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A stability result for the diffusion coefficient of the heat operator

defined on an unbounded guide

Laure Cardoulis ∗ Michel Cristofol∗ Morgan Morancey∗

Abstract

In this article we consider the inverse problem of determining the diffusion coefficient of
the heat operator in an unbounded guide using a finite number of localized observations. For
this problem, we prove a stability estimate in any finite portion of the guide using an adapted
Carleman inequality. The boundary measurements are also realized on the boundary of a larger
finite portion of the guide. A special care is required to avoid measurements on the cross-section
boundaries which are inside the actual guide. This stability estimate uses a technical positivity
assumption. Using arguments from control theory, we manage to remove this assumption for
the inverse problem with non homogeneous given boundary conditions.

1 Introduction and main results

1.1 Introduction

Inverse problems associated with the heat operator have been frequently investigated as well on
theoretical aspects as for applications, applications which cover large domains such medicine,
ecology, biology, evolution of populations, physics . . .
For such inverse problems there exist several methods involving different type of observations. In
the case of finite number of observations we can consider for example boundary data, observation
on all the domain at one time, spectral data, pointwise observation. On the other hand, nice
results have been obtained using infinite number of measurements (e.g. methods using Dirichlet
to Neumann map) but we don’t consider such approaches here.
In this paper, we focus on the method by the Carleman estimates which allows to derive stability
inequality in the form:

‖(coefficient1)− (coefficient2)‖ ≤ f (‖observation1 − observation2‖)

for a function f satisfying lim
s→0

f(s) = 0. This kind of inequality links the distance between

two sets of coefficients to be reconstructed with the distance between two sets of observations
in appropriate norms. Such stability inequalities lead to the uniqueness of the coefficient to
be reconstructed given the observation in a good norm. They are also useful to improve the
numerical reconstruction of the coefficients using noise-free observations [12]. The paper by [3]
has initiated this method and a lot of authors have been inspired by the Carleman estimates to
solve inverse problems. There is a huge literature on the determination of nonlinear spatially
homogeneous terms or source terms in reaction-difusion equations from boundary measurements,

∗Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France.
email: laure.cardoulis@univ-amu.fr, michel.cristofol@univ-amu.fr, morgan.morancey@univ-amu.fr

1



see for instance [5, 9, 10, 13, 14, 16, 18, 20, 26] or [25] for a survey on this topic. These works
provide Lipschitz stability, in addition to the uniqueness of the coefficients. However, this
method requires, among other measurements, the knowledge of the solution u at some time
θ > 0 and for all x in the domain. Using a different approach, uniqueness results in the one
dimensional case have been established by only one point measurement in space for different
parabolic problems with strong nonlinearity [6, 22] or parabolic systems strongly coupled [23]
or models with memory term [21] or simultaneous recovery of high order coefficients [11].
All the previous works concern bounded domain Ω and the case of unbounded domains for
parabolic operators is less addressed (see for instance [4, 7]). Unbounded domain problems
concentrate several difficulties: first, it is mandatory to rewrite or adapt carefully the existing
Carleman estimates and in this paper we adapt ideas from [8] and [4] to write a new Carleman
estimate for the parabolic operator in the divergence form in an infinite guide. Additively, this
method involving some positivity assumption on the gradient of a solution of our problem, we
develop a control approach in Sobolev norms for parabolic operators in unbounded domains.
Our manuscript is organized as follows. In section 2, we recall an adapted global Carleman
estimate for our problem, in section 3 we prove our main result and in section 4, we carry
out an adapted control in order to eliminate the positivity condition imposed by the inverse
problem.

1.2 Settings and hypotheses

Let ω be a bounded domain in Rn−1, n ≥ 2 with C2 boundary. Denote Ω := R × ω and
Q = Ω× (0, T ), Σ = ∂Ω× (0, T ). We consider the following problem ∂tu−∇ · (c∇u) = 0 in Q,

u = 0 on Σ,
u(x, 0) = u0(x) in Ω,

(1.1)

where u0 is a sufficiently smooth function and c is a bounded coefficient defined in Ω such that
c > 0 and c ∈ C1(Ω). Our problem can be stated as follows.
Let l > 0 and denote Ω∗ = (−∗, ∗) × ω. We want to determine the coefficient c on Ωl from a
finite number of measurements of the solution u of the system (1.1) on a lateral subset of ∂ΩL
for some L > l and from the knowledge of the solution at the time T

2 . We stress out that the
required measurements are not performed on all the boundary ∂ΩL and that they avoid the
cross-sections {±L} × ω.

Our proof will require the strong positivity condition (1.10). This condition, involved in
almost all inverse problems dedicated to coefficients of the principal part of operators, is removed
by the construction of an adapted control. The main difficulty is to prove a controllability result
in H1 norm on the unbounded domain Ω. The strategy is inspired by [1, Section 4] where the
authors deal with a system of coupled equations but on a bounded domain.

We denote by Q∗ the set Q∗ = Ω∗× (0, T ) = (−∗, ∗)×ω× (0, T ). For each x = (x1, ..., xn) ∈
Rn, let x′ = (x2, ..., xn) ∈ Rn−1.

The cornerstone of Carleman estimates is to carry out special weight functions. In our
inverse problem, the design of such weight function will allow us to eliminate observations on
the cross-section of the wave guide. We follow some ideas from [8] mainly to eliminate the cross
section observations since there is less constraints in the choice of the weight functions in the
case of a parabolic operator. Nevertheless, we are going to detail the different steps which allow
to get the main two inequalities (1.3). For this we choose a ∈ Rn \ ΩL such that if

d(x) = |x′ − a′|2 − x2
1 for x ∈ ΩL,
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then
d > 0 in ΩL, |∇d| > 0 in ΩL. (1.2)

From now on and for simplicity, we denote θ = T
2 . From [25, 26] we consider classical form

of weight functions as follows, t ∈ (0, T ),

ψ(x, t) = d(x)− (t− θ)2
+M1, where M1 > sup

0<t<T
(t− θ)2 = (T/2)2,

and
φ(x, t) = eλψ(x,t).

The constant λ > 0 will be set in Proposition 2.1. In view of the Carleman inequalities for the
parabolic operators with regular weights, we need to use cut off functions in time. On the other
hand, in view to manage our infinite wave guide we will need also to consider cut off functions
in space but only in the infinite direction x1. These cut-off functions will make appear additive
terms coming from the commutator between the evolution operator and these cut-off functions.
These residual terms will be estimated thanks to the following crucial properties of the weight
function.

Proposition 1.1. There exist T > 0, L > l and ε > 0 such that (1.2) holds and, setting

OL,ε :=
{

ΩL ×
(
(0, 2ε) ∪ (T − 2ε, T )

)}
∪
{(

(−L,−L+ 2ε) ∪ (L− 2ε, L)
)
× ω × (0, T )

}
,

we have
d1 < d0 < d2 (1.3)

where
d0 = inf

Ωl
φ (·, θ) , d1 = sup

OL,ε

φ, d2 = sup
ΩL

φ (·, θ) .

These two estimates will be fruitful in Section 3 to solve our inverse problem.

Proof. First we define β0 := infx∈Ωl ψ(x, θ) = infx∈Ωl(|x′ − a′|2 − x2
1) + M1 and β1 > 0 such

that
β2

1 := sup
x∈ΩL

(|x′ − a′|2 − x2
1)− inf

x∈Ωl
(|x′ − a′|2 − x2

1).

Note that β2
1 = supx′∈ω |x′ − a′|2 − infx′∈ω |x′ − a′|2 + l2.

Then, more precisely, we consider L and T = 2L sufficiently large such that L > l and β2 :=
T − θ − β1 > 0.

As we have changed L we might have to push a′ further away from ω to ensure simultaneously
the condition (1.2) and β2 > 0. In the case n ≥ 3, we can push a′ in a specific direction that
does not modify the value of β1. The case n = 2 can be dealt with explicit computations. Here
we take advantage of the particular form of our weight function d(x).

With these definitions, we get

(T − θ)2 ≥ β2
1 + β2

2 = sup
x∈ΩL

(|x′ − a′|2 − x2
1)− inf

x∈Ωl
(|x′ − a′|2 − x2

1) + β2
2

≥ sup
x∈ΩL

(|x′ − a′|2 − x2
1) +M1 − β0 + β2

2 .

Then, for all x ∈ ΩL,

ψ(x, T ) ≤ |x′ − a′|2 − x2
1 − sup

x∈ΩL

(|x′ − a′|2 − x2
1) + β0 − β2

2 ≤ β0 − β2
2 .

3



As ψ(x, 0) = ψ(x, T ), we deduce that there exists ε > 0 such that ε < T
4 and:

for all x ∈ ΩL and t ∈ ((0, 2ε) ∪ (T − 2ε, T )), ψ(x, t) < β0 −
β2

2

2
.

Now, we choose ε small enough such that l ≤ L − 2ε and due to the symmetric role played by
t− θ and x1 in the formulation of ψ(x, t) by the same way we have:

∀x ∈ ((−L,−L+ 2ε) ∪ (L− 2ε, L))× ω and t ∈ (0, T ), ψ(x, t) < β0 −
β2

2

2
.

These two estimates end the proof of Proposition 1.1.

Let us remark that the weight function is bounded by below (away from 0) et by above on
QL. The fact that the weights do not explode will be convenient in various estimates.

Finally we define

ΓL = {x ∈ ∂ΩL, 〈x− a, ν(x)〉 ≥ 0}, γL = ΓL ∩ ∂Ω. (1.4)

Therefore γL doesn’t contain any cross section. Here 〈·, ·〉 denotes the usual inner product in
Rn and ν(x) is the outward unit normal vector to ∂ΩL at x.

Notice that, due to the geometry, ν1(x) the first component of ν(x) vanishes on γL. Thus,
we obtain

n∑
j=1

c(x)∂jd(x)νj(x) ≤ 0, ∀x ∈ ∂ΩL\ΓL. (1.5)

This is one of the conditions required for the weight function in the Carleman inequality proved
in [26] that we will use in Section 2.

Let VL be a neighbourhhod of the lateral boundary of ΩL i.e. an open set such that VL ⊂⊂ Ω
and

∂VL ⊃
(
∂ΩL ∩ ∂Ω

)
. (1.6)

We also define
Ω̃L = ΩL\VL. (1.7)

Let c∗ ∈ C1(Ω) ∩ L∞(Ω), c∗ > Cmin > 0 on Ω and M̃ > 0 a given constant. We will consider
the following admissible set of diffusion coefficients

D =

{
c ∈ C1(Ω) ∩ L∞(Ω) such that inf

Ω
c > 0, c = c∗ on VL and ‖c‖C1(Ω) < M̃

}
.

Notice that this means that the diffusion coefficient is supposed to be known in a neighbourhood
of the lateral boundary of interest.

To ease the reading of Section 4, up to a restriction of VL, we assume that there exists r > 0
such that

VL ∩ ΩL = (−L,L)×
{
x′ ∈ ω ; dist(x′,Rn−1\ω) < r

}
. (1.8)

1.3 Regularity assumptions for the inverse problem

The method of Carleman estimate used in this paper requires solutions of the problem (1.1)
that are sufficiently regular. Indeed the Buckgheim-Klibanov method [3] implies several time
differentiations of system (1.1).
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We assume in the following that c ∈ D and that u is an element of H = H3(0, T,H3(Ω))
satifying the a-priori bound

‖u‖H < M for a given M > 0.

More precisely, for the proof of Theorem 1.1, we assume that u is a strong solution of (1.1)
enjoying the following regularity

u ∈ C0(0, T,H3(Ω)) ∩ C1(0, T,H1(Ω)) ∩H3(0, T, L2(Ω)) ∩ L2(0, T,H3(Ω)).

In order to obtain the regularity condition u ∈ H3(0, T,H3(Ω)), we will use [15, Theorem 5.3].
Denote by A0 the self-adjoint realization of −∇(c∇·) with domain

D(A0) = H2(Ω) ∩H1
0 (Ω). (1.9)

By deriving u three times with respect to the time variable t, if we suppose that u0 ∈ D(A3
0) is

such that A3u0 ∈ H2(Ω), then we get that u ∈ H3(0, T,H3(Ω)).
We will use the following notations. Let α = (α1, · · · , αn) be a multi-index with αi ∈ N, we

set ∂αx = ∂α1
1 · · · ∂αnn , |α| = α1 + · · ·+ αn and we define

H2,1(QL) =
{
u ∈ L2(QL) ; ∂αx ∂

αn+1

t u ∈ L2(QL), |α|+ 2αn+1 ≤ 2
}
,

endowed with its norm

‖u‖2H2,1(QL) =
∑

|α|+2αn+1≤2

‖∂αx ∂
αn+1

t u‖2L2(QL).

1.4 Main results

The first main result of this article is the following global stability estimate.

Theorem 1.1. Let l > 0. Let T > 0, L > l and a ∈ Rn\ΩL satisfying the conditions of
Proposition 1.1. Assume that uj for j = 1, 2 are solutions of (1.1) where cj and u0,j are
substituted respectively to c and u0. Assume also that c1, c2 ∈ D. Then, if there exists C > 0
such that ∣∣∣∣∇d · ∇u2

(
x,
T

2

)∣∣∣∣ ≥ C, for a.e. x ∈ Ω̃L, (1.10)

where Ω̃L is defined by (1.7), then,

‖c1 − c2‖2H1(Ωl)
≤ K

(
‖(u1 − u2)(·, T/2)‖2H3(ΩL) +

∫
γL×(0,T )

2∑
k=1

∣∣∂ν(∂kt (u1 − u2))
∣∣2)κ

where ∂νu = ν · ∇u. Here, K > 0 and κ ∈ (0, 1) are two constants depending only on ω, l, M ,

M̃ , M1, T and a.

Remark 1.1. A careful inspection of the proof of Theorem 1.1 shows that the same result
holds if we only assume that the diffusion coefficients c1 and c2 as well as their gradients are
known on the boundary of ΩL (instead of in a neighbourhood of this boundary) i.e. if c1, c2 ∈
C1(Ω) ∩ L∞(Ω) are such that

inf
Ω
cj > 0, cj = c∗ and ∇cj = ∇c∗ on ∂Ω ∩ ∂ΩL, and ‖cj‖C1(Ω) < M̃

and one replaces (1.10) by∣∣∣∣∇d · ∇u2

(
x,
T

2

)∣∣∣∣ ≥ C, for a.e. x ∈ ΩL.
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Remark 1.2. Notice that, as already highlighted, the boundary observation is on γL and thus
does not contain any cross-section in ΩL. Though the equation is set on the unbounded guide
Ω, the stability estimate on Ωl is obtained with measurements on the finite portion ΩL.

Remark 1.3. We look at the homogeneous Dirichlet case in order to simplify the regularity
required for the solution u of (1.1) but we could obtain the same inverse result in the case of
the inhomogeneous Dirichlet case ∂tu−∇ · (c∇u) = 0 in Q,

u = h on Σ,
u(x, 0) = u0(x) in Ω.

(1.11)

The proof of Theorem 1.1 follows the ideas of [3] and is proved in Section 3. It strongly
relies on the Carleman estimate given in Section 2. This strategy is quite classical.

The drawback is that, to develop the Carleman machinery, one needs the technical (not
so easy to verify) assumption (1.10). In the following we propose a strategy to remove this
assumption:

• we prove the existence of a boundary control such that the associated solution of (1.11)
satisfies (1.10);

• we fix this boundary condition for all the required measurements that is we deal only with
system (1.11) for a fixed h.

More precisely, the second main result of this article reads as follows

Theorem 1.2. Let l > 0. Let T > 0, L > l and a ∈ Rn\ΩL satisfying the conditions of
Proposition 1.1.

For j = 1, 2 and h ∈ L2(0, T ; ∂Ω) we denote by uj the solutions of (1.11) where cj and u0,j

are substituted respectively to c and u0.
Let c2 ∈ D be such that c2 and for every j ∈ {1, . . . , n}, ∂jc2, are uniformly continuous and

bounded functions in Ω. Then there exists a control h ∈ L2(γL × (0, T )) depending on c2 such
that for any c1 ∈ D,

‖c1 − c2‖2H1(Ωl)
≤ K

(
‖(u1 − u2)(., T/2)‖2H3(ΩL) +

∫
γL×(0,T )

2∑
k=1

∣∣∂ν(∂kt (u1 − u2))
∣∣2)κ

where ∂νu = ν · ∇u. Here, K > 0 and κ ∈ (0, 1) are two constants depending only on ω, l, M ,

M̃ , M1, T and a.

As noticed the boundary condition h exerted for the measurements associated to c1 only
depends on c2. Morally, this means that the coefficient c2 is known and that Theorem 1.2 is a
local stability estimate around c2.

Remark 1.4. Notice that for any γ̃L ⊂ γL the same statement holds true with a source-term h
supported in γ̃L.

This result is proved in Section 4. The main difficulty is to prove the existence of a control
h such that the associated solution satisfies (1.10). This part of the proof is inspired by the
strategy developed in [1] for systems on bounded domains.

2 Global Carleman estimate for a parabolic equation in a
cylindrical domain

We start from a global Carleman-type estimate proved by Yuan and Yamamoto [26, Theorem
2.1, (2)] in a bounded domain. Its validity is ensured by the estimates (1.2) and (1.5) satisfied
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by our weight functions. For more informations about Carleman estimates in a parabolic setting
we refer to Yamamoto [25].

Let s > 0 and denote

LHS(u) :=

∫
QL

(
1

sφ
(|∂tu|2 + |∆u|2) + sφ |∇u|2 + s3φ3|u|2

)
e2sφ.

In the following parts, C will be a generic positive constant.

Proposition 2.1. There exist a value of λ > 0 and positive constants s0 and C = C(s0) such
that

LHS(u) ≤ C‖esφf‖2L2(QL) + Cs

∫
ΓL×(0,T )

|∂νu|2e2sφ, (2.1)

for all s > s0, and all u ∈ H2,1(QL) satisfying
∂tu−∇ · (c∇u) = f, in ΩL,

u(·, 0) = u(·, T ) = 0 in ΩL,

u = 0 on ∂ΩL × (0, T ).

Let us remark that the Carleman inequality [26, Theorem 2.1, (2)] uses also λ as a second
large parameter. As we will not use it, we now consider λ fixed in all the rest of the article such
that Proposition 2.1 holds.

As in [4, Prop 4.2], we deduce the following Carleman inequality and we detail the proof for
better understanding. The key difference with the Carleman inequality of Proposition 2.1 is to
remove, on the cross-sections of ΩL, the boundary condition and the observation.

Proposition 2.2. There exist positive constants λ0, s0 and C = C(λ0, s0) such that

LHS(u) ≤ C‖esφf‖2L2(QL) + Cs3e2sd1‖u‖2H2,1(QL) + Cs

∫
γL×(0,T )

|∂νu|2e2sφ, (2.2)

for all s > s0, λ > λ0 and all u ∈ H2,1(QL) satisfying
∂tu−∇ · (c∇u) = f, in ΩL,

u(·, 0) = u(·, T ) = 0 in ΩL,

u = 0 on (∂Ω ∩ ∂ΩL)× (0, T ).

Proof. Let χ, η be C∞ cut-off functions defined by 0 ≤ χ ≤ 1, 0 ≤ η ≤ 1,

η(t) =

{
0 if t ∈ [0, ε] ∪ [T − ε, T ],

1 if t ∈ [2ε, T − 2ε],
χ(x) =

{
0 if x1 ∈ (−∞,−L+ ε] ∪ [L− ε,+∞),

1 if x1 ∈ [−L+ 2ε, L− 2ε].
(2.3)

Recall that ∂tu−∇ · (c∇u) = f. We consider y = ηχu and we get

∂ty −∇ · (c∇y) = h with h = ηχf + ηR(u) + (∂tη)χu,

where R is the first order differential operator defined by R(u) = −∇ · (cu∇χ)− c∇χ · ∇u.
Then we can apply the previous Carleman estimate (2.1) and we deduce that there exists a

positive constant C such that

LHS(y) ≤ C‖esφh‖2L2(QL) + Cs

∫
ΓL×(0,T )

|∂νy|2e2sφ.
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Recall that γL is defined in (1.4). Then,∫
ΓL×(0,T )

|∂νy|2e2sφ ≤
∫
γL×(0,T )

|∂νu|2e2sφ.

Moreover
‖esφηR(u)‖2L2(QL) ≤ Ce

2sd1‖u‖2L2(0,T,H1(ΩL))

and ‖esφ(∂tη)χu‖2L2(QL) ≤ Ce
2sd1‖u‖2L2(0,T,L2(ΩL)).

Then we obtain

LHS(y) ≤ C‖esφf‖2L2(QL) + Ce2sd1‖u‖2L2(0,T,H1(ΩL)) + Cs

∫
γL×(0,T )

|∂νu|2e2sφ. (2.4)

Now we deal with LHS(y). For j = 0, 1, 2, (with ∇0u = u, ∇1u = ∇u, ∇2u = ∆u) since
χu = (1− η)χu+ y, it comes that

‖(sφ)3/2−jesφ∇j(χu)‖L2(QL) ≤ ‖(sφ)3/2−jesφ(1−η)∇j(χu)‖L2(QL) +‖(sφ)3/2−jesφ∇jy‖L2(QL).

Thus,

‖(sφ)3/2−jesφ∇j(χu)‖L2(QL) ≤ C(s3/2esd1‖u‖H2,1(QL) + ‖(sφ)3/2−jesφ∇jy‖L2(QL)).

Doing the same for the term ∂t(χu) = (−∂tη)χu+ (1− η)χ∂tu+ ∂ty we deduce that

‖(sφ)−1/2esφ∂t(χu)‖L2(QL) ≤ esd1‖u‖H2,1(QL) + ‖(sφ)−1/2esφ∂ty‖L2(QL).

Thus since

LHS(χu) =

2∑
j=0

‖(sφ)3/2−jesφ∇ju‖2L2(QL) + ‖(sφ)−1/2esφ∂t(χu)‖2L2(QL)

we have
LHS(χu) ≤ C(s3e2sd1‖u‖2H2,1(QL) + LHS(y)).

Then by the identities

 ∂tu = ∂t(χu) + (1− χ)∂tu,
∇u = ∇(χu) + (1− χ)∇u− u∇χ,
∆u = ∆(χu) + (1− χ)∆u− 2∇χ · ∇u− u∆χ,

we get

LHS(u) ≤ C(LHS(χu) + s3e2sd1‖u‖H2,1(QL)) ≤ C(s3e2sd1‖u‖2H2,1(QL) + LHS(y)).

Then, from (2.4), we finish the proof.

3 Inverse Problem

3.1 Preliminary lemmas

We denote in the following b(θ) := b(·, θ) for any function b. As for the reconstruction of zeroth
order coefficient (see [4, p.6]), we need to assume some hypothesis on the solution u at time θ
on ΩL. For the diffusion coefficient, the assumption is more involved and is exactly (1.10).

Now following an idea developed for example in [2, Lemma 2.4], we obtain the following
result. Note that this key lemma is the one that requires the assumption (1.10). Thus, for the
sake of completeness, we will give its proof.
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Lemma 3.1. Assume that (1.10) is satisfied and consider the first order partial differential
operator Pf = ∇ · (f∇u2(θ)). Then there exist positive constants s1 > 0 and C1 > 0 such that
for all s ≥ s1

s2

∫
ΩL

e2sφ(θ)|f |2 ≤ C1

∫
ΩL

e2sφ(θ)|Pf |2,

for all f ∈ H1
0 (ΩL) such that f = 0 in VL (see (1.6)).

Proof. Let f ∈ H1
0 (ΩL) be such that f = 0 in VL. We denote w = esφ(θ)f and Qw =

esφ(θ)P (e−sφ(θ)w). So we get Qw = Pw − sw∇φ(θ) · ∇u2(θ). Therefore we have∫
ΩL

|Qw|2 ≥ s2

∫
ΩL

w2|∇φ(θ) · ∇u2(θ)|2 − 2s

∫
ΩL

Pw (w∇φ(θ) · ∇u2(θ))

= s2λ2

∫
ΩL

w2φ(θ)2|∇d · ∇u2(θ)|2 − 2sλ

∫
ΩL

(Pw)wφ(θ)(∇d · ∇u2(θ)).

As, Pw = ∇ · (w∇u2(θ)) = ∇w · ∇u2(θ) + w∆u2(θ), we obtain,∫
ΩL

|Qw|2 ≥ s2λ2

∫
ΩL

w2φ(θ)2|∇d · ∇u2(θ)|2 − sλ
∫

ΩL

φ(θ)(∇(w2) · ∇u2(θ))(∇d · ∇u2(θ))

− 2sλ

∫
ΩL

w2φ(θ)∆u2(θ)(∇d · ∇u2(θ)).

Thus integrating by parts the second term of the right-hand side we obtain∫
ΩL

|Qw|2 ≥ s2λ2

∫
ΩL

w2φ(θ)2|∇d · ∇u2(θ)|2 + sλ

∫
ΩL

w2∇ ·
(
φ(θ)

(
∇d · ∇u2(θ)

)
∇u2(θ)

)
− 2sλ

∫
ΩL

w2φ(θ)∆u2(θ)(∇d · ∇u2(θ)).

Getting back to the original variables we obtain∫
ΩL

e2sφ(θ)|Pf |2 =

∫
ΩL

|Qw|2 ≥ s2λ2

∫
ΩL

e2sφ(θ)f2 φ(θ)2|∇d · ∇u2(θ)|2

+ sλ

∫
ΩL

e2sφ(θ)f2 ∇ ·
(
φ(θ)

(
∇d · ∇u2(θ)

)
∇u2(θ)

)
− 2sλ

∫
ΩL

e2sφ(θ)f2 φ(θ)∆u2(θ)(∇d · ∇u2(θ)).

Thus, using assumption (1.10), there exists a constant C > 0 depending on M such that∫
ΩL

e2sφ(θ)|Pf |2 ≥ Cs2

∫
Ω̃L

e2sφ(θ)f2 − Cs
∫

ΩL

e2sφ(θ)f2

where Ω̃L is defined by (1.7). As f = 0 in VL,∫
ΩL

e2sφ(θ)|Pf |2 ≥ Cs2

∫
ΩL

e2sφ(θ)f2 − Cs
∫

ΩL

e2sφ(θ)f2.

We conclude taking s sufficiently large.

Moreover we recall the following classical result (see [8]).
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Lemma 3.2. There exist positive constants s2 and C such that∫
ΩL

e2sφ(θ)|z(θ)|2 ≤ Cs
∫
QL

e2sφ|z|2 +
C

s

∫
QL

e2sφ|∂tz|2

for all s ≥ s2 and z ∈ H1(0, T ;L2(ΩL)).

Proof. Recall that η is defined by (2.3). Consider any w ∈ H1(0, T ;L2(ΩL)). We have∫
ΩL

|w(x, θ)|2 =

∫
ΩL

|η(θ)w(x, θ)|2 dx

=

∫
ΩL

∫ θ

0

∂t(η
2(t)|w(x, t)|2) dt dx

= 2

∫ θ

0

∫
ΩL

η2(t)w(x, t)∂tw(x, t) dxdt+ 2

∫ θ

0

∫
ΩL

η(t)η′(t)|w(x, t)|2 dxdt.

As 0 ≤ η ≤ 1, using Young’s inequality, it comes that for any s > 0,∫
ΩL

|w(x, θ)|2 ≤ C(s+ 1)

∫
QL

|w|2 +
C

s

∫
QL

|∂tw|2.

Then we can conclude replacing w by esφz.

3.2 Proof of Theorem 1.1

Now we study the linearized inverse problem associated with (1.1) and we evaluate some Sobolev
norm of the conductivity in terms of suitable observations of the solution of (1.1) on a part of
the lateral boundary γL. For this consider the following systems with c1, c2 ∈ D ∂tu1 −∇ · (c1∇u1) = 0 in Q,

u1 = 0 on Σ
u1(x, 0) = u0,1(x) in Ω,

and  ∂tu2 −∇ · (c2∇u2) = 0 in Q,
u2 = 0 on Σ
u2(x, 0) = u0,2(x) in Ω.

Let
y = u1 − u2, c = c1 − c2. (3.1)

We obtain
∂ty −∇ · (c1∇y) = ∇ · (c∇u2) in Q.

Remark 3.1. In the rest of the proof we will deal with y only. Thus, even if we had started
with (1.11), y would still enjoy homogeneous Dirichlet boundary condition. This remark will be
crucial in Section 4 to prove Theorem 1.2.

We decompose the proof in three steps.

• First step: as in Proposition 2.2, we derive the equation satified by z = χηy where the
cut-off functions are defined by (2.3). This will allow to work on the bounded domain
ΩL × (0, T ).

10



As η only depends on t, we have

∂t(ηy)−∇ · (c1∇(ηy)) = ∇ · (c∇(ηu2)) + y∂tη.

Thus,
χ(∂t(ηy)−∇ · (c1∇(ηy))) = χ(∇ · (c∇(ηu2)) + y∂tη).

Moreover

∇ · (c1∇z) = ∇ · (c1∇(χηy))

= ∇ · (c1χ∇(ηy)) +∇ · (c1ηy∇χ)

= χ∇ · (c1∇(ηy)) + 2c1∇(ηy) · ∇χ+ ηy∇ · (c1∇χ)

and
∇ · (cχ∇(ηu2)) = χ∇ · (c∇(ηu2)) + c∇(ηu2) · ∇χ.

So we get

∂tz−∇· (c1∇z) = ∇· (cχ∇(ηu2)) +χy∂tη−2c1∇(ηy) ·∇χ−ηy∇· (c1∇χ)− c∇(ηu2) ·∇χ.
(3.2)

• Second step: to estimate ∂tz (appearing in Lemma 3.2) we differentiate (3.2) with respect
to t.

Let
z1 = ∂tz, z2 = ∂2

t z.

Then,
∂tz1 −∇ · (c1∇z1) = f1 (3.3)

where

f1 : = η∇ · (cχ∇(∂tu2)) + ∂tη∇ · (cχ∇u2))− c∇(∂t(ηu2)) · ∇χ+ χ∂t(y∂tη)

− 2c1∇(∂t(ηy)) · ∇χ− ∂t(ηy)∇ · (c1∇χ).

And in the same way
∂tz2 −∇ · (c1∇z2) = f2

where

f2 : = η∇ · (cχ∇(∂2
t (u2))) + 2∂tη∇ · (cχ∇(∂tu2)) + ∂2

t η∇ · (cχ∇u2)

+ χ∂2
t (y∂tη)− 2c1∇(∂2

t (ηy)) · ∇χ− ∂2
t (ηy)∇ · (c1∇χ)− c∇(∂2

t (ηu2)) · ∇χ.

We evaluate (3.2) at t = θ

∂tz(θ)−∇ · (c1∇z(θ)) = P (cχ)− c∇u2(θ) · ∇χ− 2c1∇y(θ) · ∇χ− y(θ)∇ · (c1∇χ) (3.4)

with P the operator defined in Lemma 3.1.

Using Lemma 3.1, we obtain an upper bound for a weighted L2-norm of c. Notice that
indeed cχ ∈ H1

0 (ΩL). The homogeneous Dirichlet boundary condition on the cross-section
is ensured by the presence of the cut-off function χ. As c1, c2 ∈ D, we also get that cχ = 0
in VL. Thus,

s2

∫
ΩL

e2sφ(θ)c2χ2 ≤ C
∫

ΩL

e2sφ(θ)(P (cχ))2.

11



Then, using also (3.4), there exists a positive constant C such that for s sufficiently large

s2

∫
ΩL

e2sφ(θ)c2χ2 ≤ C
∫

ΩL

e2sφ(θ)c2|∇χ|2 + C

∫
ΩL

e2sφ(θ)|∂tz(θ)|2

+ C

∫
ΩL

e2sφ(θ)(|∆z(θ)|2 + |∇z(θ)|2 + |∇y(θ)|2 + |y(θ)|2).

Recall that
∫

ΩL
e2sφ(θ)|∂tz(θ)|2 =

∫
ΩL

e2sφ(θ)|z1(θ)|2. Thus, applying Lemma 3.2 to z1

yields

s2

∫
ΩL

e2sφ(θ)c2χ2 ≤ Ce2sd1 + Ce2sd2B1(θ) + Cs

∫
QL

e2sφ|z1|2 +
C

s

∫
QL

e2sφ|z2|2 (3.5)

with B1(θ) = ‖z(θ)‖2H2(ΩL) + ‖y(θ)‖2H1(ΩL).

Moreover by the Carleman inequality (2.2), for s sufficiently large, we have for i = 1, 2,∫
QL

e2sφ|zi|2 ≤
∫
QL

φ3e2sφ|zi|2

≤ C

s3

∫
QL

e2sφ|fi|2 + Ce2sd1‖zi‖2H2,1(QL) +
C

s2

∫
γL×(0,T )

|∂νzi|2e2sφ. (3.6)

Thus from (3.5) and (3.6) we obtain

s2

∫
ΩL

e2sφ(θ)c2χ2 ≤ Ce2sd1 + Ce2sd2B1(θ) +
C

s2

∫
QL

e2sφ(|f1|2 + |f2|2)

+ Cse2sd1
(
‖z1‖2H2,1(QL) + ‖z2‖2H2,1(QL)

)
+
C

s

∫
γL×(0,T )

(
|∂νz1|2 + |∂νz2|2

)
e2sφ.

Notice that, as ‖ui‖H < M , the term ‖z1‖2H2,1(QL) + ‖z2‖2H2,1(QL) is bounded.

Now let us deal with the terms
∫
QL

e2sφ|fi|2. The first term in f1 (see (3.3)) can be

controlled by (cχ)2 + |∇(cχ)|2. The other terms involve derivatives of the cut-off functions

(and bounded quantities depending on M and M̃). Thus, since e2sφ ≤ e2sφ(θ), we get∫
QL

|f1|2e2sφ ≤ Ce2sd1 + C

∫
ΩL

((cχ)2 + |∇(cχ)|2)e2sφ(θ).

The same computations on f2 finally imply

s2

∫
ΩL

e2sφ(θ)c2χ2 ≤ Ce2sd2B1(θ) +
C

s2

∫
ΩL

((cχ)2 + |∇(cχ)|2)e2sφ(θ) + Cse2sd1

+
C

s
e2sd2

∫
γL×(0,T )

(|∂νz1|2 + |∂νz2|2). (3.7)

• Third step: we apply the same strategy to derive an estimate of a weighted H1-norm of c.

For any integer 1 ≤ i ≤ n, taking the space derivative with respect to xi in (3.4), we obtain

∂t(∂xiz(θ))−∇ · (c1∇∂xiz(θ)) = ∇ · ((∂xic1)∇z(θ)) +∇ · (∂xi(cχ)∇u2(θ))

+∇ · (cχ∇(∂xiu2(θ)))− ∂xi(c∇u2(θ) · ∇χ)− ∂xi(2c1∇y(θ) · ∇χ)− ∂xi(y(θ)∇ · (c1∇χ))
(3.8)
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Notice that the second term of the right-hand side can be expressed as

∇ · (∂xi(cχ)∇u2(θ)) = P (∂xi(cχ)).

As previously, the fact that c1, c2 ∈ D and the definition of χ imply that we can apply
again Lemma 3.1: there exists a positive constant C such that for s sufficiently large,

s2

∫
ΩL

e2sφ(θ)(∂xi(cχ))2 ≤ C
∫

ΩL

e2sφ(θ)(P (∂xi(cχ)))2.

Thus, expressing P (∂xi(cχ)) from (3.8) we obtain

s2

∫
ΩL

e2sφ(θ)(∂xi(cχ))2 ≤ Ce2sd2B2(θ) + C

∫
ΩL

e2sφ(θ)|∂t(∂xiz(θ))|2 + C

∫
OL,ε

e2sφ(θ)

+ C

∫
ΩL

e2sφ(θ)(|cχ|2 + |∇(cχ)|2)

with B2(θ) = ‖z(θ)‖2H3(ΩL) + ‖y(θ)‖2H2(ΩL).

Then,

s2

∫
ΩL

e2sφ(θ)(∂xi(cχ))2 ≤ Ce2sd2B2(θ) + C

∫
ΩL

e2sφ(θ)|∂xiz1(θ))|2

+ C

∫
ΩL

e2sφ(θ)(|cχ|2 + |∇(cχ)|2) + Ce2sd1 .

So using Lemma 3.2

s2

∫
ΩL

e2sφ(θ)(∂xi(cχ))2 ≤ Ce2sd2B2(θ) + C

∫
ΩL

e2sφ(θ)
(
|cχ|2 + |∇(cχ)|2

)
+ Ce2sd1

+ Cs

∫
QL

e2sφ(∂xiz1)2 +
C

s

∫
QL

e2sφ(∂xiz2)2. (3.9)

Moreover by the Carleman inequality (2.2), we have for j = 1, 2,

s

∫
QL

e2sφ|∂xizj |2 ≤ C
∫
QL

sφe2sφ|∂xizj |2

≤ C
∫
QL

e2sφ|fj |2 + Cs3e2sd1‖zj‖2H2,1(QL) + Cs

∫
γL×(0,T )

|∂νzj |2e2sφ

The term in fj in the right-hand side is estimated as in the previous step. This leads to

s

∫
QL

e2sφ|∂xizj |2 ≤ C
∫
QL

e2sφ((cχ)2 + |∇(cχ)|2) + Cs3e2sd1 + Cs

∫
γL×(0,T )

|∂νzj |2e2sφ.

(3.10)
From (3.9) and (3.10) we deduce

s2

∫
ΩL

e2sφ(θ)(∂xi(cχ))2 ≤ Ce2sd2B2(θ) + C

∫
ΩL

e2sφ(θ)
(
|cχ|2 + |∇(cχ)|2

)
+ Cs3e2sd1

+ Cs

∫
γL×(0,T )

(
|∂νz1|2 + |∂νz2|2

)
e2sφ (3.11)

which ends this step.
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Using inequalities (3.11) for 1 ≤ i ≤ n and gathering with (3.7), we get for s sufficiently
large

s2

∫
ΩL

e2sφ(θ)
(
(cχ)2 + |∇(cχ)|2

)
≤ CsB3(θ) + Cs3e2sd1

with B3(θ) = B1(θ) +B2(θ) +
∫
γL×(0,T )

(|∂νz1|2 + |∂νz2|2).

Therefore
‖c‖2H1(Ωl)

≤ C
(
e2s(d2−d0)B3(θ) + se2s(d1−d0)

)
.

As d1 − d0 < 0 and d2 − d0 > 0, optimizing this last inequality with respect to s, we
complete the proof.

4 Removing the technical assumption by an adapted con-
trol

In Theorem 1.1, we assume (1.10) satisfied. However since this hypothesis concerns the gradient

of one solution of (1.1) in Ω̃L, it is difficult to verify it in the case of real applications. Thus,
we develop ideas based on control theory to ensure such strong hypothesis.

The goal of this section is to prove that for any c ∈ D sufficiently regular, there exists
a control h such that the associated solution of (1.11) satisfies (1.10). Then, the proof of
Theorem 1.2 will follow directly (see Section 4.4). As the condition (1.10) involves a property
for the gradient, we will seek for controllability results in stronger norms, namely H1(ΩL). The
strategy is inspired by [1] and is as follows:

• Assume that there is a function ub sufficiently smooth and satisfying (1.10) i.e. there exists
δ > 0 such that

|∇ub · ∇d| ≥ δ > 0 a.e. in Ω̃L.

The existence and regularity of such function is detailed in Section 4.3.

• Let β a positive constant be such that |∇d| ≤ β in ΩL. Then, if there exists h such that
the associated solution of (1.11), denoted by u(x, t;h), satisfies

‖∇u(., θ, h)−∇ub‖L∞(ΩL) ≤
δ

2β
,

it comes that u(·, ·;h) satisfies (1.10).

• To do so, we will prove the following result: for any ub sufficiently regular, any ε > 0 and
any τ > 0, there exists h ∈ L2(γL × (0, T )) such that

‖u(·, τ ;h)− ub‖H2(Ω) ≤ ε.

A more precise statement is given in Proposition 4.5. This allows to construct a sequence
of controls hn such that

∇u(x, θ, hn) −→
n→+∞

∇ub(x), for a.e. x ∈ Ω,

and thus proves the previous item. To prove this result, first, we use classical results from
control theory to establish this approximate controllability in L2(Ω)-norm. Then, using the
regularity properties of system (1.1), we extend this result to the H2(Ω)-norm. To do so,
we extend to unbounded domains the strategy given in [1]: after reaching approximately
(in the weak norm) the target, let the system evolves freely to benefit from the regularizing
properties but not too long to stay close to the target (in strong norms). We start this
section recalling those regularization properties we will need.
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Assume in the rest of this section that c satisfies the assumptions given in Theorem 1.2 for
c2.

4.1 Analytic properties of the elliptic operator

First, notice that the H2(Ω)-norm we are interested in is related to the operator A0 (see (1.9)).
Indeed from classical elliptic results (see for instance [17, Theorem 3.1.1]), one has the following
result.

Proposition 4.1. There exists a positive constant C such that for any u ∈ D(A0),

‖u‖H2(Ω) ≤ C‖A0u‖L2(Ω). (4.1)

Then, we notice that the following propositions (see [17, Theorems 3.1.2 ii) and 3.1.3 ii)]),
imply that −A0 generates an analytic semigroup on L2(Ω).

Proposition 4.2. There exists ω0 ∈ R such that for any <(λ) ≥ ω0, for any f ∈ L2(Ω) the
problem {

λu−∇(c∇u) = f in Ω
u = 0 on ∂Ω

has a unique solution u ∈ H2(Ω) which continuously depends on f . Moreover, the resolvent set
ρ(A0) satisfies {λ ∈ C,<(λ) ≥ ω0} ⊂ ρ(A0).

Proposition 4.3. There exist ω ≥ ω0 and C > 0 such that if <(λ) ≥ ω, for any u ∈ D(A0),
then

|λ|‖u‖L2(Ω) ≤ C‖λu−A0u‖L2(Ω).

From Proposition 4.2 and Proposition 4.3 we deduce that the operator −A0 is sectorial and
thus generates an analytic semigroup. Therefore (see for instance [19, (6.7) p.70]) there exists
a positive constant C such that for all t > 0 and for all u ∈ D(A0)

‖A0e
−tA0u‖L2(Ω) ≤

C

t
‖u‖L2(Ω). (4.2)

Finally, from (4.1) and (4.2) we get that there exists a positive constant C such that for all
t > 0 and for all u ∈ D(A0)

‖e−tA0u‖H2(Ω) ≤
C

t
‖u‖L2(Ω). (4.3)

This is the key inequality we will use.

4.2 Approximate controllability

First we give a classical result of approximate controllability in L2(Ω).

Proposition 4.4. For any ub ∈ L2(Ω), any ε > 0 and any τ > 0, there exists h ∈ L2(γL×(0, τ))
such that

‖u(·, τ ;h)− ub‖L2(Ω) ≤ ε.

Proof. This result is quite classical in control theory. Let us sketch its proof for the sake of
completeness. Let Ω̂ be an open set in Rn satisfying

Ω ⊂ Ω̂ and
(
∂Ω ∩

(
Rn\∂Ω̂

))
⊂ γL
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and let ω̂ be a domain such that ω̂ ⊂⊂
(

Ω̂ ∩
(
Rn\Ω

))
. From [24] and a classical duality

argument, we have the approximate controllability in L2(Ω̂ × (0, τ)) with a localized control
g ∈ L2(ω̂ × (0, τ)) for the auxiliary problem

∂tu−∇ · (c∇u) = 1ω̂g in Ω̂× (0, τ),

u = 0 on ∂Ω̂× (0, τ),

u(., 0) = u0 in Ω̂.

We conclude the proof of this proposition by taking h as the trace of u on γL.

We now turn to approximate controllability in more regular norms.

Proposition 4.5. For any ub ∈ D(A2
0), any ε > 0 and any τ > 0, there exists h ∈ L2(γL×(0, τ))

such that
‖u(·, τ ;h)− ub‖H2(Ω) ≤ ε.

Proof. Let ub ∈ D(A2
0) and ε > 0. From Proposition 4.4, for any τ1 ∈ (0, τ) and any δ > 0,

there exists h ∈ L2(γL × (0, τ1)) such that

‖u(·, τ1;h)− ub‖L2(Ω) ≤ δ.

In what follows, we extend h by 0 on (τ1, τ). Thus,

u(·, τ ;h) = e−(τ−τ1)A0u(·, τ1;h).

First, the regularizing properties will allow to obtain estimates in stronger norms. Indeed, from
(4.3) we get ∥∥∥u(·, τ ;h)− e−(τ−τ1)A0ub

∥∥∥
H2(Ω)

=
∥∥∥e−(τ−τ1)A0

(
u(·, τ1;h)− ub

)∥∥∥
H2(Ω)

≤ C

(τ − τ1)
‖u(·, τ1;h)− ub‖L2(Ω)

≤ C

(τ − τ1)
δ. (4.4)

We now prove that for τ1 small enough, e−(τ−τ1)A0ub is not far from ub. Indeed, from [19,
Theorem 6.13], we have∥∥∥A0

(
e−(τ−τ1)A0ub − ub

)∥∥∥
L2(Ω)

=
∥∥∥(e−(τ−τ1)A0 − I)A0ub

∥∥∥
L2(Ω)

=

∥∥∥∥∫ τ−τ1

0

d

dη
(e−ηA0)A0ubdη

∥∥∥∥
L2(Ω)

=

∥∥∥∥∫ τ−τ1

0

e−ηA0A2
0ubdη

∥∥∥∥
L2(Ω)

≤ (τ − τ1)
∥∥A2

0ub
∥∥
L2(Ω)

. (4.5)

From (4.1) and (4.5), we deduce that∥∥∥e−(τ−τ1)A0ub − ub
∥∥∥
H2(Ω)

≤ C(τ − τ1)
∥∥A2

0ub
∥∥
L2(Ω)

. (4.6)
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So using the triangle inequality, estimates (4.4) and (4.6) we obtain

‖u(·, τ ;h)− ub‖H2(Ω) ≤
C

(τ − τ1)
δ + C(τ − τ1)

∥∥A2
0ub
∥∥
L2(Ω)

,

for a specific constant C. Finally, choosing τ1 sufficiently close to τ such that

C(τ − τ1)‖A2
0ub‖L2(Ω) ≤

ε

2

then, δ sufficiently small such that
C

(τ − τ1)
δ ≤ ε

2

end the proof.

4.3 Construction of an appropriate target

In the above proof, to obtain approximate controllability in H2(Ω)-norms we need targets that
are sufficiently regular, namely in D(A2

0). To apply our strategy, we now prove that there exists
some function ub ∈ D(A2

0) and a constant δ > 0 such that

|∇d(x) · ∇ub(x)| ≥ δ, for a.e. x ∈ Ω̃L.

Let ξ1 ∈ C∞(R;R) such that 0 ≤ ξ1 ≤ 1 and{
ξ1(x1) = 0, if |x1| ≥ 2L,

ξ1(x1) = 1, if |x1| ≤ L.

Let ξ′ ∈ C∞(Rn−1;R) such that 0 ≤ ξ′ ≤ 1 and ξ′(x′) = 0, if dist(x′,Rn−1\ω) ≤ r

2
,

ξ′(x′) = 1, if dist(x′,Rn−1\ω) ≥ r,

where r is defined in (1.8). Let

ub(x) := d(x)ξ1(x1)ξ′(x′), ∀x = (x1, x
′) ∈ Ω.

Thus, ub ∈ D(A0) and ∇ub(x) = ∇d(x), for any x ∈ Ω̃L. Due to (1.2), this implies that (1.10)
is satisfied. As ub ∈ C∞(Ω) and ub identically vanishes near the boundary we also obtain that
ub ∈ D(A2

0).

Remark 4.1. Finding such ub in C∞(Ω) such that

inf
ΩL
|∇ub · ∇d| > 0,

can easily be done taking for instance ub = d. The main difficulty is to ensure all the boundary
conditions so that ub ∈ D(A2

0). This is precisely why we assumed that c is known in VL. With
this assumption, there is no requirement on ∇ub near the boundary which allows to use cut-off
functions to design ub.
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4.4 Conclusion

We now have all the ingredients to prove Theorem 1.2. Let ub as constructed in Section 4.3.
Then, from Proposition 4.5, there exists h depending on c2 such that the solution u2 satis-
fies (1.10).

As proved in Section 3, the stability derives from the Carleman inequality applied to y
defined by (3.1). As, u1 and u2 are both solutions of (1.11) with the same boundary condition
h it comes that y solves (1.1) that is with homogeneous Dirichlet boundary conditions. The rest
of the proof remains unchanged.
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