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Floating potentials appear in electrokinetic problems when isolated high conductive materials are included in a dielectric or weakly 
conductive ambient medium. The large contrast of conductivities generates numerical issues that make hard the computation of the 
electric potential. The paper proposes a rigorous numerical method to tackle such kind of problems. Interestingly, a correction to the 
case of perfect conductor is given in order to improve the accuracy of the computation. The method involves a cascade of two elementary 
problems set respectively in the ambient medium and in the high conductive inclusions. An example is proposed with a 4-electrode system 
designed to both induce electroporation in a biological tissue sample and measure the resulting impedance. The approach is extended to 
a nonlinear problem by taking advantage of the iterative scheme that is necessarily applied in this case.

Index Terms— Floating potential, asymptotic method, nonlinear problem, 4-electrode system.

I. INTRODUCTION

HE concept of floating potential is encountered in 
electrokinetic problems when isolated conductors of high 

conductivity are embedded in a dielectric or low conductive 
medium [1]. One can mention for example earthing systems 
where metal rods are buried into the ground [2] or 4-electrode 
systems that are often used to measure the impedance of 
biological tissues [3]. The direct solution of this kind of 
problems has two main drawbacks: this approach requires the 
meshing of the interior of the conductors and the high contrast 
of conductivities leads to numerical issues in the matrix 
inversion [4]. Replacing the electrodes by perfect conductors 
provides a reasonable approximation. The resulting problem 
leads to an additional degree of freedom related to the 
isopotential value on the surface of the perfect conductor. 
However, the solution can be computed rigorously without 
modification of the matrix system using superposition of 
solutions [5, 6] or iterative techniques [2, 7].

In this paper, we show that a more accurate approximation 
can be achieved thanks to an asymptotic expansion of the 
potential. Asymptotic expansions are formal series with respect 
to a small parameter (here the ratio of conductivities), which 
provide an accurate and rigorous approximation of the solution 
(here the potential). In the case of floating potentials, the zero 
order solution (the first term of the expansion) is shown to 
coincide with the perfectly conductor case. The potential is then 
approached one step further with the first order correction 
(second term of the expansion). It implies two successive 
problems defined respectively in the ambient medium and in 
the high conductive inclusions, which avoids describing the 
high contrast of conductivities in a single problem.

The paper is organized as follows: the formal asymptotic 
expansion of the solution to the electrokinetic problem is given 
in Section II. In section III, the numerical convergence with 
respect the conductivity ratio is studied in a 2D-toy 
configuration. The method is then applied to a 3D example that 
shows the consistency of the method, while a direct 

computation leads to unsatisfactory results. Finally, a nonlinear 
case is proposed in section IV in the 2D configuration.

II. FORMULATION OF THE ELECTROKINETIC PROBLEM

We consider the model of a 4-electrode system dedicated to 
measure the impedance of a biological tissue. In this device, a 
current is injected through both external electrodes inside the 
biological tissue. In the same time, both internal electrodes are 
connected to a high impedance in the external circuit; 
consequently, no current is supposed to flow through them. 
Internal electrodes are said to be passive while external ones are 
said to be active. The impedance of the biological tissue is then 
calculated measuring the potential difference induced between 
the internal passive electrodes that do not suffer from to voltage 
drop due to the electrode/tissue interfacial impedance [3].

The general model of a symmetric 4-electrode system with 
two pairs of active and passive electrodes is shown in Figure 1.

Figure 1: different domains considered in a symmetric 4-electrode device
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The initial problem to solve reads:

where g is the border for the active electrode, out the external 
border of the biological tissue and sym the symmetry plane. e 
is the conductivity of the biological tissue defined inside the 
domain e and i the conductivity of the passive electrodes 
defined inside the domains i.

The solution for e and i can be expanded using formal 
series with respect to the parameter  = e/i << 1:

where the terms k are constant and {i
k, e

k} solve a 
differential problem set respectively in i and e. Identifying 
the terms with the same power in , we infer the cascade of 
problems. The first problem to solve appears to be perfect 
conductor case. The couple (e

00) is the solution to

The solution (e
00) is computed by superposing two 

solutions of problems where the homogeneous Dirichlet 
condition is set respectively on the boundary i of the passive 
electrode and on the boundary g of the active electrode. More 
precisely, consider the two following problems:

Then e
0 =  + 0  in e and i

0 = 0 in i with 

or equivalently

To improve the zero order approximation, the terms 
{i

1, e
1 1} satisfy similar problems as (3) with {i

0, e
0} as 

source terms:

The numerical problem (7a) is solved using a Lagrange 
multiplier to ensure the Gauge condition. Instead of solving 
(7b), one solves 

The constant 1 is given by substituting  by  in (6). The 
first order correction is then given by e

1 = + 1  in e. 

III.NUMERICAL RESULTS

A. Linear case
A 2D model of a symmetric 4-electrode system is first 

introduced in order to perform the convergence study. The 
problem is solved using the finite element method with a coarse, 
medium and fine meshes (see Fig. 2; note that the dimensions 
are realistic). The number of degree of freedoms (dof) for 
solving directly the initial problem (1) is 4 300, 67 000 and 
1 060 000 for the coarse, medium and fine meshes. The above 
potential {i

k, e
k}, k=0,1 are easier to compute since there is 

no high contrast in the conductivities and only a single domain 
is involved in the different problems (i or e). In particular, 
the number of dof in the domain e (resp. in the domain i) is 
4 100 (respectively 200), 65 000 (respectively 2 000) and 
1 020 000 (respectively 40 000) for the coarse, medium and 
fine meshes.

Fig.2: 2D model of the 4-electrode system with a coarse mesh. The diameter 
for the active (resp. passive) electrodes is 0.45 mm (resp. 0.35 mm) and the 
separation distance between negative and positive electrodes is 4.6 mm (resp. 
2.2 mm).

A 4-electrode device is designed to measure the resistance R 
defined as the ratio of the potential difference U between the 
passive electrode and the current I flowing through the active 
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electrodes. Since the passive electrodes are not perfect 
conductors, the mean potential at the surface of the passive 
electrodes is considered to compute the resistance:

where the factor 2 is introduced because of the symmetry in the 
initial problem.

Using the asymptotic expansion, R is approached by 

In (9), the leading term of R depends only on the couple 
(e

00) while (e
00) and (i

11) are involved at the second 
order of accuracy. The next paragraph deals with this numerical 
convergence study.

Fig.3: Convergence of the asymptotic approach at the zero and first orders for 
three different meshes with the 2D model

The resistance R is computed using (8) for a tissue with a 
constant conductivity e. Fig.3 reports the relative error of the 
asymptotic development with respect to  at the zero and first 
orders. Since the exact solution is not analytical, the reference 
value is chosen as the numerical solution of the direct 
computation with the fine mesh. One observes that when the 
asymptotic method is performed with the fine mesh, the relative 
error on R decreases for the zero order computation following 
the rate  Adding the first order correction, the relative error 
decreases following a rate slightly lower than 2. Those 
observations are in agreement with the theoretical result given 

by (9). However, when the mesh is coarser, the accuracy of the 
finite element solution is not sufficient enough and the error due 
to the mesh is greater than the error due to the truncation of the 
asymptotic expansion. Thus, the relative error on R does not 
decrease under 3.5 10-3 (respectively 2.1 10-4) for the coarse 
(respectively medium) mesh in Fig. 3: this corresponds exactly 
to the relative error on R obtained with the direct computation 
performed on the same mesh.

A 3D model of the symmetric 4-electrode system has been 
simulated in order to get closer to the real device. The mesh 
shown Fig. 4 is such that there are 3 200 000 dof to solve the 
initial problem; the number of dof in the domain e 
(respectively in the domain i) is 1 200 000 (2 100 000). In 
these conditions, the computation time to solve both zero and 
first order problems with the asymptotic method is reduced by 
20% compared to the time required to solve the direct problem. 
The simulation performed when  = 10-1 gives a relative error 
on R of 5.0 10-3 for the zero order and 5.5 10-3 for the first order; 
the error decreases to 1.1 10-3 for the zero order and 5.6 10-4 for 
the first order when  = 10-2. The comparison cannot be 
performed further because of the limitation of the numerical 
resources. Moreover, the matrix of the initial problem becomes 
numerically singular due to the high contrast of conductivities 
and the numerical inversion is not accurate.

Fig.4: 3D model of the symmetric 4-electrode system with the same dimensions 
as in Fig. 2. The height of the active (respectively passive) electrodes is 6.3 mm 
(respectively 5.2 mm).

B. Nonlinear case
When the 4-electrode system is used to monitor the tissue 

impedance during electroporation, the problem becomes 
nonlinear since the tissue conductivity depends on the electric 
field amplitude. In this section, a sigmoid function is introduced 
to model the dependence of the conductivity e with respect to 
the electric field as it is generally considered in the 
electroporation phenomenon [8]:
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where the parameters 0, 1, a; b and d depend on the type of 
biological tissue. When electroporation occurs, the tissue 
conductivity increases in the area between the electrodes (see 
Fig. 3 top).

Considering a nonlinear conductivity e(e) in (1), it should 
not be possible to rigorously formulate the zero and first order 
of the asymptotic solution as proposed in section II. However, 
since iterative techniques are necessary used to solve a 
nonlinear problem, the asymptotic development can be applied 
at each iteration. In this paper, Picard’s algorithm [8] is used to 
compute the solution  = e + i in the nonlinear problem. From 
the solution k-1 computed at the iteration k-1, the problems 
(4a)-(4b) are solved with e(k-1) to calculate the intermediate 
solution e+i

k = e
k + i

k. Then, a relaxation factor Kk is applied 
to optimize the contribution of the intermediate solution e+i

k to 
the solution k = k-1+ Kk(e+i

k - k-1) computed at the iteration 
k; note that Kk is corrected at each iteration according to how 
the solution is approached in order to accelerate and stabilize 
the convergence [8].

Picard’s algorithm has been performed to solve the nonlinear 
problem for both the direct solution and the asymptotic solution 
at the zero order, in the case where the conductivity i = 103  
is set for the passive electrodes. In order to make a mindful 
comparison, the 2D model has been chosen with the fine mesh. 
The algorithm stops when the relative error between solutions 
k-1 and k reaches 10-8: 23 iterations are required for the 
asymptotic approach and 33 iterations for the direct solution. 
The relative error on R is 1.2 10-3 with the asymptotic 
development at the zero order, which is 22 times larger than the 
error obtained in the linear case. Fig. 5 shows that the relative 
error on the conductivity between the direct solution and the 
asymptotic approach reaches 7.10-3 in the electroporated region.

IV.CONCLUSION

In this paper, an asymptotic approach has been proposed to 
solve the problem of floating potentials that present a high 
conductivity compared to the ambient medium. The 
convergence study shows that this approach enables to improve 
the accuracy of the solution where perfect conductors are 
assumed. Compared to the direct solution, the advantage of the 
asymptotic approach is that less numerical resources are 
required since the floating conductors are meshed in a distinct 
problem. Another advantage of the asymptotic approach is that 
it avoids numerical artifacts that appear with the direct solution 
when the contrast of conductivity is too large. Nonlinear 
problems can also be solved numerically using the asymptotic 
method: a realistic example shows that the asymptotic solution 
at the zero order introduces a larger error compared to the linear 
case.
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Fig.5: (top) Distribution of the conductivity computed using the asymptotic 
approach (bottom) Relative error on the conductivity between the asymptotic 
approach and the direct solution. V = 138 Volts in (1) and the tissue parameters 
are 0 = 0.1 S/m, 1 = 0.3 S/m, a= (E0+E1)/2; b = (E1-E0)/c, c = 8 and d = 10 
with E0 = 460 V/cm and E1 = 700 V/cm.
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