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A B S T R A C T

The cohesive zone modelling (CZM) is extensively used for the simulation of delamination propagation of
composite laminated materials. The Finite Element (FE) method is able to support the CZM. Nevertheless, a
refined mesh in the cohesive zone is required to describe accurately the energy dissipation. A 1D-beam simplified
analysis based on the macro-element (ME) technique has been developed for the stress analysis of bonded joints,
supporting damage evolution adhesive material law. The objective of this paper is to provide a validation of the
ability of this macro-element technique for the simulation of delamination propagation in pure mode I of
composite laminates. This validation is led through a comparative study between experimental test results, 3D
FE model predictions and 1D-beam ME predictions. The experimental test campaign allows in particular for the
assessment of the interlaminar strength and critical energy release rate in pure mode I. The thermoset uni-
directional (UD) prepreg composite material IMA/M21E is used for this paper.

1. Introduction

The composite laminated materials exhibit excellent mechanical in-
plane strengths, the direction of which can be oriented along a wanted
direction. Moreover, the strength-to-mass ratio is so attractive, that
industrial sectors, for which the mass of high strength structures is a
stake, such as aerospace or automotive, exhibit the highest interest in
the composite laminated materials. For example, the recent airliners
A350 XWB and B787 Dreamline content at least 50% of composite la-
minated materials in weight [1]. However, the strength of structures
made of composite laminated materials can be reduced by delamination
[2]. In order to experimentally assess the strength of composite lami-
nated materials against delamination, it is common to use precracked
test specimens, such as double cantilever beam (DCB) or end notch
flexure (ENF) test specimens. The delamination process takes then place
along the selected interface from the precrack location, allowing for the
measurement of critical energy release rates related to mode loading at
crack tip. Cohesive zone modelling (CZM) eventually in conjunction
with Finite Element (FE) is commonly used to simulate the delamina-
tion process [3–9]. Nevertheless, a refined mesh has to be employed to
accurately represent for the high stress gradient at crack tip and then
for the energy dissipation [10–13]. That is why the reduction of com-
putational time receives the attention of several research teams
[12,14–18]. The authors of the present papers and co-workers have

been working on the development of the macro-element (ME) tech-
nique for the simplified stress analysis of bonded, bolted and hybrid
(bonded/bolted) joints [19–21]. In particular, the elementary stiffness
matrix of a dedicated 4-node Bonded-Beams (BBe), has been formulated
for the modelling of bonded overlap (see Fig. 1). The 4 nodes rely on the
neutral axes of each adherend, which can be dissimilar and modelled as
Euler-Bernoulli or Timoshenko laminated beams. Like the cohesive
zone modelling (CZM), the adhesive layer is modelled as a bed of shear
and peel springs, representing for the link between both adherend in-
terfaces. The formulation of the elementary stiffness matrix consists in
determining the linear relationships between the nodal forces and the
nodal displacements (see Fig. 2). Once the stiffness matrix of the
complete structure is assembled from the elementary matrices and the
boundary conditions are applied, the minimization of the potential
energy provides the distributions of displacements, internal forces,
stresses and strains in both the adherends and the adhesive layer. The
ME technique is inspired by the FE method and differs in the sense that
the interpolation functions are not assumed. Indeed, they take the shape
of solutions of the governing ordinary differential equations (ODEs)
system, coming from the constitutive equations of the adhesive and
adherends and from the local equilibrium equations, related to the
simplifying hypotheses. The direct consequence is that only one ME is
needed to predict the distribution of displacements, internal forces,
stresses and strains in both the adherends and the adhesive layer at
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every location of the structure, in the frame of a linear elastic analysis.
In the case of a nonlinear analysis, a mesh along the overlap is required.
Nevertheless, contrary to classical FE model, it is not necessary to mesh
in the thickness, so that a benefit in terms of computational time is
obtained.

The objective of this paper is to provide a validation of the ability of
the simplified analysis, based on the macro-element technique, initially
developed for the stress analysis of adhesively bonded joints, for the
simulation of delamination propagation in pure mode I of composite
laminates. This simplified analysis shall reduce the number of degrees
of freedom (DoFs) required to describe the delamination propagation
while ensuring accurate predictions. For the comfort of readers, this
paper provides in a first part the useful mathematical steps describing
the simplified analysis, although they are already presented in [19–21]
for the simulation of debonding of bonded joints. It is indicated that this
approach is not able to capture the variation of the delamination front
along the width with or without eventual elastic coupling, since the
approach presented is developed in the 1D-beam framework. The
reader is referred to [22] for this topic. An experimental test campaign

is then presented on the thermoset unidirectional (UD) prepreg com-
posite material IMA/M21E. The experimental test campaign aims at
assessing the interlaminar mechanical behavior in pure mode I, in order
to determine the parameters associated to the traction-separation law of
the CZM, which are the maximal interlaminar out-of-plane tensile
stress, the critical energy release rate and the interface stiffness. It is
indicated that this work does not discuss about the shape choice of the
traction-separation law. The reader can refer to other published works
about this topic (eg: [23–25]). The four points L-shape bending (4PLB)
test allows for the assessment of the maximal interlaminar out-of-plane
tensile stress, while the DCB test according to ASTM Standard D5528-
01 [26] is used for the critical energy release rate. The interface stiff-
ness is chosen of the order of magnitude 1.105 MPa.mm−1 [10] and
adjusted to correlate the experimental test results on DCB specimens.
The validation of the ME technique for the simulation of delamination
propagation in pure mode I is led on the precracked DCB test specimens
against the predictions of 3D FE models and experimental test results.
The numerical test campaigns are then presented in the fourth part of
this paper, including the assessment the performance of the simplified

Nomenclature

a crack length (mm)
Aj extensional stiffness (N) of adherend j
Bj extensional and bending coupling stiffness (N.mm) of ad-

herend j
Dj bending stiffness (N.mm2) of adherend j
Eij laminate Young’s modulus (MPa) in ij directions
Ce constant integration vector
D damage parameter
Gij laminate shear modulus (MPa) in ij directions
GIc critical energy release rate (N.mm−1) in mode I
GIIc critical energy release rate (N.mm−1) in mode II
Fe element nodal force vector
Ke elementary stiffness matrix of a bonded-beams element
L uncracked length (mm)
Me element matrix linking the element nodal displacement to

the constant integration vector
Mj bending moment (N.mm) in adherend j around the z di-

rection
Ne element matrix linking the element nodal force to the

constant integration vector
Nj normal force (N) in adherend j in the x direction
P reaction force (N)
S interface stress in mode I (MPa)
Smax maximal out-of-plane stress (MPa)
T interface stress in mode II (MPa)
Ue element nodal displacement vector
Vj shear force (N) in adherend j in the y direction

a crack length (mm)
b width (mm) of the adherends
d applied displacement (mm)
e characteristic thickness (mm) of the interface
ej thickness (mm) of adherend j
hj half thickness (mm) of adherend j
kI interface elastic stiffness (MPa/mm) in mode I
kII interface elastic stiffness (MPa/mm) in mode II
n_ME number of macro-elements
uj displacement (mm) of adherend j in the x direction
vj displacement (mm) of adherend j in the y direction
Δ overlap length (mm) of a macro-element
δ opening displacement at load point (mm)
δu slipping displacement (mm)
δv opening displacement (mm)
Δ j characteristic parameter (N2.mm2) of adherend j
νij Poisson’s ratio (MPa) in ij directions
θj bending angle (rad) of the adherend j around the z di-

rection
(x,y,z) global reference system of axes
4PLB four points L-shape bending
BBE Bonded-beams
CZM cohesive zone model
DoF degree of freedom
DCB double cantilever beam
FE Finite Element
ME macro-element
ODE ordinary differential equation
UD unidirectional

Fig. 1. Modelling of a bonded overlap by a macro-element.



analysis through a comparative study. The MATLAB code for the si-
mulation of DCB test leading to the results presented in this paper is
provided as supplementary materials.

2. Description of the simplified analysis

2.1. Analysis framework

2.1.1. Idealization
A pre-cracked laminated specimen is considered. Its length is L + a,

where a is related to the crack length. As a result, the pre-cracked la-
minated specimen is seen as two laminates which are bonded only over
an interface along the uncrack length L. Each laminate within the
cracked region is then modelled as a beam element, while both the
laminates and the interface within the uncracked region are modelled
by one 4-nodes ME (see Fig. 2). In the case of nonlinear computation, a
mesh of n_ME MEs is employed along the uncracked length. The pre-
cracked laminated specimen is then idealized as a structure under 1D-
beam kinematics involving n_ME + 2 elements, 2n_ME + 4 nodes and
then 6n_ME + 12 degrees of freedom (DoF).

2.1.2. Hypotheses
In order to formulate the stiffness matrix of beam elements and MEs,

the following hypotheses are taken: (i) the laminates are simulated by
linear elastic Euler-Bernoulli laminated beams and (iii) the interface is
simulated by an infinite number of elastic shear and transverse springs.

2.1.3. Governing equations
The constitutive equations can be written as (see Appendix A):

= =N A
du
dx

B
d
dx

j, 1, 2j j
j

j
j

(1)

= + =M B
du
dx

D
d
dx

j, 1, 2j j
j

j
j

(2)

= =
dv
dx

j 1, 2j
j

(3)

where Nj is the normal force in the adherend j, Vj the shear force in the

adherend j, Mj the bending moment in the adherend j, uj the long-
itudinal displacement in the adherend j, vj the deflection in the ad-
herend j θj the bending angle in the adherend j, Aj is the membrane
stiffness of adherend j, Bj the coupling membrane-bending stiffness of
adherend j and Dj the bending stiffness of adherend j. In the case of a
lay-up characterized by a mirror symmetry, Bj = 0. The subscript j = 1
(j = 2) refers to the upper (lower) laminate.

The constitutive equations for the interface are provided by:

= =S k v v k[ ] vI 1 2 I (4)

= + =T k u h u h k[ ( )] uII 2 2 2 1 1 1 II (5)

with:

= v vv 1 2 (6)

= u u h hu 2 1 2 2 1 1 (7)

where kI (kII) the interface stiffness in mode I (II). δu (δv) is re-
presentative of the slipping (opening) displacement of the interface.

The local equilibrium of each laminate provides the following
equations (see Fig. 3):

= =
dN
dx

bT j( 1) , 1, 2j j
(8)

= =+dV
dx

bS j( 1) , 1, 2j j 1
(9)

+ + = =
dM
dx

V bh T j0, 1, 2j
j j (10)

with:

= =h
e

j
2

, 1, 2j
j

(11)

where ej is the thickness of the adherend j.

2.2. Formulation of elementary stiffness matrix

The elementary stiffness matrix of a beam element is provided in
Appendix C. The elementary stiffness matrix of ME is representative for
the linear relationship between the vector of nodal forces Fe and the

Fig. 2. Pre-cracked specimen geometry and associated ME model.



vector of nodal displacements Ue (see Fig. 4), such as:

= =F K U

N
N

N
N

V
V

V
V

M
M

M
M

K

u
u
u
u
v
v
v
v

(0)
(0)

( )
( )
(0)
(0)

( )
( )

(0)
(0)

( )
( )

(0)
(0)
( )
( )
(0)
(0)
( )
( )
(0)
(0)
( )
( )

e e e e

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2 (12)

where Ke is the elementary stiffness matrix of the ME and Δ is the length
of the ME.

In order to determine the components of Ke from the governing
equations, the approach consists in expressing (i) the adherend dis-
placements as a function of the abscissa, (ii) the adherend internal force
using the constitutive equations (Eqs. (1–3)), (iii) the nodal displace-
ments and normal forces as function of a set of integration constants,
such as:

=U M Ce e e (13)

=F N Ce e e (14)

where Ce is the vector of the integration constants, Me the matrix
linking the displacement nodal vector Ue and Ce, and Ne the matrix
linking the nodal force vector Fe and Ce. The elementary stiffness matrix
Ke is then obtained by a matrix product:

= = =F N C N M U K N Me e e e e e e e e
1 1 (15)

The adherend constitutive equations Eqs. (1–2) are written such as:

= + =
du
dx

D
N

B
M j, 1, 2j j

j
j

j

j
j

(16)

= + =
d
dx

B
N

A
M j, 1, 2j j

j
j

j

j
j

(17)

where Δ j = AjDj-BjBj ≠ 0.
By combining equations Eqs. (4–5), (8–10) and (16–17), the fol-

lowing system of ODEs in terms of interface stresses is obtained:

= +d T
dx

k dT
dx

k S
3

3 1 2 (18)

=d S
dx

k dT
dx

k S
4

4 3 4 (19)

where:

= + + + +k bk D h A D h A h B h B1
D

1
D

21 II
1

1

1
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2

2
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2

1 1
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2 2

2

(20)

= + +k bk h A h A B B
2 II

1 1

1

2 2

2

1

1

2

2 (21)

= + +k bk h A h A B B
3 I

1 1

1

2 2

2

1

1

2

2 (22)

= +k bk A A
4 I

1

1

2

2 (23)

The system of ODEs in Eqs. (18–19) can be uncoupled by differ-
entiation and linear combination as:

+ + =d S
dx

k d S
dx

k d S
dx

k k k k S( ) 0
6

6 1
4

4 4
2

2 2 3 1 4 (24)

+ + =d
dx

d T
dx

k d T
dx

k d T
dx

k k k k T( ) 0
6

6 1
4

4 4
2

2 2 3 1 4
(25)

This system is solved and the adhesive shear and peel stresses are
thus written as (see Appendix C):

= + + + + +

S x

K e tx K e tx K e tx K e tx K e K e

( )

sin cos sin cossx sx sx sx rx rx
1 2 3 4 5 6

(26)

Fig. 3. Free body diagram of infinitesimal pieces included between x and
x + dx of both adherends in the overlap region. Subscript 1 (2) refers to the
upper (lower) adherend.

Fig. 4. Nodal forces (left) and nodal displacements (right).



= + + + + +
+

T x K e tx K e tx K e tx K e tx K e K
e K

( ) sin cos sin cossx sx sx sx rx

rx
1 2 3 4 5 6

7 (27)

There are then 13 integration constants. However, by introducing
these previous expressions for adhesive stresses in equation Eqs.
(18–19), the integration constants of the adhesive peel stress appear to
be linked to those of adhesive shear stress as:

=

K

K

K

K
K

K

K
K
K
K
K
K

0 0 0 0
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where:

= s s t k
k

( 3 )
1

2 2
1

1 (29)

= +t t s k
k

( 3 )
2

2 2
1

2 (30)

= r r k
k

( )
3

2
1

2 (31)

It comes then seven independent integration constants remain: K1 to
K7.

Following the resolution scheme in [27,28], the displacements and
internal forces in the adherends are expressed as functions of adhesive
stresses and of their derivatives. The computation is fully detailed in
Appendix D. It is shown that a total number of twelve integration
constants are finally involved: K1 to K7, J1 to J3 and J5 to J6. The dis-
placements in the adherends are then expressed as:

= + + +u x T dS
dx

b K B J
A

x J x J( ) 6
21 1 1

3
7 1 0

1

2
5 6 (32)

= + + + + +

+ + + +

u x
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b K B J
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x J h h J h h K
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2
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2 2

3
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2
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1 2
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1 2
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= + + + + + +v x k dT
dx

k d S
dx

S J x J x J x J( )1 3 4 2
2

2 5 0
3
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2 3

(34)

= + + + + + +v x k dT
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dx
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= + + + +x T dS
dx
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1 5 5 0

2
1 2 5 7 (36)

= + + + +x T dS
dx
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2 6 6 0

2
1 2 6 7 (37)

The nodal displacements are then the values of displacements in
x = 0 and x = Δ, leading toMe. The adherend constitutive equations in
Eqs. (1–2) allow for the computation of normal and shear forces and of

bending moments in both adherends:

= + + +N x a dT
dx

a d S
dx

bK x B J A J J( ) 21 1 1
2

2 7
1
2 1

1
5 6 (38)
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= + + + +M x a dT
dx

a d S
dx

J b K
A

x D J B J( ) 6 B 21 3 3
2

2
1 0

3
1 7

1
2

1
2 1

1
5 (42)

Table 1
Mechanical parameters of the UD laminate IMA/M21E.

E11 (MPa) E22 = E33
(MPa)

G12 = G13

(MPa)
G23 (MPa) ν12 = ν13

(MPa)
ν23 (MPa)

130,000 8500 4200 3000 0.32 0.42
Fig. 5. Dedicated apparatus for the L-shape specimen: a) release film, b) glass
fiber absorber film, c) vacuum bag.



= + + + + +
M x

a dT
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4 4
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2
2 0
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The nodal forces are then assessed in x = 0 and x = Δ, leading to
Ne. The stiffness matrix of the pre-cracked specimen can then be built
from the elementary stiffness matrices using the classical FE rules.

3. Experimental testing

3.1. Materials

The thermoset unidirectional (UD) prepreg composite material
IMA/M21E is used in this paper. The ply thickness is 0.133 mm. The
mechanical parameters of this laminate are provided in Table 1, re-
sulting from a classical test campaign which is not presented in this
paper.

3.2. Manufacturing of test specimens

Two types of specimens have to be manufactured: 4PLB specimens
(strength test) and DCB specimens (propagation test). The lay-up is
performed by hand with prepeg cut thanks to a specific jig. It provides
laminated plates for the DCB specimens. A dedicated apparatus is used
to form the L-shape specimens (see Fig. 5).

For the 4PLB test specimens, the stacking lay-up is [0]32. For the
DCB test specimens, the stacking lay-up is [0]20. In order to create the
pre-crack length of propagation test specimens, a Teflon® film
(0.013 mm thickness) is applied between both relevant plies. The
manufacturing of these plates is realized using an autoclave under a
curing temperature of 180 °C and a pressure of 7 bars, during two
hours, such as compliant with the supplier recommendations. The
specimens are then cut from the cure plate with a diamant tool at the
final dimensions (see Figs. 6 and 7).

3.3. Experimental set-up

All the tests are performed on an INSTRON tensile machine, the
capacity of the load cell of which is 10,000 N and 200 N for 4PLB and

Fig. 6. 4PLB test specimen. Dimensions in mm (principle scheme, not to scale).

Fig. 7. DCB test specimen. Dimensions in mm (principle scheme, not to scale).



Fig. 8. Installation of specimens to be tested: a) 4PLB specimen, b) DCB specimen.

Fig. 9. 4PLB experimental test results: force versus displacement behavior (see the web version in which each curve has a specified color).



DCB tests, respectively. The loading is applied at controlled crosshead
displacement at a rate equal to 0.5 mm.min−1 and 5 mm.min−1 for
4PLB, and DCB tests, respectively. The reaction force and the total
displacement are measured by the tensile machine. For the 4PLB test
specimen, a full field displacement measurement VIC 3D (Digital Image
Correlation System) is introduced and placed in front of each sample;
experimentally a random pattern with good contrast is applied to the
through thickness surface of specimens. A calibration process, per-
formed before loadings, allows for the establishment of the accurate
position of both cameras. Displacement, load, strain sensors and 3D
field measurement, were recorded simultaneously with a 10 Hz (1 Hz
for 3D camera) frequency rate and stored. For the DBC tests, the length
of the actual crack is measured using a Fractomat® gauge. In order to
remove the accumulation of matrix at the crack tip due to the presence
of Teflon® film, a first loading run is realized to propagate delamination
[29]. The initial pre-cracked length is then not anymore equal to 45 mm
but to the measured one. The installation of specimens to be tested is

illustrated in Fig. 8.

3.4. Experimental test results

3.4.1. 4PLB tests
A total number of 5 specimens are tested. The reaction force as a

function of the total displacement δ of the two rolls is shown in Fig. 9.
The objective of this tests is to determine the out plane failure stresses
Smax of the ply interface. As a result, only the force at failure for the first
delamination propagation is kept. The average value recorded is 532 N
with a standard deviation equal to 17 N.

These results are used to compute the out-of-plane stress in two
ways: the first one by an analytical solution given by Ko [30,31] using
composite laminates applied to curved beam; the second one by a FE
numerical model [32] developed on ABAQUS® software. The reader
will be able to read the references given for more details about these
models. For each model, a critical average force is imposed and the

Fig. 10. 4PLB tests: out-of-plane stresses and in-plane stresses in fibers direction along thickness in the middle of the L-shape beam.

Fig. 11. DCB experimental test result: reaction force as a function of the opening displacement at load point for a = 45 mm (see the web version in which each curve
has a specified color).



resulting out-of-plane stresses are plotted in Fig. 10 as a function of the
height. The value of the maximal out-of-plane stress considered for the
CZM is then Smax = 40 MPa.

3.4.2. DCB tests
A total number of 5 specimens are tested. The reaction force as a

function of the opening displacement at load point, termed δ, is pro-
vided in Fig. 11. The data reduction is performed following the mod-
ified beam theory [26], allowing for the assessment of the critical en-
ergy release rate in mode I:

=
+

G P
b a

3
2 ( )c

L
I (44)

where P is the force, b is the width of the specimen and Δ L the lag in
crack length at a zero value of compliance. The force peaks vary from
33 N to 40 N. The average value is equal to 36.5 N with a standard
deviation equal to 2.63 N. The stiffnesses before the peak force are very
close. The behavior during the propagation of the delamination shows
parallel curves indicating similar values the critical energy release rate
between each test.

A R-curve effect is classically observed (see Fig. 12), due to fiber
bridging between both arms during the propagation. In other words, the
value for GIc varies with the crack length. Over the range of crack
propagation, the average value for GIc is included between
0.306 N.mm−1 and 0.404 N.mm−1. The average of these average va-
lues is 0.368 N.mm−1 with a standard deviation equal to
0.044 N.mm−1. For the simulation work presented in this paper, it is
considered that the value of GIc is constant. The value of the critical
energy release rate considered for the CZM is then GIc = 0.4 N.mm−1.

4. Numerical testing

4.1. Geometry and material modelling

The geometrical models used for the propagation test specimen are
based on the geometry of experimental test specimens (Fig. 13). The
geometrical parameters are given in Table 2. The classical laminate
theory [33] is employed to compute the homogenized stiffness of la-
minated arms, used in the numerical tests. The interface between both
arms is represented through a CZM based on a classical bilinear traction
separation law. The maximal stress, the initial stiffnesses and the cri-
tical energy release rate in pure mode I are required to define the bi-
linear traction separation law in mode I (Table 4). The maximal stresses
are taken from the strength experimental tests while the critical energy
release rates from the propagation experimental tests. The initial stiff-
ness is adjusted to fit the experimental force displacement curves
(Fig. 10). Besides, the definition of the traction separation law in mode
II is provided in Table 4. Even if the DCB test leads to a pure mode I, the
interface stiffness in pure II is at least required as an input data. The
results presented come from a test campaign on the pure mode II, which
is not presented here, based on interlaminar shear strength test [34]
and end-notched flexure test [35]. Based on the provided geometrical

Fig. 12. Critical energy release rate as function of the crack length.

Fig. 13. Geometry conditions for the DCB test specimen simulated (principle scheme, not to scale). The downwards and upwards arrow indicate the location of load
application.

Table 2
Geometrical parameters for the DCB test specimen.

a (mm) b (mm) e1 = e2 (MPa) L (mm)

45 20 1.33 120



and material configurations, the numerical models presented in this
paper are of two types: (i) 3D FE model and (ii) 1D-beam ME model,
presented in Section 4.2 and Section 4.3 respectively. The 3D FE model
is developed using the FE code ABAQUS General Standard software.
The laminates in the 3D FE model are modelled with the ply orthotropic
properties provided in Table 1. In the 1D-beam ME model, the homo-
genous properties provided in Table 4 and deduced from the ply
properties are used. The interface stiffness in mode I is determined to fit
at best the initial stiffness of the experimental test results on DCB
specimen (Section 3.4.2). A value of 85,000 MPa.mm−1 is found, which
has the same order of magnitude found in [10] for example.

4.2. 3D FE modelling

4.2.1. Boundary conditions
The loading applied to the DCB specimens is relevant to the ex-

perimental test set-up. The DCB specimens are loaded under controlled
displacement along the thickness direction (y-axis of Fig. 13). For the
DCB specimen, the loading is applied thanks to reference points linked
to the nodes of arms through rigid body elements to represent for the
tabs. The rotation around the width direction (z-axis of Fig. 13) of re-
ference points is free. Finally, contact conditions are introduced be-
tween all the surfaces in contact – the arms along the pre-cracked re-
gion – are added, including classical Coulomb friction effect with a
friction coefficient equal to 0.15.

4.2.2. Computation
The computation uses the Full Newton Raphson solver (ABAQUS

General Standard) with nonlinear geometric activation. The full
Newton Raphson scheme involved an update of the tangent stiffness
matrix at each iteration; this scheme appears to the authors as a suitable
approach to support the progressive failure of laminates. Moreover, the
classical viscous regularization is activated with the related couple of
parameters τ = 1E-4 s (viscous characteristic time) and a = 1 (damping
parameter) [4,36]. It allows in particular for a better convergence
within implicit scheme. Viscosity for element control option is disabled.

4.2.3. Mesh and convergence study
The laminates are meshed with quadratic brick elements under

normal integration scheme: eight Gauss point and three DoF per nodes.
Three elements in the thickness are used for each laminate. Each spe-
cimen is shared in three distinct regions: (i) the pre-cracked region, (ii)
the propagation regions and (iii) the remaining specimen region. The
length of the propagation region is adjusted through successive tests to
ensure that the remaining specimen region is not damaged at the
maximal applied load. To ensure a correct representation for the
bending, the pre-cracked and the remaining specimen regions have a
mesh density according to the length direction (x-axis of Fig. 13) and

the width direction is one element per mm. Within the propagation
region, the mesh is refined such that the mesh densities are two ele-
ments per mm according to the length direction and one element ac-
cording to the width direction. To simulate the delamination propa-
gation between the laminates, cohesive elements are used. The cohesive
elements are linked to the laminates through a non-coincident kine-
matic bonding. It allows for the performing of a convergence study at
lower computational time, since the mesh of the cohesive element is
independent on the mesh of laminates. The mesh density according to
width direction is the same as the laminates while the mesh density
according to the length direction, which is the propagation direction,
varies between two and sixteen cohesive element per mm. A view of the
mesh and loading conditions is provided in Fig. 14.

The results of the convergence study are presented for the DCB
specimen. The reaction force as function of the opening applied dis-
placement (δ= 2d) and of the applied displacement (d) are provided in
Fig. 15 for the DCB specimen. Five mesh densities are selected: one,
two, four, eight and sixteen elements per mm. From four elements per
mm, the convergence in terms of critical energy release rate is achieved.
Nevertheless, oscillations remain significant at a density of four ele-
ments per mm, due to local instability of the element failure associated
with too elevated element length. From eight elements per mm, the
oscillations appear as negligible, so that this mesh density is considered
as sufficient. Finally, the shape of the delamination crack is classically
found as curved [29].

4.3. 1D-beam ME modelling

4.3.1. Modelling using ME
The use of CZM for the simulation of delamination of composite

materials implies a nonlinear computation to predict the current da-
mage state. Even if a detailed description of the nonlinear algorithm
used is provided in [20], a brief overview is provided hereafter for the
comfort of the reader. Once the stiffness matrix of the pre-cracked
specimen is built using a uniformly distributed mesh (Section 2), the
boundary conditions have to be applied. They are defined in terms of
fixed displacements and assigned displacements d = 5 mm for the DCB
specimen (Fig. 16). The Augmented Lagrangian method [37,38] is then
used allowing for the simultaneous assessment of both displacements
and reactions. A Newton-Raphson algorithm based on the secant matrix
is employed. The assigned displacements are applied linearly as func-
tion of the numerical time through a uniformly distributed time step-
ping involving fifty time steps. The secant matrix is updated at each
iteration within each time step to reach the equilibrium under a con-
vergence threshold equal to 1.10-3 on the nodal force vector. The secant
matrix update consists in updating the interface stiffnesses kI and kII.
For illustration purpose, the pure mode I is considered. In the case of
the bilinear damage evolution law, a damage parameter is computed

Fig. 14. Illustration of the loading and mesh strategy for the DCB specimen.



Fig. 15. a) Reaction force as function of the applied opening displacement for the five mesh densities for the DCB specimen. A focus around the maximal applied force
is provided. b) process zone and crack front shape for 8 FEs/mm and d = 10 mm (SDEG is the damage parameter D).

Fig. 16. ME model of DCB specimen.



only if δv > 0 through:

=D
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( )
v f v v e

v v v f

, ,
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where δ v,e (δ v,f) is the displacement jump at damage initiation
(propagation). A damage parameter is computed at each pair of nodes.
As each ME has two pairs of nodes, each ME has two damage para-
meters associated. It is then chosen to assign a unique damage para-
meter D to each ME equal to the maximal value of damage parameters
computed at each of both pairs of nodes. Moreover, if the damage
parameter computed is strictly higher than a prescribed value then it is
fixed to this value, which is chosen equal to 0.9999999 in this paper.
The secant matrix is then updated through the update of the interface
stiffness in mode I: kI becomes (1−D)kI. The material and geometrical
parameters given in Tables 2–4 are used.

4.3.2. Convergence study
A convergence study is undertaken to justify a correct energy

dissipation [10,13]. The selected mesh densities along the interface are
1 ME per mm, 2 MEs per mm, 4 MEs per mm, 8 MEs per mm, 16 MEs
per mm and 20 MEs per mm. The reaction force as function of the
opening applied displacement (δ= 2d) and of the applied displacement
(d) for the six mesh densities are provided in Fig. 17 for the DCB spe-
cimen. It is shown then that the numerical simulations tend to a steady
global behavior for a mesh density higher than 16 MEs per mm. Besides,
it is then shown that the computational methodology described in this
paper leads to a convergence of numerical predictions in terms of cri-
tical energy released rates. When the density of MEs is too low, the
energy dissipated is lower than the critical energy release rates. In terms
of local behavior, the same conclusion holds, as shown by the dis-
tribution of the damage parameter along the overlap at the maximal
applied displacement in Fig. 18 for the DCB specimen.

4.4. Comparison

The experimental test results as well as the numerical test results
provided 1D-beam ME and 3D FE models are plotted in Fig. 19 in terms
of reaction force as a function of the opening displacement at the load
point. From a macroscopic point of view, both numerical models are in
good agreement with the experimental test results. The numerical test
results show a correct energy released rate during propagation. The
discrepancy between the predictions an experimental test results are
due to the choice of a constant value GIc. As shown in Section 3.4.2, the
value of GIc varies during the propagation (R-curve effect). Relatively to

Table 3
CZM parameters in pure mode I and pure mode II.

s tress

displacement 
jump 

mode  I

kI

GIc

Smax
s tress

displacement 
jump 

mode  II

GIIc

kII

Tmax

kI (N.mm−1) Smax (MPa) GIc (N.mm−1) kII (N.mm−1) Tmax (MPa) GIIc (N.mm−1)

85,000 40 0.4 75,000 85 0.7

Table 4
Homogenized stiffness of arm based on 10 plies of IMA/M21E
(eply = 0.133 mm).

Al = A2 (N) Bl = B2 (N.mm) Dl = D2 (N.mm2)

3,531,898 0 520,631

Fig. 17. Reaction force as function of the applied opening displacement for the six mesh densities for the DCB specimen.



the 3D FE model, the 1D-beam ME model appears to have a slightly
higher initial stiffness and a lesser maximal (−3.77%). The difference
in initial stiffness is due to the modelling of the laminated. In the 1D-
beam ME model, it is a pure isotropic transverse laminate with a ply per
ply approach whereas in the 3D FE model it is a homogeneous ortho-
tropic laminate. As a consequence, the process of damage initiation and
propagation appears earlier in the 1D-beam ME model than in the 3D
FE model, leading to a difference in maximal force. Besides, it is in-
teresting to compare the local response of both models. The length of
the process zone is then a judicious indicator. It corresponds to the
length where the damage parameter is strictly higher than 0 and lower
than 1. For example, under an opening displacement at load point
δ = 10 mm, the process zone is then measured equal to 1.3125 mm for
the 3D FE model and to 6.75 mm for the 1D-beam ME model. It is then
highlighted that the local mechanical behavior is dependent on com-
putation strategy fort the damage parameter. In the 3D FE model, the
damage parameter is computed at each Gauss point, modified by the

viscous regularization of the cohesive law and bounded at a maximal
damage value of 0.999. In the 1D-beam ME model, the damage para-
meter is computed as the maximum of damage parameter obtained at
both pairs of nodes of each ME and bounded by a maximal damage
value of 0.9999999 (see Section 4.3.1). The predicted process zone
appears as dependent on the computation strategy in plus to be related
to the cohesive law of the interface. The question is then to develop an
experimental methodology to assess the cohesive law shape as well as
the process zone, representative for the physics.

5. Conclusions

In this paper, the validation of the ability of a simplified analysis,
based on the ME technique, for the simulation of delamination propa-
gation in pure mode I of composite laminates is presented. The vali-
dation is based on the comparison of experimental test results, 3D FE
predictions and 1D-beam ME predictions on pre-cracked DCB test

Fig. 18. Damage parameter distribution along the interface (up to 30 mm from the crack tip) at the maximal applied displacement (d = 5 mm) for the six mesh
densities for the DCB specimen.

Fig. 19. Comparison of experimental, 1D-beam ME and 3D FE test results for the DCB specimen.



specimens. The interface CZM in pure mode I is priory assessed in terms
of maximal cohesive stresses and critical energy release rates through
dedicated experiments on 4PLB and DCB test specimens. The interface
stiffness is adjusted through the 3D FE models. The thermoset UD
prepreg composite material IMA/M21E is used in this paper. When
using the CZM interface assessed as an input, it is shown that the 1D-
beam ME predictions of the global mechanical behavior are in close
agreement with the 3D FE predictions and experimental test results.
Compared to a classical 3D FE model with CZM, a first interest of the
ME technique of the simulation of the delamination propagation is the
reduction of the number of DoF, while refining the mesh along the
interface to be delaminated. It is due to the fact that the specimen is
only meshed along its length (and not along its width and thickness).
Indeed, the displacement field are not assumed but have the shape of
the solutions of the governing ODEs system (Section 2 and Appendix C).
The ME stiffness matrix is then easily evaluated through a matrix pro-
duct from the expressions for the nodal displacements and nodal forces
(Appendix E). As a result, a computational time reduction could be
expected. Moreover, a second interest of the ME technique is the re-
lative simplicity of implementation and use. It is then a relevant ap-
proach for the pre-sizing, optimization process and analysis of labora-
tory tests, involving various loadings (including temperature variation),
boundary conditions or material and geometrical parameters. A last
interest is that the ME technique takes advantage from its compatibility
with the FE method. The ME could be implemented in FE codes.
Methodologies developed for the improvement of numerical perfor-
mance of CZM based on FE models could be applied to the ME tech-
nique, when relevant. In [20], the ME technique has been successfully
applied for the simulation of the debonding of adhesive bonded joints
under pure mode I, pure mode II and mixed-mode I/II loadings. Due to

the results presented in this paper for the simulation of delamination of
propagation under pure mode I, it could be thought that the ME tech-
nique is suitable for the simulation of delamination of propagation
under pure mode II and mixed-mode I/II too. Finally, even if both
models provide similar predictions in terms of global mechanical be-
haviours, those in terms of local behaviours are dependent on the
computation strategy for a same cohesive law of the interface. It means
that the local physics could not be correctly retrieved, so that the choice
of the cohesive law associated with the computation strategy is ques-
tionable [24].
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Appendix A

This appendix provides the derivation of the constitutive equations of laminated beams used in the 1D-beam analysis, in the (X,Yi,Z) reference
local axis of the adherend, the height origin of which is taken on the neutral axis. The normal force and the bending moment are written such as:
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where, in the adherend i ni is the number of layers and hpi is the final height of the pith layer.
Moreover, the orthotopic behavior provides
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where, in the adherend i, Qi
pi is the matrix of reduced stiffness in the pith layer.

As a result, the normal force and the bending moment are given by:
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which finally leads to:
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The parameters involving in the constitutive equations Eqs. (1)–(3) are thus defined such as for i = 1,2:
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Appendix B

The elementary stiffness matrix Kj for the beam j (j = 1,2), the length of which is a, can be derived following the approach describes in Section 2
such as:
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Appendix C

This appendix describes the resolution of the differential equation system in Eqs. (24–25). The characteristic polynomial expression is:
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where:
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To determine the roots, the Cardan’s method is employed. Then, equation (C.1) is modified as:
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the roots of the reduced equation are written as:
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Consequently, the roots of the characteristic equation (C.1) are given by:
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Finally, the expressions for the interface stresses are given in Eqs. (26–27) where:
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Re(z) stands for the real part and |z| for the modulus of z.

Appendix D

This appendix describes the determination of expressions for the adherend displacements and internal forces. Using the constitutive equations of
adherends in Eqs. (1–3) and the local equilibrium equations in Eqs. (8–10) it is possible to express the derivatives of the longitudinal and transverse
displacements as functions of the adhesive stresses and their derivatives:

= +d v
dx

A dT
dx

B S
4

1
4 10 10 (D.1)

= +d v
dx

A dT
dx

B S
4

2
4 20 20 (D.2)

= +d u
dx

C dT
dx

D S
3

1
3 10 10 (D.3)

= +d u
dx

C dT
dx

D S
3

2
3 20 20 (D.4)

where:

= +A b (B h A )10
1

1 1 1 (D.5)

=B bA
10

1

1 (D.6)

=A b (B h A )20
2

2 2 2 (D.7)

=B bA
20

2

2 (D.8)

= +C b (h B D )10
1

1 1 1 (D.9)

=D bB
10

1

1 (D.10)

= +C b ( h B D )20
2

2 2 2 (D.11)

=D bB
20

2

2 (D.12)

To obtain the expressions for displacements in the adherends, Eqs. (D.1-D.4) have to be integrated. Before integrating equations Eqs. (D.1-D.4),
the system of ODEs in Eqs. (18–19) are written as:

= +S d T
dx

d S
dx

1
k k k k

k k
2 3 1 4

3
3

3 1
4

4 (D.13)

= +dT
dx

d T
dx

d S
dx

1
k k k k

k k
1 4 2 3

4
3

3 2
4

4 (D.14)

and introduced in Eqs. (D.1–D.4). The displacements in the adherends are then expressed as:
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Fourteen new integration constants are involved. However, following the resolution scheme in [27,28], the total number of integration constants
can be reduced to twelve. Firstly, the local equilibrium equation along the x-axis for the adherend 2 (Eq. (1) with j = 2) in conjunction with the
constitutive equation in normal force (Eq. (8) with j = 2) gives:
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leading to:
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In the same way, by considering the adherend 1, it comes:
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Secondly, the difference between the deflections of both adherends provides:
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But, considering the constitutive equation of the interface in mode I (Eq. (4)), it comes:
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the difference in the longitudinal displacements of the interface provides:

= +u u h h T
k

P x( )2 1 2 2 1 1
II (D.28)

where P(x) is a quadratic polynomial, all coefficients of which have to be equal to zero:

=J J h J h J3 3 04 4 1
0

2
0

(D.29)

=J J h J h J2 2 05 5 1
1

2
1

(D.30)

+ + + =J J h J h J K k h A h A k h AB h B
k k k k

[ ( ) ( )] 06 6 1
2

2
2 7

1 4 2 3
4 1 10 2 20 3 1 10 2 20 (D.31)

It is then deduced that the integration constant set J1, J2, J3, J5 and J6 is independent. The displacements take then the shape in Eqs. (32–37) with
the following parameters:

= C k D k
k k k k1
10 4 10 3

1 4 2 3 (D.32)

= C k D k
k k k k1
10 2 10 1

1 4 2 3 (D.33)

= C k D k
k k k k2
20 4 20 3

1 4 2 3 (D.34)



= C k D k
k k k k2
20 2 20 1

1 4 2 3 (D.35)

= A k B k
k k k k5
10 4 10 3

1 4 2 3 (D.36)

= A k B k
k k k k5
10 2 10 1

1 4 2 3 (D.37)

= A k B k
k k k k6
20 4 20 3

1 4 2 3 (D.38)

= A k B k
k k k k6
20 2 20 1

1 4 2 3 (D.39)

=
k k k k3

5

1 4 2 3 (D.40)

=
k k k k4

6

1 4 2 3 (D.41)
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The constitutive equations of adherends in Eqs. (1–3) allow for the computation of normal and shear forces and of bending moments in both
adherends such as provided in Eqs. (38–43) as with the following parameters:

=a A B1 1 1 1 5 (D.43)

=a A B1 1 1 1 5 (D.44)

=a A B2 2 2 2 6 (D.45)

=a A B2 2 2 2 6 (D.46)

= +a B D3 1 1 1 5 (D.47)

= +a B D3 1 1 1 5 (D.48)

= +a B D4 2 2 2 6 (D.49)

= +a B D4 2 2 2 6 (D.50)
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