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ABSTRACT

Bolting technologies have been commonly used to assemble structural members in order to carry loads. However,
the main drawback of these joints is the local reduction of the strength-to-stress ratio. Compared to the bolted
joints, adhesive bonding technology allows for the increase of static and fatigue strength while reducing the
weight. The Finite Element (FE) method is able to address the stress analysis of bonded joints. Nevertheless,
analyses based on FE models are computationally expensive. Therefore, it is profitable to develop new simplified
approaches enabling extensive parametric studies. A semi-analytical technique was developed to model the joints
based on the formulation of 4-node special elements, termed macro-elements, which is able to simulate an entire
bonded overlap at low computational costs. In this paper, a multilayered bonded-bars and a multilayered
bonded-beams macro-elements are derived from bonded-bar and bonded-beam macro-elements. 1D-bar and 1D-
beam simplified stress analyses of such multilayered joints are presented in order to predict the adhesive stress
distributions along the overlap. For validation purpose, the results obtained by the simplified 1D-bar and 1D-
beam model are compared with the results predicted by 1D-FE models. Good agreements are shown. Finally,
the parametric studies are performed in order to understand the mechanical behavior of multilayered adhesively
bonded structures. This presented simplified stress analysis can be used to deduce the sizing guidelines as a

consequence of these parametric studies.

1. Introduction

In recent years, there has been an increasing interest in the adhe-
sively bonded technology for the design of lightweight structures.
Compared to the conventional methods such as riveting or bolting,
bonding offers better mechanical properties in terms of stiffness, static
strength and fatigue strength when joining without damaging dissimilar
materials such as metals and composites [1-4]. The Finite Element (FE)
method is able to address the stress analysis of bonded joints. However,
since analyses based on FE models are computationally expensive, it
would be profitable to develop new simplified approaches enabling
extensive parametric studies. Numerous studies have attempted to
perform simplified stress analysis and provided accurate predictions
[5-7]. In 1938, Volkersen published the first stress analysis including
the deformation of the adherends by the development of a shear lag
model [8]. In 1944, Goland and Reissner developed the analysis of
Volkersen by the first closed-form solution of adhesive stress distribu-
tions along the overlap for simply supported balanced joint made of
adherend undergoing cylindrically bending [9]. The sandwich-type
analysis concept was then employed by other researchers in order to
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improve this initial model considering different local equilibriums,
different constitutive behaviors and various geometries [10-18]. The
second and third authors of the present paper and their co-workers have
been working on the development of the macro-element (ME) technique
for the simplified stress analysis of bonded, bolted and hybrid (bon-
ded/bolted) joints [19-29]. The ME technique is a semi-analytical res-
olution method inspired by the FE method and is developed to solve the
system of differential equations considering the restrictions such as
dissimilar adherends, various boundary conditions, and nonlinear ad-
hesive material properties. A ME is then an element which includes
physical properties of both adhesive layers and adherends as illustrated
in Fig. 1. A number of researchers investigated the mechanism of load
transfer in multilayered structures by using shear-lag theory. Nairn and
Mendels proposed an optimal shear-lag method for the stress problems
of the 2D planar layered structures [30]. Jiang and Peters derived a
shear-lag model for 3D multilayered structures whose properties vary
along the cross-section through the extension of Nairn and Mendels’
study such as smart structures with embedded sensors and actuators
[31]. Viet et al. also provided a new analytical model to predict the
interlaminar shear stress in adhesively bonded multilayered metal
laminates for the purpose of modeling layers of piezoelectric materials
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Nomenclature and units

A matrix of the system of 1st order ODE coefficients

A; extensional stiffness (N) of adherend i

B; extensional and bending coupling stiffness (N.mm) of
adherend i

D; bending stiffness (N.mm?) of adherend i

Eqi adhesive Young’s modulus (MPa) of adhesive i

E; adherend Young’s modulus (MPa) of adherend i

F, vector of nodal forces

G; adhesive shear modulus (MPa) of the adhesive i

K. elementary stiffness matrix of multilayered macro-element

L length (mm) of bonded overlap

M, matrix of nodal displacements

M; bending moment (N.mm) in the adherend i around the 2-
direction

N, matrix of nodal forces

N; normal force (N) in the adherend i in the x-direction

P element nodal displacement vector

S; adhesive peel stress (MPa) in the adhesive i in the y-
direction

Smax maximal adhesive peel stress (MPa)

T; adhesive shear stress (MPa) in the adhesive i in the x-
direction

Tmax maximal adhesive shear stress (MPa)

U, vector of nodal displacements

V; shear force (N) in the adherend i in the y-direction

Z vector of normal forces and displacements for semi-

analytical resolution

b width (mm) of the adherends

e thickness (mm) of adherend i

f magnitude of applied tensile force (N)

h; half thickness (mm) of adherend i

k; adhesive elastic stiffness (MPa/mm) in the peel

ki adhesive elastic stiffness (MPa/mm) in shear

ky spring element stiffness (N/mm) along the x-axis

ky spring element stiffness (N/mm) along the y-axis

NBE number of bar or beam elements

NuE number of macro-elements

t; thickness (mm) of the adhesive layer i

tirg thickness (mm) of the adhesive layer used in the FE model

u; displacement (mm) of adherend iin the xdirection

Vi displacement (mm) of adherend iin the ydirection

A; overlap length (mm) of a macro-element

0; bending angle (rad) of the adherend iaround the
z-direction

@a vector of normal forces and displacements at each
extremity

O vector of normal forces each extremity

oy vector of displacements at each extremity

Vai Poisson’s ratio of the adhesive layers

(x,y,2)  global reference system of axes

FE Finite Element

ME macro-element

ODE ordinary differential equation

on the future energy harvesting application [32]. Recently, Pham et al.
developed a FE formulation for the analysis of multilayered beams based
on the principle of stationary complementary strain energy which differs
from previous studies [33].

Literature reviews have indicated that plenty of models of the
adhesively bonded joints have been developed to size simple configu-
rations. Although the effectiveness of the adhesively bonded joint is
widely known, the stress analysis and sizing methodologies of multi-
layered structures have not been extensively studied. Since studies on
the stress analysis and sizing of the multilayered structures are rare to
find in literature, the semi-analytical analysis in applying well-known
schemes and parametric studies are performed in this work.

The objectives of the present paper are to perform the simplified
stress analysis of the multilayered adhesively bonded joint under the
static loading and to conduct parametric studies in order to understand
their effects on the mechanical behavior of such joints. First of all,
simplified stress analyses based on ME technique in 1D-bar and 1D-beam
framework explained. The detailed mathematical description of semi-
analytical resolution is provided. Then, 1D-FE models are presented
and used to validate 1D-ME models through dedicated convergence
studies. Finally, the parametric studies are performed in order to un-
derstand the mechanical behavior of such joints. The computations were
performed thanks to house-made computer programs developed in
MATLAB. Codes are provided as supplementary materials [34].

2. Description of simplified stress analyses of multilayered
bonded joints

2.1. Overview of the macro-element technique and application
The simplified linear elastic method is originally developed for the

hybrid (bolted/bonded) joints [21,22]. The ME technique is a mathe-
matical procedure inspired by the FE method. When the ME technique

takes the shape of solutions of the governing ordinary differential
equations (ODEs) systems, it differs from the common FE method
because of the fact that the interpolation functions are not assumed. This
method allows for the resolution of the system of ODEs, which are
derived from the constitutive equations of the adhesives and adherends
and local equilibrium equations, under a less restricted application field
of the simplifying hypotheses in terms of the geometry, material
behavior, kinematics, boundary conditions and applied loads. A direct
outcome is that only one ME is sufficient to mesh a complete bonded
overlap. The main work is the formulation of the elementary stiffness
matrix of the multilayered bonded elements. A multilayered
bonded-bars and a multilayered bonded-beams MEs are derived based
on the formulation of 4-nodes bonded-bar and bonded-beam elements.
In this work, the formulation is based on the exponential matrix to solve
the system of first order ODEs and then to derive the elementary stiffness
matrix of these ODEs. As a result, in order to assess the adherend dis-
placements, internal forces and adhesive stresses, an entire bonded
overlap is meshed using dedicated MEs. According to FE rules, the global
stiffness matrix of the complete structure is assembled from the
elementary stiffness matrices of the macro-elements. Boundary condi-
tions and prescribed loadings are applied through the Augmented
Lagrangian Method [34]. Based on the minimization of the total po-
tential energy, the linear system is solved in order to compute the

\j\ neutral axis of adherend 1

bonded overlap

macro-element {

Fig. 1. Equivalent modeling of a bonded overlap by a macro-element.
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Fig. 2. Representation of the nomenclature for the ME of multilayered joint.

displacements and forces in the adherends as well as the adhesive shear
and peel stresses. Finally, different mechanical loading could be easily
taken into account.

2.2. D-bar and 1D-beam element model

2.2.1. Bonded-bars element: 1D-bar kinematics

The following hypotheses were taken (i) the adherends are linear
elastic materials simulated as 1D-bars, (ii) the adhesive layer is simu-
lated by an infinite number of linear elastic shear springs linking the
adherends (iii) the thickness of the adhesive layer is constant along the
overlap, and (iv) the adhesive stresses are constant through the thickness
[8]. As a consequence of the simplified hypotheses, the following ar-
guments are taken into consideration (i) only normal forces and only
longitudinal displacements are considered in the adherend, (ii) the ad-
hesive normal stress cannot be represented because any normal force is

not applied to the adhesive layer, and (iii) it is assumed that all the
adhesive stress components disappear except the in-plane shear. The ME
is formed of a total of Padherends which are linked by P — linterfaces
representing adhesive layers. The nomenclature of ME for a multilay-
ered adhesively bonded joint is described as shown in Fig. 2. The nodes
of the ME are located on the neutral axis of each layer. Each layer has 2
nodes which are located on the starting and end of the layers. Thus, a ME
including Players has 2Pnodes in total. Within the scope of 1D-bar ki-
nematics, there is 1° of freedom which is longitudinal displacement. The
total number of degrees of freedom is computed by multiplying a total of
nodes with a degree of freedom per nodes. As a result, 1 ME of Players
includes a total of 2Pdegrees of freedom. In this model, nodes at the
interfaces are not modeled. The modeling of each layer as a bar allows
for the computation of the longitudinal displacements, normal forces,
normal stresses, and strains.

The local equilibrium of the adherends belongs to the Volkersen
type. Based on the free body diagram of infinitesimal pieces included
between xand x + dxof Padherends in the overlap region as presented in
Fig. 3, one equation is obtained for each layer. As a result, a total of
Pequations are obtained for Players.

The local equilibrium equations are given for 1%, i(2<i<P—-1)
and P"adherend:

dN]

—+Tib=0
dx+ 1

dN;
- (T -

dx

T)b=0 €9)

— —Tp1b=0
i P-1

where Njis the normal force in the adherend i, bthe width of the
adherends and T;the adhesive shear stress.

One constitutive equation for the adhesive shear stress describes
each interface behavior. Then, a total of P— lequations are involved.
For 1 <i<P-— 1, the linear elastic material behavior provides the
constitutive equations of interfaces are below:

y
L..
Layer 1 N &1 —> N, +dN;
— T, bdx
Ti_1bdx ————
Layer i Ny, &———F T —> N; + dN;
— Tbdx
Tp_1bdx ———
Layer P N, [ T —> N, + dNp
< dx >

Fig. 3. Free body diagram of infinitesimal pieces included between xand x + dxof Padherends in the overlap region.
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Fig. 4. Free body diagram of infinitesimal pieces included between xand x + dxof Padherends in the overlap region.
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Np_»(0) « > N,_,(A)
P-2 2P -2
Np_;(0) +® > Np_;(A)
P-1 2P —1
Np(0) +o —> N, (A)
P 2P
4, |
0 x X A

Fig. 5. Illustration of a multilayered bonded-bars element for nodes numbering, nodal displacements and nodal forces.

@

where t;is the thickness of adhesive layer i, G;is the shear modulus of
adhesive layer i, u;is the normal displacement of points located at the
abscissa xon the neutral line of adherend ibefore deformation.

The constitutive equations for the adherends (1 <i < P) are provided
by:

du; du; 1

N; = Eibe; N
“&c  dx  Ebe

3

where E;is Young’s modulus of the adherend iand e;the thickness of the
adherend i.

The ODEs are organized in order to get the expression for displace-
ments and then for internal forces by the resolution. Substituting Eq. (2)
into Eq. (1), the following local equilibrium equations are obtained:

dN; G, G,
20 —p 2t
dx h h 151 "2
dN[ G,',l G[—l G[ G[
dx ti it (ti—l + t; >u fiuH “
dNp b GP?IMP,] LpOr,,

dx Ip_y tp_y

2.2.2. Bonded-beams element: 1D-beam kinematics

The set of simplifying hypotheses are: (i) the adherends are simulated
by linear elastic 1D Euler-Bernoulli laminated beams, (ii) the adhesive
layer is simulated by an infinite number of elastic shear and transverse
springs linking the adherends, (iii) the thickness of the adhesive layer is
constant along the overlap, and (iv) the adhesive stresses are constant
through the thickness [9]. As a consequence of the simplified hypothesis,
the following arguments are taken into consideration (i) normal forces,
shear forces and bending moments are considered in the adherends, (ii)
longitudinal displacements, deflections and bending angles are considered
in the adherends, (iii) adhesive shear and peel stresses are represented in
the adherends, and (iv) the adhesive longitudinal stresses are neglected.
Similar to 1D-bar model, the ME is formed by Padherends and P —
linterfaces. The nomenclature of ME for a multilayered adhesively
bonded joint is presented as given in Fig. 2. Within the scope of 1D-beam
kinematics, there are 3° of freedom which are axial displacement, vertical

displacement, and rotation. The total number of degrees of freedom is
computed by multiplying a total of nodes with a degree of freedom per
nodes. As a result, one ME of Players includes a total of 6Pdegrees of
freedom. Similar to 1D-bar model, nodes at the interfaces are not modeled
in 1D-beam model. The local equilibrium of the adherends belongs to
Goland and Reissner type. Based on the free body diagram of infinitesimal
pieces included between xand x + dxof Padherends in the overlap region
as shown in Fig. 4, three equations are obtained for each layer. As a result,
a total of 3Pequations are obtained for Players. The half thickness of the
adherend iare termed h;:

P %)

The local equilibrium equations are given for 1st, i*(2<i<P-1)
and P"adherend:

an,
i Tbh=0
d)c+ !
dVl
2losbh=0
dx 1
am
VI +Tibh =0
dx
dn,
f— (F —T)b=0
o~ (=T
av;
L (S —S)b=0 6
dx+( 1 ) (6)
am,
L Vi+ (T + T))bh =0
s +(Tier +T0)
de
= T b=
dx P-1 O
de
S b=0
dX+P1
dM,

+ VP + Tp,lbl’lp = 0

dx

where Njis the normal force in the adherend i, V;the shear force in the
adherend i, M;bending moment in the adherend i, bthe width of the
adherend, T;the adhesive shear stress in the adhesive iand S;the adhesive
peel stress in the adhesive i.

Two constitutive equations regarding the adhesive stresses describe



each interface behavior. Then, a total of 2(P — 1)equations are involved.
For 1 <i<P-— 1, the linear elastic material behavior provides the
constitutive equation of interfaces as functions of adherends displace-
ments are below:

S = kl,[(W[ - Wi+l) )
T, = kll,i(ui+1 — Ui — 10y — higi)

wherek;; = %
elastic stiffness in the shear, tjthe thickness of the adhesive i, E,;the
elastic modulus of the adhesive i, G;the shear modulus of the adhesive i,
y;the axial displacement of the adherend i, withe deflection of the
adherend iand ¢;the bending angle of the adherend i.

The constitutive equations for the adherends (1 < i < P)are provided
by:

is adhesive elastic stiffness in the peel, ky; = %adhesive

N_Adu,- Bdt‘),‘:du,-_D,- B;
Ay Tldx Tdx T Q;

=N+ 2im, ®

dx £ Q;
dW,‘
0, =
dx

where A;is the extensional stiffness of the adherend i, Djthe bending
stiffness of the adherend i, B;the extensional and bending coupling
stiffness of the adherend iand ; = A;D; — B;B;is different from zero for
i=1,..P

Substituting Eq. (7) into Eq. (6), the following local equilibrium
equations are obtained:

“dx = —Vp — bhpkyp_1 (up — up_y — hpbp — hp_10p_y)

2.3. Semi-analytical resolution

The formulation of elementary stiffness matrices of the multilayered
bonded-bars element and the multilayered bonded-beams element is
derived from the linear relationship between the vector of nodal forces
F.and the vector of the nodal displacements U,. The elementary stiffness
matrices for multilayered bonded-bars element and multilayered
bonded-beams element K.are provided in Egs. (10) and (11),
respectively.

—N,(0) u1 (0)

= IE

NIZ)A) =K, uf(A) < F,=K.U, (10)
i(4) u;(A)

NP(A) MP(A)

where Ais the length of the ME.

In the case of 1D-bar and 1D-beam kinematics, the semi-analytical
resolution is carried out using the ME technique in order to determine
the elementary stiffness matrices.

2.4. Multilayered bonded-bars element

The system of first order ODEs, which are derived from Egs. (3) and
(4) can be written under a matrix shape such as:

{%}-w@ (12)

where Z = (N1 Nl . .Np up...u.. .llp)T.
The solution of the system is under the shape of the exponential of
the matrix as shown in Eq. (13).

Z = expm(Ax).Zy 13)

where {Z,}is the vector constant.

The ME of the multilayered bonded-bars is modeled as illustrated in
Fig. 5. From the first layer to the last layer P, all layers are assembled one
under the other. Node numbering is provided as layer by layer in order

— hi6;)

©)

dN,
d_xl = _bkll‘](uz —uy — hyb, — h19]>
dv,
d—x] = bk, (wy — wy)
dM,
Txl = —Vi — bhiky, (uy — uy — a0y — hi6))
dN;
e by (4 — iy — hi6h — hi10,-1) — bk i(wirs — i — hi10;
dV,'
e = —bkp;_1(Wiiy — wi) + by (Wi —wip1)
dM;
dr = —Vi — bhuky i (w — wiy — i — hi10;1) — bhuky (i1 — w — hi10iy — i)
dN,
TP = bkyp_1 (MP —up_1 — hplp — hP—lgP—l)
x
dv,
=L _ka,P—] (WP—I - WP)
dx
de

to obtain one multilayered ME. The numbering of degrees of freedom of
the ME is started with the first node of each layer, and it is done from the
top layer to the bottom layer. Then, after reaching the first node of the
last layer, numbering proceeds from the second nodes of the first layer to
the last layer. One multilayered bonded-bars element has a total of
2Pnodes, 2Pxldegrees of freedom, P— 1ladhesive layers, and
Padherends.

The elementary stiffness matrix of a multilayered bonded-bars
element has to be determined. The implementation of the elementary
stiffness matrix is carried out by MATLAB software. The MATLAB pro-
vides the possibility to compute the exponential of a matrix by means of
the function “expm”. The following steps have been used to obtain the
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Fig. 6. Illustration of a multilayered bonded-beams element for nodes numbering, nodal displacements and nodal forces.

multilayered bonded bar element stiffness matrix. Firstly, the boundary
conditions at both extremities of the ME in x = Oand x = Alead to the
expressions of fundamental 6P x 6Pmatrices.

@4 (x=0) = EXPm(Ax0) ¢pyqp a4

Pa(x=A)=EXPm(AxA)gp.qp s)

Each line of these matrices indicates each line of the vector

(N u)"which is computed at each extremity in x = 0and x = ASecondly,
3P x 6Pmatrices referring to displacements Uonly and forces Fonly at
each extremity are computed.

EXPm(Ax0);_yp.ep ;.60

(ﬂU(O A) =
' EXPm(AXA)i_ypop jmrcp (1(0).... 14i(0)... up(0) w1 (A)... wi(A)... up(A))”

(16)

EXP m(Axo)i:IP:SP,j:l:GP

0,A)=
or(0.8) EXPm(AXA)_ papj1.6r (N1(0)... Ny(0)... Ni(A)... Np(a))"

a7

Np(0) Ny (A)...

Thirdly, 6P x 6Pmatrix M.of nodal displacements is reordered in the
base

(1 (0) 4 (A) ...16:(0) w;(A) ...up(0) up(A))"

instead of (u1(0)... u;(0)... up(0) ur (A)... wi(A)...

EXPm (Axo)i:4P:6P,j:l:6P

= (18)
EXPm (AXA)":”:GPFI:GP (u1(0) uy (A) ..i(0) wi(A) ...up(0) up(A))"

up(4))".

M,

6P x 6Pmatrix N.of nodal forces is also reordered in the base

(=Ni(0) Ni(A) ... = N;(0) Ni(A) ... = Np(0) Np(A))"
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Fig. 7. Multilayered bonded joint for P = 4with principle scheme of the ME.

Table 1

Geometrical parameters of joint configuration.
Length of the overlap L 30 mm
Width of the adherends b 1mm
Thickness of the adherends e 2.5mm
Thickness of the adhesives t; 0.11 mm

Table 2

Material parameters of the adherends and adhesives.
Young’s modulus of adherends E; 70 GPa
Shear modulus of the adhesives G; 100 MPa
Poisson’s ratio of the adhesives Vai 0.3
Young’s modulus of the adhesives Eqi 266 MPa

Table 3

Mechanical analysis parameters.
Applied force f 100N
Number of adherend layers P 4

instead of (Ni(0)... Ni(0)... Np(0) N1 (A)... Ni(A)... Np(A))".

N EXP m(Axo)i:4F:6P,j:1:6P 19)
e

EXPm(AXA)i_apip =160 | (-y(0) M1 (4) --(0) N(8) op(0) Np(A)"

Finally, the stiffness matrix is then computed by the following

product of matrices.

K] = [NJ[m.]) ™ (20)

2.4.1. Multilayered bonded-beams element

Similar to the multilayered bonded-bars element, the system of first
order ODEs, which are derived from Egs. (8) and (9), can be written
under a matrix shape in Eq. (12) where Z =
(Nl...Ni...Np V1...Vi...Vp up...Uj...up wy...wj..wp 01...9i...(9p)T.

The solution of the system is under the shape of the exponential of
the matrix as shown in Eq. (13). The ME of the multilayered bonded-
beams is modeled as illustrated in Fig. 6. The elementary stiffness ma-
trix of a multilayered bonded-beams element has to be determined. The
following steps have been used to obtain the multilayered beam element
stiffness matrix. First of all, the boundary conditions at both extremities
of the ME in x = Oand x = Alead to the expressions of fundamental
6P x 6Pmatrices.

®a(x=0) =EXPm(Ax0) ¢pyqp @D

P4(x=A) =EXPm(AxA)gp,cp (22

Each line of these matrices indicates each line of the vector
(NVMuw 6)"which is computed at each extremity in x = Oand x =
AThen, 3P x 6Pmatrices referring to displacements Uonly and forces
Fonly at each extremity are computed.

EXP m(Axo)i:4P:6P,j:1:6P

vu(0.8)= EXP m(AXA)i:4P:6P,/‘:l:6P 23)

(o wo 0o a wa 0a)"
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EXP m(AXO)i=1P:3Pj=l:6P

or(0,A)= [EXPm(AxA) 249

i:]P:SP.j:l:GP:| (No Vo Mo Na Va My)"
After that, 6P x 6Pmatrix M.of nodal displacements is reordered in the
base (up uy wo wa 6o HA)Tinstead of (up wo Op us wa GA)T.

EXPm(AX0),_yp.gp j-1.6p

M,= 25
{EXP m(AXA)i:4P:6PJ:1:6P (25)

:| (ttg ua wo wa 60 6a)"

6P x 6Pmatrix N.of nodal forces is also reordered in the base
(—N() NA — V() VA — Mo MA)Tinstead of (N() Vo M() NA VA MA)T.

EXP m(Axo)i:4P:6P,j:1:6P

= 26
{EXP m(AXA)i:4P:6Pj:1:6P (26)

:|(*N0 Na —Vo Va —Mo My)"

Finally, the stiffness matrix is then computed by the following
product of matrices.

[K.]=[N][M.]"! @27

3. Validation

For validation purpose, the relevance of 1D-bar model is assessed in
order to understand if the method is well-implemented. Then, the pre-
dictions obtained by the simplified 1D-bar and 1D-beam ME model are
compared with the results predicted by 1D-FE models.

3.1. Nominal test case

In this paper, a clamped-free end multilayered joint subjected to in-
plane tensile loading with a force f. This axial force is applied to the
Pthlayer at x = Lwhere Lis the length of the overlap. The bonded overlap
is regularly meshed with nyzof multilayered bonded-bars and multi-
layered bonded-beams elements. The number of adherends is chosen
P = 4in order to perform the stress analysis as given in Fig. 7 with the
ME scheme. The material, geometrical and mechanical analysis pa-
rameters are provided in Tables 1-3, respectively.
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3.2. Description of the FE model

The FE models are designed considering the same hypotheses as ME
models in order to justify the developed models [29]. This FE model is
applied to a particular case in order to study the mechanical analysis of
multilayered joints. 1D-FE models were developed by bar or beam ele-
ments for the adherends and spring element for the adhesive layers. The
nodes associated with the bar and beam elements are located at the
actual neutral line of the adherend. The nodes associated with the spring
elements are located at the actual interfaces of the adherends. Rigid
body elements are used in order to link the nodes of the neutral lines to
the nodes of the adherend interface for each adherends along the
overlaps. A scheme of the 1D-FE model is presented in Fig. 8 including
prescribed displacements and loading. It is possible to consider the
geometrical effect of the adhesive thickness by assigning t;jz; = tjinstead

of tirr = 0. The bar and beam elements are based on third degree
interpolating functions under the Euler-Bernoulli kinematics. The
overlap length is regularly meshed by ngg. The stiffnesses of springs
kyiand k, ;are directly related to the mesh density along the overlap [35].
For a spring element located at an abscissa xalong the overlap, the
stiffnesses are computed from the actual value of adhesive peel and
shear modulus, the adhesive thicknesses t;, the width band the mesh
density ;Lsuch as:

L
kv_,‘ = m(x) abk“

(28)

L
ki = m(x) & bk ;

where m(0 < x< L) = land m(x =0) =m(x =1) =1.
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The FE models were developed in SAMCEF v171 FE code. All the
details and convergence studies of the FE model are available Ref. [29].
In the present paper, a number of bar or beam elements is then chosen
equal to 600 for L = 30 mmleading to a mesh density of 20 elements per
mm providing convergent results.

3.3. Validation of 1D-bar ME

Before mesh influence study, the relevance of 1D-bar model is
assessed in terms of the symmetry of the stiffness matrix and model
restriction by a single-lap joint which has the elementary stiffness matrix
determined analytically [19,22]. Firstly, the symmetry of the elemen-
tary stiffness matrix is checked by computing the relative difference

between each element of the matrix and the corresponding elements of
its transpose. A maximal relative difference of 1.93 x 10 13% is
computed using the geometrical and mechanical properties provided in
Tables 1-3. Secondly, the model is restricted with the single-lap joint.
The relative difference is computed 6.13 x 10~ 3% from the maximum
difference between the elements of the stiffness matrices of the ME
model and analytical model provided in Refs. [19,22]. These small
relative differences indicate that the model is well-implemented.
Following this, the mesh influence study is studied with FE predictions
in order to justify the ME model. Mesh refinement is carried out by a
density of mesh per mm. 5 different tests are performed using 1, 2, 3, 4
and 5 MEs per mm. The maximal adhesive shear stresses Tpqand rela-
tive differences between T4 predicted by 1D-bar ME model and those
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predicted by 1D-bar FE model are provided in Table A-1 and Table A-2
(Appendix A), respectively. It can be seen in Fig. 9 that as the number of
MEs per mm increases, these relative differences almost remain con-
stant. A maximal relative difference of 0.02% is computed and it is
observed in the 3rd adhesive layer. Figure B-1 (Appendix B) shows that
the adhesive stress distributions of 1D-bar FE and 1D-bar ME models
appear as superimposed along the overlap using 1 MEs per mm. Good
agreement is shown because the FE model assumes the same hypotheses
as the ME model. The linear elastic semi-analytical analyses are inde-
pendent of the mesh refinement in the frame of 1D-bar kinematics.

3.4. Validation of 1D-beam ME

In the frame of 1D-beam kinematics, mesh influence study is studied
with FE predictions in order to justify the ME model. Similar to 1D-bar
ME model, mesh refinement is carried out by a density of mesh per mm.
5 different tests are performed using 1, 2, 3, 4 and 5 MEs per mm. The
maximal adhesive shear stresses Tyocand peel stresses Sporand relative
differences between Tmayand Smaxpredicted by 1D-beam ME model and
those predicted by 1D-beam FE model are provided in Tables A-3, A-4,
A-5 and A-6 (Appendix A). As the number of MEs per mm increases,
these relative differences firstly decrease and then almost remain
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constant, as shown in Figs. 10 and 11. A maximal relative difference of
57.98% is computed for comparison between 1D-beam ME and FE in
terms of Spcand it is observed in the 1st adhesive layer with the stress
analysis of 1 ME per mm. By increasing the mesh density, this relative
difference is quickly reduced to 0.09%. Figures B-2 and B-3 (Appendix
B) exhibit that the adhesive stress distributions of 1D-beam FE and 1D-
beam ME models appear as superimposed along the overlap using a high
number of MEs per mm. The analysis results depend on the mesh
refinement in the frame of 1D-beam kinematics due to the exponential
matrix. Also, 1D-beam kinematics hypotheses lead to a different shape in
adhesive shear stresses compared to 1D-bar kinematics.

4. Mechanical behavior
4.1. Mechanical behavior (nominal test case)

The geometrical and mechanical parameters under consideration are
given in Tables 1-3. In order to understand the mechanical behavior of
the adhesive layers under nominal test case conditions, the adhesive
shear and peel stresses obtained with the presented 1D-bar and 1D-beam
model are shown in Figs. 12-14. For the nominal test case in the frame of
1D-bar kinematics, the adhesive shear stresses along the overlap rise to a
high point and peaked at the end of the overlap. The stress values of the
last adhesive layer are much higher than the first and middle adhesive
layers because of the chosen adherend layer for the applied force.

The presented 1D-beam model shows different adhesive shear
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distribution compared to 1D-bar model due to the kinematic hypotheses
taken. Fig. 13 reveals that the last adhesive layer has similar mechanical
behavior whereas the adhesive shear stress distribution along the
overlap of the first and the middle adhesive layer is located in the
negative area. In addition, what can be clearly seen in Fig. 14 is the
maximum adhesive peak peel stress in the middle adhesive layer.

4.2. Influence of overlap length

As an application of the simplified stress analyzed based on ME
models, the influence of the overlap length on the maximal adhesive
shear stress of multilayered adhesively bonded joint is studied consid-
ering fixed mesh density as 10 MEs per mm. The analyses are conducted

for the overlap lengths from 10 mm to 100 mm by an increase of 10 mm.
Within 1D-bar framework, as the overlap lengths of 3 interfaces in-
crease, the maximal adhesive shear stresses increase, and then tend to be
a finite value as shown in Fig. 15. Therefore, it is not useful to increase
the overlap length to decrease maximal shear stress. As Fig. 16 shows, as
the overlap length in the presented 1D-beam model increases, the
maximal adhesive shear stress of the third adhesive layer increases
above x-axis while the maximal adhesive shear stresses of the first and
second adhesive layers slightly increase below x-axis. These peak shear
stresses remain stable above a certain value of the overlap length. As for
the adhesive peak peel stresses for three adhesive layers shown in
Fig. 17, the maximum stresses reach a peak at L = 20 mm. After the
peak, what stands out is that the maximum peel stresses decrease and
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then tend to be a finite value above 30 mm. It can be concluded that it is
not profitable to increase the overlap length to decrease adhesive
maximal peel stress. Also, the mechanical behavior along the overlap
has the same adhesive stress distributions in both 1D-bar and 1D-beam
models in terms of different overlap lengths as presented in Figs. 12-14.

4.3. Influence of adherend thickness

The adhesive peak stresses as a function of the adherend thickness
are given in Figs. 18-20. In order to understand the effect of the
adherend thickness on the adhesive peak stresses, the mechanical ana-
lyses are performed for different adherend thicknesses from 0.2 mm to
2mm by an increase of 0.2 mm. For 1D-bar model shown in Fig. 18, as
the thickness of the adherends increases, the peak shear stresses of all
interfaces decrease and then tend to be a finite value. Therefore, it is not
useful to use thicker adherends above a certain value to decrease the

maximal shear stress in the case of multilayered bonded joints. Within
1D-beam scheme, the use of thicker adherends leads to a reduction in the
maximal adhesive shear stress of the three adhesive layers but then these
peak stresses remain stable, as shown in Fig. 19. Fig. 20 shows that there
has been a sharp increase up to 0.4 mm of adherend thickness on the
maximum adhesive peel stress of second adhesive layer by increasing
the adherend thickness. After reaching a peak around 0.4 mm, these
maximum peel stress continuously decrease. Compared to the second
adhesive layer, there has been a slight decrease in the first and third
adhesive layer. After the peak value at 0.4 mm of the adherend thick-
ness, maximum adhesive peel stresses fall in the three adhesive layers
while the drop in the second adhesive layer is sharper than others. This
non-monotonic behavior remains unexplained. It can be deduced that
the maximum peel stress can be reduced by increasing the adherend
thickness. In addition, for different adherend thicknesses, the stress
distributions along the overlap vary as presented in Figs. 12-14.



5. Conclusion

This paper set out to perform the stress analysis of the multilayered
adhesively bonded joints using a semi-analytical resolution method. The
second aim of this study was to investigate the effects of the different
parameters in order to understand the mechanical behavior of multi-
layered adhesively bonded joints. A comparison between simplified and
refined stress analyses of multilayered adhesively bonded structures
subjected to pure mechanical tensile in-plane loading is presented. The
simplified stress analyses are performed using 1D-bar and 1D-beam ki-
nematics in order to predict the mechanical behavior of such joints. The
ME technique is a semi-analytical resolution method used for the
simplified stress analysis. Firstly, the simplified approach based on
simplifying hypotheses is developed to model the joints. The ME tech-
nique is the resolution scheme used for the simplified stress analysis. A
multilayered bonded-bars and a multilayered bonded-beams MEs are
derived in the frame of linear elastic adhesive behavior. The detailed
mathematical derivation is presented. For the purpose of validation, the
results obtained by the simplified 1D-bar and 1D-beam MEs are
compared with the results predicted by 1D-FE models [29]. Mesh in-
fluence studies are performed using different mesh densities in order to
validate the ME mode. Relative differences between 1D-FE and 1D-ME
models for different mesh densities are computed in terms of adhesive
stresses. The results of this study show that the method is validated by
1D-FE model by computing small relative differences. These results,
therefore, need to be interpreted with the caution that 1D-FE and 1D-ME
models assume the same hypotheses and these hypotheses lead to the
same results for 1D-bar model and close results for 1D-beam model. For
1D-beam model, it is found that there is a dependency on the number of
MEs. Finally, parametric studies of 1D-ME models are presented con-
sisting of the analysis of the influence of the overlap length and the
adherend thickness. The outputs of these parametric studies are taken as
adhesive peak shear and peel stresses in order to evaluate the results.
The findings of this research provide insights for the computational time
in the use of ME technique. This semi-analytical resolution has the
advantage of the computational time for the small mesh sizes and so
high number of elements through software code developed for the nu-
merical analysis. Furthermore, the number of layers is not a restriction
because a different number of layers are able to be simulated depending
on the requirements. This presented simplified stress analysis will be of
interest to deduce the sizing guidelines in order to perform the pre-
liminary design. More broadly, further research in this field would be
needed to determine the mechanical analysis of non-linear adhesive
behavior.
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