control exposure (SC, 100 pL absolute methanol) and five aquaria (n= 25 mussels)
underwent WWTP solution exposure (20 pL WWTP extract and 80 uL methanol). SC and WWTP
solutions were added at the same time after daily water renewal over a 7-day exposure period.
Seawater (150 mL) was sampled in each glass aquarium every day. Aquaria pH, temperature and
oxygen concentration were checked daily during the experiment. The temperature was maintained at
14°C£1°C and salinity at 36.5 g/L. Mussels were fed once daily with the marine green alga
Tetraselmis suecica (Greensea, Meze, France) at constant density (10,000 cells/mL). On the last day,
no dead mussels were recorded. The two groups of mussels were collected at the same time for

dissection and sex microscopy determination (for SC exposure n=10 males, n=12 females and n=3
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undifferentiated; for WWTP effluent exposure n=15 males and n=10 females). Digestive glands were
frozen at -80°C. The present study was performed on male mussels, with 9 having SC exposure and 10
WWTP effluent exposure. Shell size was not significantly different between the two groups (p=0.51;

result not shown).

24 Tissue sample preparation

The tissue sample preparation technique was previously described by Bonnefille et al. (2018).
Briefly, 30 mg dry weight (+ 0.25 mg) of sample digestive gland tissue was extracted in two steps
according to the biphasic mixture methanol/dichloromethane/water in a volume ratio of 16/16/13
respectively. First step: 240 pL of methanol + 75 pL of water were added into each sample and
vortexed for 60 sec. Second step: 240 uL of dichloromethane + 120 puL of water were added and then
vortexed again. After a 15 min rest at 4°C, the samples were vortexed and then centrifuged (2,000 g;
15 min; 4°C). 50 uL of supernatant (polar phase) was collected in a glass tube. The extracts were
evaporated to dryness under a nitrogen stream and reconstituted in 200 pL acetonitrile/water (5/95;
v/v) and filtered directly into an analysis vial using a 0.20 um PTFE syringe filter (Minisart SRP 4,
Sartorius). A quality control (QC) sample was prepared by pooling 10 uL of each sample extract

included in the experiment.

2.5  Metabolic fingerprint LC-HRMS analysis

The injections were randomly performed on an Exactive Orbitrap LC-HRMS (Thermo Fischer
Scientific), equipped with a heated electrospray ionization probe (HESI) source. For LC separation, a
reverse phase PFPP analytical column (100 mm X 2.1 mm; 3 um particle size; Sigma Aldrich) was
used. Each sample (5 uL) was loaded onto the column with a full loop injection. Two separate mobile
phases were used: water was used as solvent A, acetonitrile as solvent B, and both were modified with
0.1% formic acid. The flow rate was 200 uL/min according to the following gradient system (A/B):
95/5 from O to 3 min, 60/40 at 8 min, 50/50 at 9 min, 30/70 at 13 min, 5/95 from 15 to 18 min,

followed by a re-equilibration period (95/5) from 21 to 31 min (total run time, 31 min).



The Exactive HRMS was turned to a mass resolution of 50,000 (FWHM, m/z 200) with a mass
spectrum range of 50-1000 m/z. Samples were analyzed in both positive and negative electrospray
ionization modes (ESI+ and ESI-). The analyses, respectively in ESI+ and ESI-, were completed with
a spray voltage of 3.5 [kV| and 3.40 |kV|, a capillary voltage of 45 V and -50 V, a tube lens voltage of
90 V and -120 V, and a skimmer voltage of 26 V and -25 V. The capillary and heater temperature was

250°C.

2.6 Quality control

A quality control (QC) sample corresponding to a pool of 10 pL collected from each sample
extract was injected several times at the beginning of the analytical sequence to equilibrate the
column. QC injections were repeated every ten samples to control analytical repeatability and
sensitivity. Relative standard deviation (RSD) was calculated for each feature detected in the
replicated QC injections to assess the former. A repeatability characterized by 70% of features with a
RSD <30% (Want et al., 2013) was considered acceptable. Only features with a RSD < 30% were

retained for further data processing and annotation.

2.7  Data processing and statistical analysis

To facilitate understanding of the data processing and the subsequent identification strategy, a

schematic workflow is presented in Supplementary Data (Figure S1).

2.7.1 Data processing

The raw data were converted into mzXML files with MSConvert freeware (ProteoWizard 3.0,
Chambers et al., 2012). Then data were processed using the XCMS package (Smith et al., 2006) in the
R environment. Optimized XCMS parameters were implemented: m/z interval for peak picking was
set at 0.01, the signal-to-noise ratio threshold was set at 3, the group bandwidth was set at 8, and the
minimum fraction was set at 0.5. A multi-step strategy was applied in the data processing using the

XCMS package, as detailed in Courant et al. (2009). First, peak alignment is applied for ensuring that
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each ion [my/z] of the MS fingerprint appears at identical retention time (rt;) across all the analyzed
samples. As a second step, peak picking is carried out to report the feature abundance observed for
each ion [m/z; rt];i in each of the analyzed samples (i.e. XCMS extracts each specific ion
chromatogram corresponding to each m/z value and integrates the corresponding chromatographic
peaks). During a third step, the software compares feature abundances observed for identical ions in
two groups of samples based on a Welch r-test, to highlight metabolites presenting intensities
significantly different in the two groups, and ranks these metabolites according to the p-value
associated with the observed difference. Finally, XCMS returns a table containing peak information
(i.e. m/z and retention time) and feature abundances (i.e. area) in all samples. Visual inspection of raw
data for all the features reported by XCMS was performed to ensure that each integrated signal at a
defined m/z and retention time corresponded to a metabolite presenting a Gaussian chromatographic

peak (i.e. not a baseline drift or background noise). If not, features were discarded from the dataset.

2.77.2 Statistical analysis

A Welch r-test was applied using the XCMS package to highlight features presenting intensity
modulations between the two groups of exposed and control samples. The Welch-¢ test is an
adaptation of the Student-f test for comparing the mean of two groups with unequal variances.
Features with a p-value lower than 0.1 were selected for annotation and identification. The rationale
for choosing such a threshold was based on the opportunity to reveal a biological modulation trend due
to the exposure. Considering single metabolites separately is somewhat a reductionist view of
metabolic alterations involving complex interconnected metabolic pathways. Indeed, a trend (p<0.1)
toward down- or up-modulation of several metabolites from the same pathway (highlighting a
disruption in the biochemical cascade) may be more biologically relevant than a single marker
metabolite (p<0.05). As a consequence, processed data were then exported to SIMCA 13.0.3 software
(Umetrics, Sweden) for multivariate analysis in order to reduce the dataset dimensionality and
highlight relevant metabolic patterns with respect to the WWTP effluent exposure. Datasets were log

transformed and Pareto scaled. Mussels individuals were considered independent since no clustering



related to glass aquarium was observed using Principal Analysis Components (PCA) or hierarchical

clustering analysis (results not shown).

2.8  Metabolite annotation and identification strategy

The annotation strategy was performed on features with a difference of amplitude higher than 30%
between the control group and the WWTP exposed group and with p<0.1. Metabolite annotation was
completed by mass-matching with 0.002 Da precision using the online Human Metabolome Database

tool (HMDB; http://www.hmdb.ca/). Metabolite annotation was based on two levels of confirmation

according to Sumner et al. (2007). Level 1 corresponds to annotation confirmed by injection of the
analytical standard on the same analytical platform under the same conditions (validation based on
both accurate mass and retention time). Level 2 was characterized by metabolite putatively annotated
in agreement with the physicochemical properties and on the basis of public databases. In addition, to
add more power to some annotations of level 2, we used the external laboratory results reported by
Boudah et al. (2014) using the same chromatographic column. As the gradient used in Boudah et al.
(2014) was slightly different, this aspect was taken into account by considering the water/acetonitrile
ratio at which the molecules were eluted rather than their retention time. The identification levels are
reported in Table 2. Identified and annotated metabolites were assigned to metabolic pathways
according to the Kyoto Encyclopedia of Genes and Genomes (KEGG; http://www.kegg.jp) and
HMDB. Pathway analysis was then performed using MetaboAnalyst 4.0 (Xia and Wishart, 2010) in

order to highlight significantly impacted metabolic pathways (Figure S2).

2.9 Characterization of the WWTP effluent extract

Characterization of the WWTP effluent extract aimed to get a better picture of the chemical
responsible for exposure effects. The extraction, performed on SPE HLB with methanol, was chosen
to elute mainly hydrophilic compounds such as PhACs and pesticides to the detriment of polycyclic

aromatic hydrocarbons or polychlorinated biphenyls. The characterization of the WWTP effluent



extract was based on the screening of 80 organic contaminants belonging to PhACs and pesticides
(Table S1), based on the comparison with analytical standards injected in the same analytical

conditions.

50 uL WWTP effluent extract was evaporated to dryness and reconstituted with 250 pL of
acetonitrile/water (20/80; v/v), and filtered into an analysis vial using a 0.20 um PTFE syringe filter
(Minisart SRP 4, Sartorius). The injections (in triplicate) were performed on a Q-Exactive Orbitrap
LC-HRMS (Thermo Fischer Scientific). A Zorbax Eclipse XDB-C8 column (3.0 x 150mm 3.5um;
Agilent) was used. Each sample (10 puL) was loaded onto the column with a full loop injection. Two
separate mobile phases were used: water was used as solvent A, acetonitrile (ACN) as solvent B, and
both were modified with 0.1% formic acid. The flow rate was 400 pL/min according to the following
gradient system: 10% ACN from 0 to 1 min, until 100% at 10 min, 100% ACN at 15 min, followed by

a re-equilibration period at 10% ACN from 15.1 to 25 min.

The Q-Exactive HRMS was turned to a mass resolution of 35,000 (FWHM, m/z 200) with a
mass spectrum range of 80-450 m/z. Samples were analyzed in both ESI+ and ESI-. The analyses,
respectively in ESI+ and ESI-, were completed with a spray voltage of 4.0 [kV| and 3.35 [kV|, a S-lens
RF level of 50 and a sheath gas flow rate of 55 in both ESI modes. The capillary temperature was

300°C and the heater temperature was 250°C.

3. Results
3.1 Characterization of the WWTP effluent extract

The screening of 80 contaminants allowed the detection of 38 PhACs and their metabolites from
various therapeutic classes, and 4 pesticides, occurring in the WWTP effluent extract (Table 1). In
order to evaluate the proportion of each analyzed contaminants, a relative abundance was estimated
based on its chromatographic peak area in the analytical standard (prepared at a known concentration)
and in the seawater samples. Relative abundance estimated are given in Table 1 and are represented

with “+7.
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3.2  Metabolic fingerprint LC-HRMS analysis

3.2.1 Analytical performance and statistical analysis

LC-HRMS analysis of digestive glands of control male mussels (SC) and those exposed to the
WWTP effluent extract was carried out in both negative and positive electrospray ionization modes
(ESI- and ESI+). Leading to metabolic fingerprints of 4563 features detected in ESI- and 2185
features in ESI+. The percentages of features with a RSD<30% in ESI- and ESI+ were 68% and 65%,
respectively. The analytical repeatability was acceptable, as highlighted on the PCA score plot, where
the QC samples injected at regular intervals throughout the analytical run were tightly clustered
together (Figure 1). PCA score plot (Four principal components for a r’X = 50%) described a
clustering trend for the two groups, i.e. SC and exposed male mussels (Figure 1). However, the latter
were split into two sub-groups, one close to the SC group and the other more scattered. An OPLS-DA
model is also proposed in Supplementary Data for further information on the structure of the dataset

(Figure S3).

Univariate analysis (Welch t-test) provided 675 features that differed between the SC and exposed
groups in ESI- and 214 features in ESI+ (p<0.1; RSD QC<30%; amplitude difference >30%). Features
with p<0.1 revealed an up- or down-modulation trend in response to exposure. These discriminant
features were meaningful, especially if connected in the same metabolic pathway, and may highlight

WWTP effluent effects that could be biologically relevant.

3.2.2 Metabolite modulation and pathway analysis

Mass-matching analysis using the online HMDB database allowed putative annotation of the
features of interest (p<0.1; RSD QC<30%; amplitude difference >30%). Metabolites identified by
confirmation with pure analytical standards (n=23) and putatively annotated features (n=15) belonging
to relevant metabolic pathways are reported in Table 2. The Supporting Information (Table S2) reports
all features of interest (some with level 2 annotation) which are not presented in Table 2. A negative

shift between theoretical and observed mass for low molecular mass compounds was noted in ESI-,
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sometimes with a bias of around 14 ppm (Table 2). However, this mass bias was also observed for the
pure analytical standard when injected. This suggests lower accuracy in the ESI- data acquisition for

our analysis, which was considered for features annotation.

After annotation and identification of main modulated metabolites, twenty-two were assigned to
seven amino acid metabolic pathways, six to purine metabolism and four to pyrimidine metabolism.
Most of these metabolic pathways were significantly affected as revealed by further pathway analysis
from MetaboAnalyst 4.0 (Figure S2), and seem relevant to discuss. Among these, five identified
metabolites were significantly down-modulated in the phenylalanine metabolism, including L-
phenylalanine (-50%, p<0.05), N-acetyl-L-phenylalanine (-50%, p<0.05), hydoxycinnamate (-31%,
p<0.05), phenylethylamine (-81%, p<0.05) and the L-tyrosine amino acid (-41%, p<0.05) (Figure 2).
L-tyrosine, is a catecholamine precursor (i.e. dopamine, metanephrine, epinephrine, etc.) directly
synthesized from L-phenylalanine. Its down-modulation may lead to a significant decrease in the
dopamine neurohormone (-36%, p<0.05) (Figure 2). Other amino acids were down-modulated,
including L-methionine (-55%, p<0.05), L-proline (-42%, p<0.1), two branched-chain amino acids
(BCAAs) L-isoleucine (-39%, p<0.05) and L-leucine (-35%, p<0.1), as well as L-threonine or its
isomer L-homoserine (-29%, p<0.05). Although L-tryptophan was not significantly modulated (results
not shown) by the WWTP effluent extract exposure, four metabolites belonging to its metabolic
pathway were impacted (Figure 3). We highlighted significant down-modulation of L-kynurenine (-
63%, p<0.05), N’-formylkynurenine (-55%, p<0.05), 5S-methoxyindoleacetate (a serotonin metabolite,
-57%, p<0.05) and a decrease in 5-hydrokynurenamine (-63%, p<0.1). WWTP effluent exposure also
contributed to purine and pyrimidine metabolism disruption (Figure 4). Purine metabolism was mainly
affected through an increase in adenosine (+138%, p<0.1) and adenine (+34%, p<0.1), and down-
modulation of guanine (-32%, p<0.1) and xanthine (-78%, p<0.05). Concerning pyrimidine
metabolism, uracil (-54%, p<0.05), deoxyuridine (-57%, p<0.05) and deoxycytidine (-28%, p<0.1)
were identified as down-modulated metabolites. Two intermediates in the citric acid cycle were down-
modulated, including fumarate (-31%, p<0.05) and malate (-24%, p<0.1). Finally, we observed up-

modulation of oxidized glutathione (+34%, p<0.1), a biomarker of oxidative stress.
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4. Discussion

Male mussels exposed for 7 days to a WWTP effluent extract in laboratory conditions showed
alterations of their metabolism. These alterations belong to the metabolism of several amino acid (e.g.
tyrosine, phenylalanine, BCAAs, proline, etc.), neurohormones (dopamine and a serotonin
metabolite), purine and pyrimidine metabolism (e.g. adenosine, guanine, xanthine, uracil,
deoxyuridine, etc.), citric acid cycle intermediates (malate and fumarate), and a component involved in
oxidative stress defense (GSSG). To our knowledge, our results are the first to highlight a disruption
of these metabolic pathways in M. galloprovincialis in response to a WWTP effluent exposure.
Modulations of these metabolites could reflect potential effects on several of the biological processes
discussed below, such as energy metabolism, DNA and RNA synthesis, immune system,
osmoregulation, byssus formation and adhesion, and reproduction. WWTP effluents could also
activate defense mechanisms, especially against oxidative stress in male mussels. A summary table
based on literature, complementary with the discussion, was proposed in order to relate the observed
effects with contaminants detected in our WWTP effluent extract (Table 3), although synergistic,
antagonistic or additive effects with other chemicals cannot be excluded.

As highlighted by the PCA score plot (Figure 1), male mussels seem to respond differently to
WWTP effluent exposure. We believe that the existence of two subgroups in the exposed group is the
consequence of inter-individual variability. Although individuals were collected at the same location
from a mussel culture, they were still wild organisms with perhaps different life history traits. It can
have an incidence on their metabolome. This is a challenge to overcome in environmental
metabolomics when working on wild organisms. However, those differences are not due to our
experimental conditions during the dissection, sample preparation or analysis. Indeed, those exposed
mussels were distributed in different glass aquaria during exposure, they were randomly dissected and

the samples were also randomized for extraction as well as for analysis.

Energy metabolism
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In the light of our results, the WWTP effluent extract exposure could affect the energy
metabolism. Two plausible hypotheses can be proposed to explain this perturbation. First,
environmental stressors can result in elevated ATP demand to fulfil essential maintenance costs and
ensure organism survival (e.g. cellular protective mechanisms, detoxification) (Sokolova et al., 2012).
Our results highlighted up-modulations of adenine and adenosine. The latter is a constituent of both
ADP and ATP, and its up-modulation may serve ATP synthesis. Furthermore, our analysis revealed a
down-modulation of glucogenic and ketogenic amino acids (proline, methionine, tyrosine,
phenylalanine, isoleucine and leucine). In normal circumstances lipids and carbohydrates are generally
used in cellular energy metabolism, while proteins and these amino acids can be consumed extensively
in invertebrates under energy deficient conditions (Moyes et al., 1990; Sokolova et al., 2012).
Decreases of these amino acids could be due to their over-consumption as energy-generating
substrates. Down-modulation of glucogenic and ketogenic amino acids was already observed by Jones
et al. (2008) during 4-day exposure of M. galloprovincialis to nickel (0.77 mg/L) or chlorpyrifos (4.5
mg/L). Moreover, we observed down-modulation of malate and fumarate, two citric acid cycle
intermediates. A change in the citric acid cycle may be consistent with the use of an alternative
substrate to produce energy, e.g. amino acids. In response to stress, organisms are able to switch
between different metabolic processes involved in energy acquisition and conversion (Sokolova et al.,

2012).

A second hypothesis may also be put forward. Our study reveals a dopamine down-modulation
and potential modulation of the serotonin pathway (down-modulation of a serotonin metabolite, i.e. 5-
methoxyindoleacetate). Both dopamine and serotonin induce contraction or relaxation of the adductor
muscles responsible for valves opening or closing (Gies, 1986). In addition, these two
neurotransmitters also control siphon activity (Ram et al., 1999) and ciliary movement in various
bivalves (Carroll and Catapane, 2007), used primarily for feeding activity. In response to pollution
stress, studies have already demonstrated a decrease of feeding activity or a valves closing, probably to
avoid the entry of contaminants into the organism (Almeida et al., 2015, 2014; Chen et al., 2014;

Oliveira et al., 2017; Solé et al., 2010; Toro et al., 2003; Wang et al., 2005). For example, after 28
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days of M. galloprovincialis exposure to different carbamazepine concentrations (0.3; 3; 6; 9 ug/L),
Oliveira et al. (2017) observed a significantly lower condition index in exposed organisms compared
to controls, while the bioaccumulation factor (BCF) showed a decreasing trend with increasing
exposure concentrations. In light of the absence of a main carbamazepine metabolism in mussels, they
suggested that the decrease in BCF could possibly be due to a decrease in the filter feeding capacity of
the mussels at higher exposure concentrations. This means that M. galloprovincialis can maintain its
valves closed to avoid contaminants bioaccumulation, thus limiting feeding activity. Another PhAC
occurring in our WWTP effluent extract, namely propranolol, has also been reported to inhibit the
feeding rate of M. galloprovincialis exposed for 10 days at 147 pg/L (Solé et al., 2010). Impairment of
feeding activity could have repercussion on food intake and subsequently on the energy metabolism.
In our study, the decrease in amino acids could also result from disturbed food intake under stress

induction.

Osmoregulation

In bivalves, free amino acids play a crucial role in the regulation of intracellular osmotic pressure
to protect these organisms against extracellular osmolarity fluctuations in their environment (Viant et
al., 2003; Yancey et al., 1982). As explain in the previous paragraph, the decrease in amino acids
reported in our study is probably due to an over-consumption or inversely, a limited food intake.
Hence, the unavailability of free amino acids could cause an osmotic pressure imbalance in male
mussels. Similar results were also observed in marine green mussels (Perna viridis) after 4 weeks of
20 pg/L cadmium exposure (Wu and Wang, 2011). Other contaminants such as tributyltin oxide have
an impact on the osmoregulation of the crustacean Penaeus japonicus after an exposure at 100-400
ug/L for 48h (Lignot et al., 1998) (Table 3).

In addition to free amino acids, cells use inorganic ions (Na*, K*, CI7) for intracellular osmotic
pressure adjustment. In bivalve and crustacean gills, the Na influx was demonstrated to be under
control of neurotransmitters such as dopamine and serotonin (Gardiner et al., 1991 ; Sommer and

Mantel, 1988). The down-modulation of dopamine and potential disturbance of the serotonin pathway
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reported in this study thus may have a repercussion on osmoregulation. Hence, the neurotransmitter
modulation associated with the decrease in free amino acids tends to reinforce the hypothesis of an

impact of exposure to WWTP effluent on osmoregulation in M. galloprovincialis.

DNA and RNA synthesis

Purine and pyrimidine metabolism were also altered by the WWTP effluent exposure, mainly with
a change in levels of nucleic bases such as guanine, xanthine (guanine metabolite), adenine and uracil,
and in the nucleosides deoxycytidine and deoxyuridine. Purine and pyrimidine bases are constituents
of DNA and RNA. A decrease in these compounds could indicate restriction of substrates involved in
DNA and RNA turnover and repair (Duan and Sadée, 1987). These results are in line with those of
Gagné et al. (2011a). In a study conducted on freshwater mussels, they showed that PhACs that may
occur in WWTP effluents act as inhibitors of key enzymes involved in purine and pyrimidine
synthesis. Furthermore, others pollutants have already been reported to disturbed purine and
pyrimidine metabolism in mussels and fish (Cappello et al., 2017; Fasulo et al., 2012; Jones et al.,

2008; Song et al., 2018; Xu et al., 2015).

Immune system

Our results show the down-modulation of the two BCAAs L-isoleucine and L-leucine. During
protein synthesis in mammalian skeletal muscle, BCAAs play an important role of regulation
(Yoshizawa, 2004). Moreover, BCAAs are incorporated into proteins essential for immune human cell
lymphocytes, eosinophils and neutrophils (Calder, 2006). Although the role of BCAAs in mollusk
remains to be investigated, exposures to the pathogen Vibrio harveyi resulted in an increase of BCAAs
in hepatopancreas of mussels (Nguyen et al., 2018 ; Liu et al. 2014). These observations support a role
of BCAAs in the immune system of mussels as it is the case in mammals. Hence, the down-
modulation of BCAAs observed in our study could make the immune system deficient when

challenged to a pathogen and reduce the survival of male Mediterranean mussels. Several
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contaminants present in our WWTP effluent extract have been reported to affect the immune system of

Mytilus sp. (Table 3).

Byssus formation and adhesion

Mussels are able to connect their soft tissues to marine surfaces via adhesive proteins present in
their byssus threads. Our results reveal a down-modulation of proline. This amino acid is essential for
generating collagen required for byssus formation (Silverman and Roberto, 2007). A decrease in
proline could altered the byssus formation. This hypothesis could also be supported by the potential
disturbance of L-dopa. Although it was not detected, it is an intermediate in tyrosine transformation
into dopamine, both being down-modulated. L-dopa is a component of adhesive proteins contained in
high proportion in byssus (Bandara et al., 2013; Lucas et al., 2002). Its modulation could lead to an
impairment of the byssus adhesive properties. Our results coincided with observations of Ericson et al.
(2010) and Karagiannis et al. (2011) (Table 3). After exposure to 1000 and 10.000 pg/L of diclofenac,
ibuprofen and propranolol for 1-3 weeks, Mytilus edulis trossulus showed a decrease in byssus
strength and byssus thread abundance (Ericson et al., 2010). Similarly, Karagiannis et al. (2011) have
shown the impact of atrazine (1000 pg/L) on viability and formation of byssus thread of M.
galloprovincialis from the tenth day of exposure. Diclofenac, propranolol and atrazine were detected
in our WWTP effluent extract. Moreover, another study revealed that Mytilus trossulus exposed to
untreated sewage produced fewer byssus threads (Moles and Hale, 2003). Hence, the mussels
exposure to a WWTP effluent can lead to an alteration of byssus formation and adhesion which would

have harmful effects on mussel survival, movement and self-defense (Babarro and Reiriz, 2010).

Reproduction

Down-modulation of L-phenylalanine and L-tyrosine, i.e. catecholamine precursors, may lead to
the decrease in dopamine. In addition, the serotoninergic pathway may have been impacted since 5-
methoxyindoleacetate, a serotonin metabolite, was also down-modulated. Exposure to wastewater

effluents was already reported to be able to disturb dopamine and serotonin levels in several studies
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conducted on freshwater Elliptio complanata mussels (Gagné et al., 2011c, 2011b, 2004; Gagné and
Blaise, 2003). Similar results were as well highlighted by Bonnefille et al. (2018) in M.
galloprovincialis exposed to 100 pg/L of diclofenac. In bivalves, dopamine (more generally
catecholamines) and serotonin are involved in several reproductive functions. Both compounds play
roles in sexual maturation, gamete multiplication and release (Gibbons and Castagna, 1984; Lafont
and Mathieu, 2007; Martinez and Rivera, 1994). According to (Fong et al., 1993), spawning regulation
in bivalves is dependent on the concentration of dopamine and serotonin, with dopamine inhibiting
gamete release induced by serotonin. In view of their importance, a modulation of these compounds

could significantly impair mussel reproduction.

Defense mechanisms

Exposure of mussels to WWTP effluent extract induced defense mechanisms. Our analysis
revealed a 34% increase (p<0.1) in oxidized glutathione (GSSG) levels. GSSG up-modulation would
indicate the presence of reactive oxygen species. Falfushynska et al. (2014) also revealed an elevated
GSSG level in the digestive glands of freshwater mussels exposed to pharmaceutical and personal care
products commonly found in WWTP effluents. Moreover, oxidative stress has already been noticed
through different biomarkers analyzed in freshwater mussels after exposure to WWTP effluents
(Gagné et al., 2011b; Goodchild et al., 2015). The occurrence of oxidative stress in digestive glands is
not surprising regarding its functions. This organ accumulates contaminants and actively participates
in the xenobiotic metabolism and detoxification (Faggio et al., 2018; Fernandez et al., 2012; Porte et

al., 2001).

Moreover, methionine acts as a precursor to glutathione (GSH) biosynthesis by providing sulfur
atoms in cysteine synthesis (Stipanuk, 1986). The methionine down-modulation observed in this study
could be explained by its use for the synthesis of GSH, which is then mobilized in oxidative stress
defense, resulting in a GSSG elevation. Methionine can also serve as the principal methyl donor.
Methylation is a conjugation pathway in xenobiotic metabolism, producing compounds with decreased

biological activity (Silverman and Holladay, 2014).
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5. Conclusion

Our non-targeted LC-HRMS metabolomics approach effectively highlighted the effects of a multi-
contamination in a marine organism. The response of M. galloprovincialis to the WWTP effluents
extract in this laboratory study was characterized by the presence of a high quantity of modulated
metabolites, although only a few of them have been annotated or identified because of the current lack
of knowledge on mussel metabolism. Among them, the main impacted metabolites belong to the
metabolism of several amino acids, purine and pyrimidine metabolic pathway or citric acid cycle.
According to the literature, molecular events observed in this study reflect potential disrupted
biological processes such as energy metabolism, DNA and RNA synthesis, immune system,
osmoregulation, byssus formation and adhesion, and reproduction. In addition to enriching knowledge
about the impact of WWTP effluents in marine environment, our work then supports the relevance of
metabolomics approach to highlight key molecular events triggered by chemical exposure, which
could lead to negative impacts on individual fitness (growth, survival and reproduction).
Metabolomics data, and more generally omics data (genomics, transcriptomics, proteomics), are very
helpful in the characterization of contaminants’ mode of action leading to an adverse outcome at the
individual level. The integration of omics in a multilevel systems biology approach — combining
molecular, cellular, tissue, individual and population level data — would represent a powerful and
relevant approach, especially in ecological risk assessment. By reflecting specific responses of
organisms to counteract potential toxics effects, metabolomics could offer useful information for
further environmental monitoring and reveal which contaminant classes are exerting those effects
(Jonmes et al., 2008; Van Aggelen Graham et al., 2010; Viant et al., 2003). Furthermore, effects-based
monitoring may complement traditional methods based on chemical residue analysis, by hazard
ranking of sites, effluents, etc., for prioritization of in-depth chemical analysis.

This study revealed the potential hazard of contaminants from medium to high polarity,
discharged in coastal environment, on marine organisms. The first very promising results obtained in

this laboratory study would deserve to be confirmed in a field study. Indeed, natural conditions can
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modulate some of the elements highlighted here depending on the trophic status of the environment
and environmental conditions. Anyway, efforts must be focused on the removal of contaminants in
WWTPs to avoid ecotoxicological risks. Potential of metabolomics to predict adverse outcomes to
individual could be exploited and integrated in ecological risk assessment and environmental

monitoring.
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Appendix. Supplementary data

Workflow of data processing and identification strategy used for the identification of metabolites
impacted by a WWTP effluent extract exposure in Mytilus galloprovincialis (Figure S1). Pathway
analysis of annotated and identified metabolites performed with MetaboAnalyst 4.0 (Xia and Wishart,
2010) (Figure S2). OPLS-DA score plot (1 predictive component and 1 orthogonal component; R*X =
0.367, R?Y = 0.912, Q*= 0.63) of metabolic fingerprints from control (green circle) and exposed (red
triangle) mussels, validated with cross-validation (leave-one-out). The numbers represent the injection
order (Figure S3). Screening of 80 pharmaceutically active compounds, pesticides and, their
metabolites suspected in the WWTP effluent extract (Table S1). Summary of the differential features
with p<0.05 modulated by exposure to wastewater treatment plant effluent extract in mussel digestive

glands (Table S2).
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Figure 1: PCA score plot of metabolic fingerprints from control (green circle) and exposed (red triangle)
mussels showing a clustering pattern between these two conditions. In blue (cross), QC are clustered.

The numbers represent the injection order.
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Figure 1: Partial map of phenylalanine and tyrosine metabolism in the response of M. galloprovincialis
to a WWTP effluent exposure extract. Metabolites modulated by exposure are shown in bold, while
metabolites not detected or not modulated are not in bold. The red arrow corresponds to down-
modulation and the green arrow to up-modulation (exposed compared to control). Direct connections

between metabolites are indicated with full arrows.
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Figure 3: Partial map of tryptophan metabolism in the response of M. galloprovincialis to a WWTP
effluent extract exposure. Metabolites modulated by exposure are shown in bold, while metabolites not
detected or not modulated are not in bold. Red arrows correspond to down-modulation and green arrows
to up-modulation (exposed compared to control). Direct connections between metabolites are indicated

with full arrows while indirect connections are shown with dashed arrows.
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Figure 4: Partial map of purine metabolism (A) and pyrimidine metabolism (B) in the response of M.
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galloprovincialis to a WWTP effluent extract exposure. Metabolites modulated by exposure are shown
in bold, while metabolites not detected or not modulated are not in bold. Red arrows correspond to
down-modulation and green arrows to up-modulation (exposed compared to control). Direct
connections between metabolites are indicated with full arrows, while indirect connections are shown
with dashed arrows. Underlined metabolites of the same color correspond to several possible annotations

for the same feature.
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