
HAL Id: hal-02467551
https://hal.science/hal-02467551

Submitted on 5 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalizing Reusable Communication Models for
Distributed Systems Architecture

Quentin Rouland, Brahim Hamid, Jason Jaskolka

To cite this version:
Quentin Rouland, Brahim Hamid, Jason Jaskolka. Formalizing Reusable Communication Models for
Distributed Systems Architecture. 8th International Conference On Model and Data Engineering
(MEDI 2018), Oct 2018, Marrakesh, Morocco. pp.198-216. �hal-02467551�

https://hal.science/hal-02467551
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.1007/978-3-030-00856-7_13

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24829

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Rouland, Quentin and Hamid, Brahim and

Jaskolka, Jason Formalizing Reusable Communication Models for

Distributed Systems Architecture. (2018) In: 8th International Conference

On Model and Data Engineering (MEDI 2018), 24 October 2018 - 26

October 2018 (Marrakesh, Morocco).

Formalizing Reusable Communication

Models for Distributed Systems

Architecture

Quentin Rouland1, Brahim Hamid1(B), and Jason Jaskolka2

1 IRIT, University of Toulouse, Toulouse, France
{quentin.rouland,brahim.hamid}@irit.fr

2 Systems and Computer Engineering Carleton University Ottawa, Ontario, Canada
jaskolka@sce.carleton.ca

Abstract. Building distributed computing systems involves complex
concerns integrating a multitude of communication styles, technologies
(IoT, cloud and big data...), stakeholders (architects, developers, inte-
grators, etc.) and addressing a multitude of application domains (smart
cities, health, mobility, etc.). Existing architectural description languages
fail to rigorously bridge the gap between the abstract representation of
communication styles and those supported by existing execution infras-
tructures. In this paper, we aim at specifying software architecture of dis-
tributed systems using an approach combining semi-formal and formal
languages to build reusable model libraries to represent communication
solutions. Our contribution is two fold. First, we propose a metamodel
to describe high level concepts of architecture in a component- port-
connector fashion focusing on communication styles. Second, we attempt
to formalize those concepts and their semantics following some proper-
ties (specifications) to check architectural conformance. To validate our
work, we provide a set of reusable connector libraries within a set of
properties to define architectures for systems with explicit communica-
tions models like message passing and remote procedure calls, that are
common to most distributed systems.

Keywords: Component · Connector · Communication · Reuse
Meta-modeling · Formalization

_

1 Introduction

The shift from traditional computer systems towards the Internet of Things, i.e.
devices connected via the Internet, Machine-to-Machine communication (M2M),
wireless communication or other interfaces requires a reconsideration of complex
software-dependent and distributed systems engineering processes. In fact, this
reconsideration introduces new types and levels of risks, including those inher-
ited from the underlying technologies like communication, virtualization and
containerization. This is especially true for industrial systems, as they exist in
many use cases, and systems using web applications with the recent growth of

https://doi.org/10.1007/978-3-030-00856-7 13

more applications in cloud-based computing systems. Many of these systems
belong to critical infrastructure, on which other economic and social aspects
are based on. The foundation for comprehensive rigorous systems engineering
facing strong non-functional requirements such as security [21,26], is a compre-
hensive understanding of modern communication systems and technologies and
their implications on the underlying critical infrastructure [3]. We took this need
towards software engineering for distributed software systems, focusing on the
problem of integrating communication styles at the level of architecture design
to foster reuse. We employ Model-Driven Engineering (MDE) [25] and attempt
to add more formality to improve parts of the system design.

When we study distributed systems, we often use models to denote some
abstract representation of a distributed system. To encode distributed comput-
ing (programs) in such systems, we use a common means of communication
[3], where system components have only local vision of the system and inter-
act only with their neighbors with explicit communications models like mes-
sage passing, remote procedure calls and distributed shared memory, common
to most distributed systems. The program executed at each node consists of a
set of variables (state) and a finite set of actions. A component can write to its
own variables and interact with its neighbors following a specific communica-
tion style. In our context, we model software architectures with message passing
and remote-procedure call styles that we expect the architectural description to
adhere to. The aim of this modeling and verification is to check if the architec-
ture models satisfy all the desired properties such as security properties and do
not hold any undesired property such as deadlock property.

In this paper, we present a formal framework to support the rigorous design of
software architectures focusing on the communication aspects at the architecture
level. It is based on the definition of a metamodel to describe high level concepts
of architecture in a component- port- connector fashion focusing on communica-
tion styles and a formal definition of those concepts and their semantics following
some properties (specifications). The former offers a transparent structural def-
inition of communication styles (mainly message passing and remote procedure
call mechanisms). The latter supports the application designer in the rigorous
development process to model and analyze architectural communication styles.
In the scope of this paper, we propose to use Alloy [10] for formalizing those com-
munication styles and verifying conformance of the communication style at the
model level. The formal specification and verification of a software architecture is
represented through an Alloy module based on a set of reusable models, namely
connectors corresponding to each of the considered communication styles. We
provide a set of reusable connector libraries within a set of properties to define
architectures for systems with explicit communications model such as message
passing and remote procedure calls.

The remainder of the paper is organized as follows. Section 2 compares our
work with related work. Section 3 presents our component based architectural
metamodel. Section 4 describes the communication style semantics through finite
state machine models. Then, Sect. 5 presents our approach for supporting the

formalization and verification of these communication models using Alloy.
Section 6 provides a motivating example that models a software architecture for
a web application. Finally, Sect. 7 concludes and sketches directions for future
work.

2 Related Work

Recent times have seen a paradigm shift in terms of software architecture design
[22] by combining multiple software engineering paradigms, namely, Component-
Based Development [4], Model-Driven Engineering(MDE) [25] and formal meth-
ods [23]. In the spirit of using multi-paradigms, many description languages and
formalisms for modeling complex distributed systems have been proposed in the
literature. A significant proportion of these works have aimed to capture the
communication, concurrency, and some non-functional properties of the compo-
nents that make up a given system. Examples of these existing works include
those using process algebras (e.g., CSP [9]), architectural modeling languages
(e.g., CCM [13], AADL [24], MARTE [16], SysML [14], and the recent OMG
initiative UCM [18]), architectural formal languages (e.g., OCL [15], Wright [2],
labeled transition systems [20]).

While each of the above mentioned modeling formalisms and modeling lan-
guages have already been successful in many application domains, in this paper
we build a new communication-based architectural formal modeling language
using Alloy for the structural and behavioral specification and analysis of dis-
tributed systems. Closely related to this vision is the approach of Khosrav et al.
[11] which provides a modeling and analysis of the Reo connectors using Alloy
and the approach of Garlan [5] that describes a formal modeling and analysis of
software architectures built in terms of the concepts of components, connectors
and events. Alloy is a lightweight modeling language, based on first-order rela-
tional logic. It provides support for reuse through a separation between the defi-
nition of connectors as modules from the description of the software architecture
using them. The Alloy formal language is supported by an efficient tool called
Alloy Analyzer [1] that will serve as the analysis tool in our experimentations.
We provide support for specifying systems at various levels of abstraction by
combining the characteristics of both state-based and trace-based models, offer-
ing a flexible and verifiable view of communication where several non-functional
requirements could be specified and treated in a fine-grained fashion. In contrast
to our work, other modeling and formal languages for capturing the communi-
cation and non-functional requirements of complex distributed systems do not
directly provide such a simple and understandable view.

3 Software Architecture Metamodel

In the context of reliable distributed systems, a connection between distributed
components should perform a reliable and trusted communication. While this
could be done with standard specification of distributed component-based appli-
cations, such as those based on CCM [13,15] and ADL-like [2,24], it would be

impossible to configure and control the reliability and trustworthiness of commu-
nication connections at design time. This motivates the usage of the connector
concept to embed specific interaction semantics and multiple implementations
of the semantics within distributed computing systems. The basic idea of this
extension is that the semantics of an interaction is defined by a certain port type
and that one or more connectors can support this port type. The port types are
already fixed at component design time, whereas the choice of a connector (and
a specific communication style) is also constrained by the deployment charac-
teristics.

A connector has certain similarities with a component. The main difference
is that it is dedicated for communication purposes. Since a connector is respon-
sible for incoming, outgoing, intercepting, and blocking data and messages, it
is an ideal place for the integration of security and dependability mechanisms.
However, connectors are still non-standard interaction mechanisms. For instance
there is no corresponding concept in the architecture description languages used
in industrial contexts, i.e., containing an UML-like [17] vocabulary.

Fig. 1. Component-port-connector metamodel

We propose to build a modeling framework to define architectural models
that are conceptually close to the industrial practice, i.e., containing an UML-
like and an UCM-like vocabulary. Figure 1 visualizes a metamodel as a class
diagram. The metamodel provides concepts for describing software architectures
in terms of different views [12], with a focus on:

1. Logical view to capture the functional architecture of the system in terms of
components.

2. Physical view to describe the deployment of the software onto the hardware
taking into account the distributed aspects.

3. Scenario view which builds upon the logical and the physical views, describing
the behavioral aspects of the system.

4 Modeling

In order to verify any communication style formally, it is mandatory to model
that style carefully. Therefore, in modeling each communication style, each of
the two communication parties (client and server) and the channel (connector
connecting two ports) between them are described as a finite state machine.

4.1 Message Passing
In the message passing communication style (MPS), a channel is used for sending
a message from a client to a server. The message is simply transmitted without
any acknowledgement. The communication channel is modeled as a set of fixed
length for messages offering two operations: (a) push to add an element in the
set and (b) pull to remove an element from the set.

The left side of Fig. 2 shows the states of a client for sending a message. It
is shown that if the state is sent (0) and a send event occurs when the buffer is
not full (∼ (#buf = max)), it changes its state from 0 to 1 for sending 1. On
the other hand, if the buffer is full (#buf = max), it remains at state 0. It also
shows that if the state is sending and the message is in the buffer (mess in buf),
it changes its states from 1 to 0 for sent.

Similarly, the right side of Fig. 2 shows the states of a server for receiving a
message. It is shown that if the state is received (0) and the buffer has a message
(mess in buf), it changes its state from 0 (received) to 1 for receiving a message.
On the other hand, if the message is not in the buffer, it remains at state 0. It
also shows that if the state is receiving and the message is no longer anymore in
the buffer, it changes its states from 1 to 0 for received.

Fig. 2. States of a client (resp. server) for sending (resp. receiving) messages

Figure 3 shows the states of a connector for pulling and pushing a message.
It is shown that if the state is 0 for waiting to receive messages from a caller
and a message is pushed into the buffer, it changes its state from 0 to 1. If
the current state 1 for waiting to receive message from a caller or retrieving a
message from a receiver, it shows that if an event push or pull is executed and
the buffer has more than one message but is not full (max > #buf > 1), then
it stays in the state 1. Otherwise, if a pull occurs and the buffer only has one
message (#buf = 1), it changes its states from 1 to 0. But if a push occurs and
the buffer is full minus 1 message (#buf = max − 1), it changes its state from

1 ∼ Q denotes the negation of the statement Q and #A denotes the cardinality of the
set A.

1 to 2 for retrieving messages from a receiver. Finally, it shows that to change
from state 2 to 1 only a pull event is required.

Fig. 3. States of a MPS connector

4.2 Message Passing with FIFO Ordering

The message passing with FIFO (First-in-first-out) ordering communication style
is identical to message passing with a preservation of the order from the perspec-
tive of a sender. If a sender sends one message before another, it will be delivered
in this order at the receiver. Here, the communication channel is modeled as a
queue of fixed length for messages offering two operations: (a) push to add an
element in the head of the queue and (b) pop to remove the element at the tail
of the queue.

The left side of Fig. 4 shows the states of a client for sending a message. It
is shown that if the state is sent and a send event occurs when the buffer is not
full, it changes its state from 0 (Send) to 1 for sending. On the other hand, if the
buffer is full, it remains at state 0. It also shows that if the state is sending and
the message is at the head of the buffer (mess head buf), it changes its states
from 1 to 0 for sent.

Similarly, the right side of Fig. 4 shows the states of a server for receiving a
message. It is shown that if the state is received and a message is at the tail of
the buffer (mess tail buf) it changes its state from 0 (received) to 1 for receiving
a message. On the other hand, if the message is not at the tail of the buffer, it
remains at state 0. It also shows that if the state is receiving and the message is
no longer in the buffer, it changes its states from 1 to 0 for received.

Fig. 4. States of a client (resp. server) for sending (resp. receiving) messages

Figure 5 shows the states of a connector for popping and pushing messages.
It is shown that if the state is 0 for waiting to receive a message from a caller
and a message is pushed into the buffer, it changes its states from 0 to 1. If its
current state is 1 for waiting to receive a message from a caller or retrieving a
message from a receiver, it shows that if an event pop or pull happens and the
buffer has more than one message but is not full, then it stays in the state 1.
Otherwise, if a pop occurs and the buffer only has one message, it changes its
state from 1 to 0. But if a push occurs and the buffer is full minus 1 message, it
changes its state from 1 to 2 for retrieving messages from a receiver. Finally, it
shows that to change from state 2 to 1 only a pop event is required.

Fig. 5. States of a MPS FIFO connector

4.3 Remote Procedure Call
In the typical remote procedure call (RPC) communication style [3], a channel
is used for sending invocation (request) messages from a client to a server and
for receiving acknowledgement (reply) messages from a server to a client. The
communication channel is modeled as a queue of fixed length for both request
and reply messages from a client and a server respectively. Note that RPC is a
special case of the general message-passing model.

Figure 6 shows the states of a client for sending invocation messages and
receiving reply messages. It is shown that if the state for send is sending and the
buffer is not full, it changes its state from 0 (invocation sent) to 1 for waiting
for a reply. On the other hand, if the state is sending and the buffer is full, it
remains at state 0. It is also shown that if the state is waiting to receive a reply
(1) and the reply is in the buffer, it changes its state from 1 to 2 for receiving
a reply. Otherwise, if the reply is not yet in the buffer, it remains at state 1.
On the other hand, if the state is receiving and the reply is not in the buffer, it
changes its state from 2 to 0.

Figure 7 shows the states of a connector for pushing and pulling invocation
and reply messages. It is shown that if the state is waiting to receive from the
caller (0) and a push of an invocation occurred, it changes its state from 0 to
1. The connector stays in state of retrieving an invocation to the receiver (1)
until a pull of an invocation which changes its state from 1 to 2 for waiting for a
reply. Figure 7 also shows also that the connector remains in this new state until
a push of a reply occurs then it changes its states from 2 to 3 indicating that it

is receiving a reply. Finally, it changes its state from 3 to 0 if a pull of a reply
occurred.

Fig. 6. States of a client for invocation/receiving reply messages

Fig. 7. States of a RPC connector

Figure 8 shows the states of a server for receiving invocation and sending
reply messages. It is shown that if the state is waiting to receive an invocation
and an event receiveInvocation occurs in the case that an invocation is present
in the buffer it changes it state from 0 to 1. Otherwise, if the invocation is absent
it remains in the same state. It also shows that after the execution when an event
reply, if the buffer is not full it changes its state from 1 to 2. Otherwise, if the
buffer is full it stays in state 1. Finally, from state 2 it returns to state 0 when
a reply is in the buffer.

Fig. 8. States of a server for receiving invocation/sending reply message

5 Formalization and Verification

In this section, we discuss the definition of our software architecture metamodel
in Alloy, followed by the specification and verification of the connectors. It con-
sists of a set of definitions, facts, predicates, assertions and functions. We attempt
to formalize software architecture models and their semantics following some
properties (specifications) to check architectural conformance. We facilitate this
by providing an architectural meta model in Alloy, that incorporates the con-
cepts of the metamodel presented in Sect. 3 and involves new concepts to capture
the behavioral aspects of the specific communication styles.

5.1 Software Architecture Metamodel in Alloy

A software architecture as described in Sect. 3 is mapped to our Alloy meta model
as follows. The mapping of structural elements is straightforward. An architec-
tural component, port, connector, interface, methods, and data are mapped to
their namesake types in Alloy, as are nodes and links. Before two (or more)
components can interact, we assume that a connector must be present between
them. We used the Time module provided within Alloy, where time is explicitly
modeled as a set of discrete, ordered Time instances. Therefore, associations
(such as the set of ports connected by one connector) can be made by adding a
relationship with the Time set (i.e., the connects relationship that relates con-
nector to port is a relationship from connector over port to Time). Furthermore,
if a connector exists between components on different nodes, then there must be
a corresponding link between those nodes to host the Connector.

A component is connected to a connector through a number of ports. The
three basic concepts in the model are components, ports and connectors that
are represented as a set of Alloy signatures as depicted in Listing 1.1. With

regard to the scenario view, we defined two additional concepts: MsgPassing and
Invocation. Each of them is created by the client and consumed by the server.
For instance, once a send is executed by the sender component, MsgPassing is
buffered in a connector. When it is received by the receiving component, it is
removed from the connector.

s ig Port {}
s ig Component {

uses : set Port
}
abstract s ig Connector {

connects : set Port −> Time
}{

a l l d i s j c1 , c2 : Component , t : Time {
c1 . uses + c2 . uses in connects . t implies

some n1 , n2 : Node {
c1 in n1 . host s . t
c2 in n2 . host s . t
n1 = n2 or some l : Link | n1+n2 in l . connects . t

}
}

}
abstract s ig Channel extends Connector {

dis j portI , portO : one Port
}{

a l l t : Time | connects . t = por t I + portO
}
abstract s ig CommunicationArtifact {

c l i e n t : one Component ,
s e rv e r : one Component

}{
c l i e n t != s e rv e r

}
s ig MsgPassing extends CommunicationArtifact {

msgData : one Message
msgType : one DataType

}
s ig Invocat ion extends CommunicationArtifact {

i n v o c a t i on o f : one Method ,
a rguments ca l l : set Argument ,
arguments reply : set Argument −> Time

}

Listing 1.1. Software architecture metamodel in Alloy

5.2 Formal Specification of the Connectors
Listings 1.2, 1.3 and 1.4 depict an excerpt of the formalization of the three
studied connectors, respectively message passing connector, message passing with

FIFO ordering connector and remote procedure call connector. The semantics of
these connectors are the same as those of the modeling presented in Sect. 4.
To specify the behavior of a connector, we use traces of computation which is a
common technique in Alloy. For each connector we define a trace of computation
as a sequence of states. To model a trace in Alloy, we reuse the Alloy standard
ordering module which creates a single linear ordering over the instances of
the signature provided as its input. Therefore, we provide a fact that puts a
constraint on the behavior of the connector. For example, in Listing 1.2, the fact
constrains the acceptable state transitions of the message passing connector to
form a valid executable trace.

s ig ConnectorMPS extends Channel{
bu f f e r : set MsgPassing −> Time ,
capac i ty : Int

}
pred MPS init [t : Time] {

a l l c : ConnectorMPS | # c . bu f f e r . t = 0
}
pred MPS push [t , t ’ : Time , c : ConnectorMPS , mp: MsgPassing] {

#c . bu f f e r . t < c . capac i ty
c . bu f f e r . t ’ = c . bu f f e r . t + mp

}
pred MPS pull [t , t ’ : Time , c : ConnectorMPS , mp: MsgPassing] {

mp in c . bu f f e r . t
c . bu f f e r . t ’ = c . bu f f e r . t − mp

}
fact t r a c e s {

MPS init [TO/ f i r s t]
a l l t : Time − TO/ l a s t | l e t t ’ = TO/next [t] |
some c : ConnectorMPS , mp: MsgPassing | MPS push [t , t ’ , c , mp]
or MPS pull [t , t ’ , c , mp]

}

Listing 1.2. Message passing connector

s ig QMessage extends QElem {
message : one MsgPassing

}
s ig ConnectorMPSFIFO extends Channel{

bu f f e r : one Queue ,
}
pred MPSFIFO init [t : Time] {

a l l c : ConnectorMPSFIFO | QEmpty [t , c . bu f f e r]
}
pred MPSFIFO push [t , t ’ : Time , c : ConnectorMPSFIFO , mp: MsgPassing] {

one qm: QMessage | qm. message = mp and QEnq [t , t ’ , c . bu f f e r , qm]
}
pred MPSFIFO pop [t , t ’ : Time , c : ConnectorMPSFIFO , mp: MsgPassing] {

QLast [t , c . bu f f e r] . message = mp
QDeq [t , t ’ , c . bu f f e r]

}
fact t r a c e s {

MPSFIFO init [TO/ f i r s t]
a l l t : Time − TO/ l a s t | l e t t ’ = t . next |
some mp: MsgPassing , c : ConnectorMPSFIFO | MPSFIFO push [t , t ’ , c , mp]
or MPSFIFO pop [t , t ’ , c , mp]

}

Listing 1.3. Message passing with FIFO ordering connector

s ig ConnectorRPC extends Channel{
bu f f e r : Invocat ion lone −> Time

}
pred RPC Init [t : Time] {

a l l c : ConnectorRPC | c . bu f f e r . t = none

}
pred RPC push [t , t ’ : Time , c : ConnectorRPC , i : Invocat ion] {

c . bu f f e r . t = none

c . bu f f e r . t ’ = i
}
pred RPC pull [t , t ’ : Time , c : ConnectorRPC , i : Invocat ion] {

c . bu f f e r . t = i
c . bu f f e r . t ’ = none

}
pred RPC pushInvocation [t , t ’ : Time , c : ConnectorRPC , i : Invocat ion] {

c . bu f f e r . t . arguments reply . t = 0
RPC push [t , t ’ , c , i]

}
pred RPC pullInvocation [t , t ’ : Time , c : ConnectorRPC , i : Invocat ion] {

c . bu f f e r . t . arguments reply . t = 0
RPC pull [t , t ’ , c , i]

}
pred RPC pushReply [t , t ’ : Time , c : ConnectorRPC , r : Invocat ion] {

c . bu f f e r . t . arguments reply . t ’ != 0
RPC push [t , t ’ , c , r]

}
pred RPC pullReply [t , t ’ : Time , c : ConnectorRPC , r : Invocat ion] {

c . bu f f e r . t . arguments reply . t != 0
RPC pull [t , t ’ , c , r]

}
fact t r a c e s {

RPC Init [TO/ f i r s t]
a l l t : Time − TO/ l a s t | l e t t ’ = TO/next [t] |
some c : ConnectorRPC , i : Invocat ion , r : Invocat ion
| RPC pushInvocation [t , t ’ , c , i] i f f not RPC pullInvocation [t , t ’ , c , i]
i f f not RPC pushReply [t , t ’ , c , r] i f f not RPC pullReply [t , t ’ , c , r]

}

Listing 1.4. Remote procedure call connector

5.3 Formal Specification of the Communication Primitives

Moreover, we define the corresponding communication primitives associated with
each of the corresponding communication styles. The semantics of these primi-
tives are the same as those of the modeling presented in Sect. 4.

Message Passing Communication. Communication in the message passing
communication style is performed using the send() and receive() primitives.
The send() primitive requires the name of the receiver component, the trans-
mitted data and the expected data types as parameters, while the receive()
primitive requires the name of the anticipated sender component and should
provide storage variables for the message data and the expected data types (see
Listing 1.5).

In spite of blocking primitives that are often chosen, for the sake of easier
realization, here we consider the semantics of a non-blocking primitives to cap-
ture the more general asynchronous communication paradigm. The non-blocking
send(receiver, data) returns control to the sender immediately and the message
transmission process is then executed concurrently with the sender process. The
sender executes a send(receiver, data) which results in the communication sys-
tem constructing a message and sending it to the receiver through the corre-
sponding connector. The receiver executes a receive(sender, data) which causes
the receiver to be blocked, awaiting a message from the sender. When the mes-
sage is received, the communication system removes the message from the cor-
responding connector, extracts the data from the message and delivers it to the
receiver. As a prerequisite, we added the check type interaction data predicate
to ensure that message’s types are supported at both the sending and receiving
components. Without data type checking, the support of the message type is
only verified at execution time.

pred ch e ck type i n t e r a c t i on da t a [mp: MsgPassing]{
one di : Data , p :mp. c l i e n t . uses | di in p . r e a l i z e s and di . kind = DATA OUT and

mp. msgType in di . DataType
one di : Data , p :mp. s e rv e r . uses | di in p . r e a l i z e s and di . kind = DATA IN and

mp. msgType in di . DataType
}
pred Component . send [r e c e i v e r : Component , d : Message , typ : DataType , t : Time] {

some mp: MsgPassing{
mp. c l i e n t = this

mp. s e rv e r = r e c e i v e r
mp. msgData = d
mp. msgData . msgType= typ
che ck type i n t e r a c t i on da t a [mp]

one t ’ : t . next | l e t c = { c : ConnectorMPS | c . portO in mp. c l i e n t . uses and

c . po r t I in mp. s e rv e r . uses } | MPS push [t , t ’ , c ,mp]
}

}
pred Component . r e c e i v e [sender : Component , d : Message , typ : DataType , t : Time] {
some mp: MsgPassing{

mp. c l i e n t = sender
mp. s e rv e r = this

mp. msgData = d
mp. msgData . msgType= typ
che ck type i n t e r a c t i on da t a [mp]
one t ’ : t . next | l e t c = { c : ConnectorMPS | c . portO in mp. c l i e n t . uses and

c . po r t I in mp. s e rv e r . uses } | MPS pull [t , t ’ , c ,mp]
}

}

Listing 1.5. Message passing communication

Remote Procedure Call Communication. Communication in the remote pro-
cedure call communication style is performed using the call(), executeCall(),
reply() and executeReply() primitives. As depicted in Listing 1.6, the call()

primitive executed at the caller component requires the name of the callee com-
ponent providing the invoked method, the method being invoked and the asso-
ciated arguments as parameters. The executeCall() primitive requires the name
of the anticipated caller component, the corresponding invoked method and its
input and output arguments. The reply() primitive requires the name of the
anticipated caller component, the corresponding invoked method and its result
parameters. The executeReply() primitive requires the name of the anticipated
callee component, the corresponding invoked method and its result parameters.

The semantics of RPC in distributed systems are the same as those of
a local procedure call in a non distributed systems: The caller component
calls and passes input arguments to the remote procedure and it blocks
at the call(callee,method, input, result) while the remote procedure executes
(executeCall(caller,method, input, result)). When the remote procedure com-
pletes, the callee component can return result parameters to the calling compo-
nent (reply(caller,method, result)) and the caller becomes unblocked and con-
tinues its execution (executeReply(callee,meth, result)). As a prerequisite, we
added the check type interaction interface predicate to ensure that operations
are present at the sending and receiving components before an invocation is exe-
cuted. Without interface type checking, the presence of the invoked operation is
only verified at execution time.

pred c h e c k t y p e i n t e r a c t i o n i n t e r f a c e [i : Invocat ion]{
one i f : I n t e r f a c e , p : i . c l i e n t . uses | i f in p . r e a l i z e s and i f . kind = REQUIRED and i .

i n v o c a t i on o f in i f . methods
one i f : I n t e r f a c e , p : i . s e r v e r . uses | i f in p . r e a l i z e s and i f . kind = PROVIDED and i .

i n v o c a t i on o f in i f . methods
}
pred Component . c a l l [c a l l e e : Component , meth : Method , in : set Argument , out : set

Argument , t : Time]{
some i : Invocat ion {
i . c l i e n t = this

i . s e r v e r = c a l l e e
i . i n vo c a t i on o f = meth
i . a rguments ca l l = in

i . arguments reply . t = 0
ch e c k t yp e i n t e r a v t i o n i n t e r f a c e [i]
one t ’ : t . next | l e t c = { c : ConnectorRPC | c . portO in i . c l i e n t . uses
and c . po r t I in i . r e c e i v e r . uses } | RPC pushInvocation [t , t ’ , c , i]
}

}
pred Component . executeCa l l [c a l l e r : Component , meth : Method , in : set Argument , out : set

Argument , t : Time] {
some i : Invocat ion {
i . c l i e n t = c a l l e r
i . s e r v e r = this

i . i n v o c a t i on o f = meth
i . a rguments ca l l = in

i . arguments reply . t = 0
c h e c k t y p e i n t e r a c t i o n i n t e r f a c e [i]
one t ’ : t . next | l e t c = { c : ConnectorRPC | c . portO in i . c l i e n t . uses
and c . po r t I in i . s e r v e r . uses}
| RPC pullInvocation [t , t ’ , c , i] and c . bu f f e r . t ’ . arguments reply . t ’ = args out
}

}
pred Component . r ep ly [c a l l e r : Component , meth : Method , out : setArgument , t : Time] {

some r : Invocat ion {
r . c l i e n t = c a l l e r
r . s e r v e r = this

i . i n v o c a t i on o f = meth
i . a rguments ca l l = in

i . arguments reply = out
c h e c k t y p e i n t e r a c t i o n i n t e r f a c e [i]
one t ’ : t . next | l e t c = { c : ConnectorRPC | c . portO in r . c l i e n t . uses
and c . po r t I in r . s e r v e r . uses}
| RPC pushReply [t , t ’ , c , r]

}
}
pred Component . executeReply [c a l l e e : Component , meth : Method , in : set Argument , out : set

Argument , t : Time] {
some r : Invocat ion {
r . c l i e n t = this

r . s e r v e r = c a l l e e
i . i n vo c a t i on o f = meth
i . a rguments ca l l = in

i . arguments reply = out
c h e c k t y p e i n t e r a c t i o n i n t e r f a c e [i]
one t ’ : t . next | l e t c = { c : ConnectorRPC | c . portO in r . c l i e n t . uses
and c . po r t I in r . s e r v e r . uses}
| RPC pullReply [t , t ’ , c , r]
}

}

Listing 1.6. Remote procedure call communication

5.4 Formal Verification and Results
To analyze the connectors, the modeling formalism developed in this work allows
to specify the properties to be checked in terms of first-order predicate logic
formulas. Then, the Alloy Analyzer automatically checks the properties using
a SAT solver. Among the set of possible and yet specified characteristics of
the behaviors of the message passing and remote procedure call communication
styles, a subset of them are encoded in terms of properties as predicates and
assertions and the results of their verification are stated below.

Some of the properties that are specified and verified reflect typical liveness
properties of concurrent and communicating systems. In order to ensure that
such systems are dependable, liveness properties such as property (a) given below
for both message passing and remote procedure call communication are vital to
ensuring reliable communications and system behaviors.

– Message passing communication.
• (a) “once the client c1 sends a message to server s1, eventually that server

receives it”.

pred s end ev en tua l l y r e c e i v ed {
one t : Time | one t ’ : t . nexts | some c1 , c2 : Component | some d : Message | some

typ : DataType |
c2 . send [c1 , d , typ , t ’] => c1 . r e c e i v e [c2 , d , typ , t]

}

• (b) “once the server s1 receives a message, it must already have been sent
by a certain client c1”.

assert r e c i e v e mus t be s en t {
one t : Time | one t ’ : t . nexts | some c1 , c2 : Component | some d : Message | some

typ : DataType |
c2 . r e c e i v e [c1 , d , typ , t ’] => c1 . send [c2 , d , typ , t]

}

• (c) “messages sent from the client c1 to the server s1 reach the server s1
in the same order as they were sent from c1”.

assert is FIFO {
a l l d i s j c1 , s1 : Component | a l l d i s j d1 , d2 : Message | some typ1 , typ2 :
DataType | a l l t s1 : Time | l e t t s2 = ts1 . nexts | a l l t r1 : Time | a l l t r2 :

Time |
(c1 . send [s1 , d1 , typ1 , t s1] and c1 . send [c2 , d2 , typ2 , t s2]
and s1 . r e c e i v e [c1 , d1 , typ1 , t r1]
and s1 . r e c e i v e [c1 , d2 , typ2 , t r2])
=> t r2 in t r1 . nexts

}

The Alloy Analyzer shows that properties (a) and (b) hold for both types
of message passing connector (simple and FIFO). It also shows that prop-
erty (c) does not hold for a simple message passing connector. Since the

property does not hold, Alloy produces a counter example, which shows
the main reason why the specified property does not hold. However, the
Alloy analyzer shows that this property holds for a FIFO ordered message
passing connector.

– Remote procedure call communication.

• (a) “Once the caller c1 sends an invocation to callee c2, the caller even-
tually receives an acknowledgement from that callee”.

pred s e n d i s e v e n t u a l l y r e p l i e d {
one t : Time | one t ’ : t . nexts | some c1 , c2 : Component | some m: Method
| some a r g s i n : Argument | some arg s out : Argument |
c1 . c a l l [c2 ,m, a rg s in , args out , t] => c1 . executeReply [c2 ,m, a rg s in , args out

, t ’]
}

• (b) “Once the caller c1 receives results corresponding to an invocation of
a method m at a certain server c2 and the caller c1 starts the next invo-
cation of the same method at the same server, the callee c1 is eventually
executing that invocation”.

pred r e p l y a n d c a l l i s e v e n t u a l l y r e c e i v e d {
one t : Time | one t ’ : t . nexts | one t ’ ’ : t ’ . next |
some c1 , c2 : Component | some m: Method |

some dis j args in1 , args out1 , a rgs in2 , a rgs out2 : Argument |
c2 . r ep ly [c1 ,m, args in1 , args out1 , t] and c1 . c a l l [c2 ,m, args in2 , args out2 , t

’] =>

c2 . executeCa l l [c1 ,m, args in2 , args out2 , t ’ ’]
}

The Alloy Analyzer shows that both properties (a) and (b) hold for a RPC
connector.

6 Use Case

We use a college library website system [19] to exemplify the proposed app-
roach. Figure 9 shows the overall architecture description of the web application.
It consists of a the following software components: a client, a web server and
a database server. The website provides online services for searching for and
requesting books. The users are students, college staff and librarians. Staff and
students will be able to log in and search for books, and staff members can
request books. Librarians will be able to log in, add books, add users, and search
for books. We use a UML class diagram to describe the high level architecture
model of the web application, where software components are represented by
classes, and connectors between these components are represented by associa-
tions. However, effective realizations of these connectors are not modeled in the
UML class diagram; they may be subject to certain changes and/or adapta-
tions (e.g., new solutions, deletions, modifications of realization), verifications
(e.g., formal verification) and reuse (e.g., in the same domain or across domains)
while the structure of the main software architecture can be maintained. Each
connector represents a communication pattern which rigorous software develop-
ers, mainly architects would like software modeling and analysis languages to
easily express.

Fig. 9. A web application example in UML

6.1 Expressing the Architecture of a Web Application Example

Listing 1.7 depicts the Alloy specification of the web application architecture
described in Fig. 9. We start by defining the component types, and the interfaces
and connectors as simple extensions to the concepts of our software architecture
metamodel. Then, we reuse our connector models, the corresponding commu-
nication primitives and their associated properties to specify the structure and
the behavior of the software architecture describing the example in Alloy.

one sig UserBrowser extends Component {
}{

uses = Port Inter faceBrowser
}
one sig Webserver extends Component {
}{

uses = Port Inter faceWebserver + PortDataWebserver
}
one sig Database extends Component {
}{

uses = PortDataDatabase
}
one sig In te r faceBrowser extends I n t e r f a c e {
}{

getBook in methods
}
one sig Inter faceWebserver extends I n t e r f a c e {
}{

getBook in methods
}
one sig DataWebserver extends Data {
}
one sig DataDatabase extends Data {
}
one sig Port Inter faceBrowser extends Port {
}{

r e a l i z e s = Inte r faceBrowser
}
one sig Port Inter faceWebserver extends Port {
}{

r e a l i z e s = Inter faceWebserver
}
one sig PortDataWebserver extends Port {
}{

r e a l i z e s = DataWebserver
}
one sig PortDataDatabase extends Port {
}{

r e a l i z e s = DataDatabase
}
one sig BrowerWebserverConnector extends ConnectorRPC {
}{

portO = Port Inter faceBrowser
por t I = Port Inter faceWebserver

}
one sig DatabaseWebserverConnector extends ConnectorMPS {
}{

portO = PortDataDatabase
por t I = PortDataWebserver

}

Listing 1.7. A web application example in Alloy

6.2 Expressing and Verifying Functional Requirements

To illustrate the usage of the developed model, we studied two functional require-
ments of the example. Listing 1.8 depicts their encoding in Alloy. Then, the
architect can verify whether these two requirements hold using the Alloy ana-
lyzer.

– Req 1. It should be possible for somebody to visualize a book page.
– Req 2. It should be possible for the database to transmit data to the Webserver.

pred Req 1{
some ws : Website , bw : Browser , op : getBook , a rg s in , a rg s out : set Argument , t : Time ,

t ’ : t . nexts |
bw. c a l l [ws , op , a rg s in , args out , t] and

bw. executeReply [ws , op , a rg s in , args out , t ’]
}
pred Req 2 {

some ws : Webserver , db : Database , c : Message , typ : DataType , t : Time , t ’ : t . nexts
|

db . send [ws , c , typ , t] and

ws . r e c e i v e [db , c , typ , t ’]
}

Listing 1.8. Examples of requirements of a web application

The Alloy analyzer shows that both Req 1 and Req 2 hold, within the specified
scope. This check enforces that the model is complete w.r.t. the current level of
design.

7 Concluding Remarks and Future Works

Formalization and verification techniques are useful in the rigorous development
of computer-based systems. In this paper, our experience in verifying message
passing and RPC communication styles using Alloy is presented. Here, we have
verified some most common properties of these two styles of communication and
found that the properties hold. Thus from our experience we can say that the
connectors and the software architecture using them are verifiable for building
reliable distributed systems. Our next goal is to improve our Patten Based Sys-
tem Engineering (PBSE) framework [7] considering security and safety require-
ments within software architectures built on-top of these communication styles.
We plan to transform our PBSE pattern modeling concepts to Alloy specifica-
tions to ensure semantic validation. In addition, we aim at refining our model-
ing framework with properties and reasoning of Security Modeling Framework
(SeMF) [6]. Our starting point is modeling security patterns in Alloy from [8].
Moreover, some timing and/or other resource constraints can also be enforced
to verify the architecture models.

References

1. Alloy Analyzer. http://alloy.mit.edu. Accessed June 2017
2. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.

Softw. Eng. Methodol. 6(3), 213–249 (1997)
3. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems: Con-

cepts and Design, 5th edn. Addison-Wesley Publishing Company, Boston (2011)
4. Crnkovic, I.: Component-based software engineering for embedded systems. In:

Proceedings of the 27th International Conference on Software Engineering, ICSE
2005, pp. 712–713. ACM (2005)

5. Garlan, D.: Formal modeling and analysis of software architecture: components,
connectors, and events. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS,
vol. 2804, pp. 1–24. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39800-4 1

6. Hamid, B., Gürgens, S., Fuchs, A.: Security patterns modeling and formalization
for pattern-based development of secure software systems. Innov. Syst. Softw. Eng.
12(2), 109–140 (2016)

7. Hamid, B., Perez, J.: Supporting pattern-based dependability engineering via
model-driven development: approach, tool-support and empirical validation. J.
Syst. Softw. 122, 239–273 (2016)

8. Heyman, T., Scandariato, R., Joosen, W.: Reusable formal models for secure soft-
ware architectures. In: Joint Working IEEE/IFIP Conference on Software Archi-
tecture and European Conference on Software Architecture, pp. 41–50 (2012)

9. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

10. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

11. Khosravi, R., Sirjani, M., Asoudeh, N., Sahebi, S., Iravanchi, H.: Modeling and
analysis of Reo connectors using alloy. In: Lea, D., Zavattaro, G. (eds.) COORDI-
NATION 2008. LNCS, vol. 5052, pp. 169–183. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68265-3 11

12. Kruchten, P.: Architectural blueprints - the “4+1” view model of software archi-
tecture. IEEE Softw. 12(6), 42–50 (1995)

13. OMG: CORBA Specification, Version 3.1. Part 3: CORBA Component Model
(2008). http://www.omg.org/spec/CCM. Accessed Nov 2009

14. OMG. OMG Systems Modeling Language (OMG SysML), Version 1.1 (2008).
http://www.omg.org/spec/SysML/1.1/,. Accessed Jan 2013

15. OMG: Object Constraint Language (OCL), Version 2.2 (2010). http://www.omg.
org/spec/OCL/2.2. Accessed Jan 2013

16. OMG: UML profile for Modeling and Analysis of Real-Time and Embedded
Systems (MARTE), Version 1.1 (2011). http://www.omg.org/spec/MARTE/1.1/.
Accessed Jan 2013

17. OMG: Unified Modeling Language (UML), Version 2.4.1 (2011). http://www.omg.
org/spec/UML/2.4.1. Accessed Jan 2013

18. OMG: Unified Component Model for Distributed, Real-Time And Embedded Sys-
tems, Version 1.0 (2017). http://www.omg.org/spec/UCM/20170601/. Accessed
Jan 2018

19. OWASP: Application threat modeling (2017). https://www.owasp.org/index.php/
Application Threat Modeling. Accessed Dec 2017

20. Alur, R., Dill, D.: The theory of timed automata. In: de Bakker, J.W., Huizing,
C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 45–73.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031987

21. Ravi, S., Raghunathan, A., Kocher, P., Hattangady, S.: Security in embedded sys-
tems: design challenges. ACM Trans. Embed. Comput. Syst. 3(3), 461–491 (2004)

22. Taylor, R.N., Medvidovic, N.: Software Architecture: Foundation, Theory, and
Practice. Wiley, Hoboken (2010)

23. Rodano, M., Giammarc, K.: A formal method for evaluation of a modeled system
architecture. Procedia Comput. Sci. 20, 210–215 (2013)

24. SAE: Architecture Analysis & Design Language (AADL) (2009). http://www.sae.
org/technical/standards/AS5506A. Accessed Jan 2011

25. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

26. Zurawski, R.: Embedded systems in industrial applications - challenges and trends.
In: International Symposium on Industrial Embedded Systems (SIES). IEEE
(2007)

