
HAL Id: hal-02467549
https://hal.science/hal-02467549v1

Submitted on 5 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated user-oriented description of emerging
composite ambient applications

Maroun Koussaifi, Sylvie Trouilhet, Jean-Paul Arcangeli, Jean-Michel Bruel

To cite this version:
Maroun Koussaifi, Sylvie Trouilhet, Jean-Paul Arcangeli, Jean-Michel Bruel. Automated user-oriented
description of emerging composite ambient applications. 31st International Conference on Software
Engineering and Knowledge Engineering (SEKE 2019), Jul 2019, Lisbonne, Portugal. pp.473-478.
�hal-02467549�

https://hal.science/hal-02467549v1
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.18293/SEKE2019

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24927

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Koussaifi, Maroun and Trouilhet, Sylvie and

Arcangeli, Jean-Paul and Bruel, Jean-Michel Automated user-oriented

description of emerging composite ambient applications. (2019) In:

31st International Conference on Software Engineering and

Knowledge Engineering (SEKE 2019), 10 July 2019 - 12 July 2019

(Lisbonne, Portugal).

Automated user-oriented description

of emerging composite ambient applications
M. Koussaifi, S. Trouilhet, J.-P. Arcangeli, J.-M. Bruel

IRIT, University of Toulouse, France

Abstract—Ambient environments consist of components sur-
rounding the user and offering services. Applications can
here be composed opportunistically and automatically by an
intelligent system that puts together available components.
Thus, applications that are a priori unknown emerge from the
environment. The problem is in the intelligible presentation to
an average user of those emerging composite applications. Our
approach consists in automatic generation of user-oriented ap-
plication descriptions from unit descriptions of each component
and service. For that, we propose a well-defined language for
component description and a method for combining descrip-
tions. A prototype has been developed and used to experiment
the generation of different composite application descriptions.
Based on these experiments, we assess the degree of fulfillment
of the requirements we have identified for the problem.

I. INTRODUCTION

Applications of the Internet of Things, ambient and

cyber-physical systems consist of fixed or mobile connected

devices. Devices host independently developed and man-

aged software components that provide services specified

by interfaces and, in turn, may require other services [1].

Components are building blocks that can be assembled by

binding required and provided services to build composite

applications.

Due to mobility and separate management, devices and

software components may appear and disappear without

this dynamics being foreseen. Hence, the environment is

open and its changes are out of control. Humans are at the

core of these dynamic systems and can use the applications

at their disposal. Ambient intelligence aims at offering

them a personalized environment adapted to the current

situation, anticipating their needs and providing them the

right applications at the right time with the least effort

possible.

We are currently exploring and designing a solution

in which components are dynamically and automatically

assembled to build new composite applications and so

customize the environment at runtime. Our approach is

rather disruptive: unlike the traditional goal-directed top-

down mode, applications are built on the fly in bottom-up

mode from the components that are present and available

at the time, without user needs being made explicit. That

way, composite applications continuously emerge from the

environment, taking advantage of opportunities as they

arise: for example, a slider on a smartphone can oppor-

tunely be composed with a connected lamp and provide

DOI : 10.18293/SEKE2019-131

the user with a lightening service when entering a room.

Here, contrary to the traditional SOA paradigm, the user

does not specify a service or search for it in “pull mode”, but

context-adapted applications are provided in “push mode”.

Automated composition is supported by an assembly

engine in line with the autonomic computing principles

and the MAPE-K model [2]: it senses the existing com-

ponents and decides of the connections (it may bind a

required service and a provided one if their interfaces are

compatible) without using a pre-established plan. The heart

of the engine is a distributed multi-agent system where

agents, close to the software components and their services,

cooperate and decide on the connections [3]. To make the

right decisions and offer relevant applications, the engine

(i.e., the agents) learns at runtime by reinforcement. Thus,

the engine assures proactivity and runtime adaptation in

the context of openness, dynamics and unpredictability.

In such a context of automation based on artificial intel-

ligence, we believe that, whatever the engine’s decisions are,

the deployment of emerging applications should remain

under user control. So, she/he must first be informed of the

new application. Then, depending on its interest, she/he

must be able to accept it or not, possibly to modify it

(provided that she/he has the required skills) and so to

contribute to the customization of her/his environment. So,

the user must be put “in the loop" [4]. In addition, the

user’s actions about the emerging application (acceptance,

rejection, modification) are sources of feedback for the

engine’s learning. Based on them, the engine builds a model

of the user’s preferences and habits. Unknown a priori, this

model is built at runtime and evolves dynamically.

Therefore, it is essential to assist the user in the appro-

priation of the emerging applications pushed by the engine.

For that, applications must be presented to the user in a

useful and understandable way. The goal of this paper is to

propose a solution to provide the user with an intelligible

description of emerging applications.

The paper is organized as follows. Section II describes in

more details the problem and lists the main requirements.

Section III analyzes the related work on service description

and shows that the solutions are very limited in relation

to our problem. Section IV presents and illustrates our

approach to meet the requirements. Section V describes

an experiment based on a prototype we have developed. It

shows the feasibility of our approach and assesses whether

it meets the requirements. Finally, a conclusion is given in

Section VI as well as the perspectives of this work.

II. PROBLEM STATEMENT

In the absence of prior specification, emerging applica-

tions are unknown a priori and possibly surprising. They

result from local interactions between distributed agents

that constitute the engine. Composition relies on learned

user preferences and a matching between required and

provided services.

The user must be aware of the emerging application, its

function and how to use it, to consider if she/he could

benefit from. Therefore, applications must be presented in

an intelligible way. Here, we target average users that are

not familiar to programming and computer science. For

instance, the user may be the inhabitant of a smart house

or a public transport traveller in a smart city.

Consider a simple assembly consisting of a switch and

a lamp. In that case, we would ideally like to tell the user

something like “if you click on the switch, the lamp will turn

ON/OFF". Therefore, the problem lies in the construction

of the understandable description of an application defined

by an assembly of software components, and to compute

the description from the participating components, their

services and bindings.

A. Previous work

In [4], we have proposed an architecture that puts the

user in the loop (see Fig. 1). An editor presents the emerging

application, allows the user to accept it, then it is deployed,

or to reject it, then it is cancelled, or to modify it (that is

add, remove or change bindings between services). Accep-

tance, rejection, and modifications are notified back to the

engine for learning.

Fig. 1. Overall solution architecture

For that, the editor exposes a structural description of the

application (see Fig. 2) that is an editable graph of software

components that are connected through their respective

services, as well as other available components that may

be useful. This is achieved using model transformation

techniques that transform the output of the engine (set of

components, services and bindings) into a model (conform-

ing to a metamodel we have defined for this purpose) that

is presented for the user.

In the state of our work, the solution is limited to the

presentation of an editable structure of the application. On

one hand, this allows the user to build of a tailor-made

ambient environment. On the other hand, this requires

to understand component-based architecture, at least the

meaning of an assembly of components. Therefore, struc-

tural presentation is not understandable by an average user,

Fig. 2. Structural presentation via the editor

who needs to know the function rendered by the application

(in other words its semantics), and how to use it.

The next section lists the requirements we have identified

for an efficient presentation of an emerging application.

B. Requirements

1) Semantics: The function (i.e., the semantics) of the

application must be exhibited. For example, “the applica-

tion allows to light up the lamp”.

2) Usage: The instructions on how to use the application

must be exhibited. For example, “press the switch to turn

ON/OFF the light”.

3) Intelligibility: The description must be understand-

able by an average user, without programming skills.

4) Presentation scalability: The description should re-

main useful and intelligible even when the application has

about ten or more components.

5) Automated processing: The description must be au-

tomatically built by combining unit descriptions of compo-

nents without human support.

6) Expressiveness: The description language must be

expressive enough for software engineers with standard

skills to make descriptions of the components they provide.

III. RELATED WORK

Fundamentally, software components and services are

developed and documented for composition and reuse.

In practice, they are built from scratch or from existing

ones. In service-oriented engineering, service discovery and

selection are fundamental operations. Selection generally

aims to choose a service on a qualitative basis among

several ones that have been previously discovered. Discov-

ery and selection are performed either manually or more

or less automatically, at design or runtime, from service

descriptions.

In this section, we examine the related work in the field

of service description. We first study the questions related

to the target and objective of the description, then the

questions of content and tools of description.

A. For whom and why describing a service?

Designers use service descriptions as documentation.

They likewise describe the intent and use of the services

they develop. When engineers specify business processes

to be realized through the composition of existing services,

they describe (composite) services too. For example, com-

position of Web services are first explicitly specified by the

service requester, then processed more or less automatically

[5]. Thus, in that top-down mode, the demanded composite

service is specified a priori, so no more description is

necessary.

In [6], authors propose a user-centric service composition

platform that assists end-users without skills in service-

oriented engineering. End-users first enter their goals using

a few keywords. Then an editor presents the available

services and suggests possible and modifiable processes.

Most of the existing solutions use service description to

support automated service discovery, selection and compo-

sition. Services are described to be processed by a program.

Description allows service location and use, as is the case

for WSDL [7] in the field of Web Services.

Semantic description of Web services first targets interop-

erability [8]. Relying on semantics also has a positive impact

on the quality of the composition [9], in particular when

Quality of Service (QoS) attributes are considered [10], [11].

In [12], authors propose semantic enhancement of software

components with their properties and functionality to sup-

port matching between candidate components.

B. How to describe a service?

Service description can take more or less advanced forms

depending on the requirements for discovery, selection

and composition. In [13], authors overview and classify

service description approaches used in automated service

composition research.

In a basic way, descriptions may be limited to a syntactic

level. For example, in object-oriented middleware like Java

RMI [14], remote objects that provide services are registered

and located only through a name. Services (resources in

general terms) may be described more precisely using

keywords in order to be retrieved by their characteristics

rather than a simple identifier.

The semantic description of a service can be functional.

It can take the form of a signature with inputs and

outputs, possibly completed by preconditions and effects

[15]. Authors of [11] explain that signature is not enough

because different functions may have the same signature

on the one hand, and that two services rendering the same

function may differ fundamentally in their performances on

the other hand. Therefore, service description may include

extrafunctional properties that is QoS-related properties.

In [16], authors have proposed different techniques to

create descriptions of services using the DAML-S language

that was proposed to bridge the gap between the Web

services infrastructure and the Semantic Web [17]. Ac-

cording to [13], OWL-S that succeeded to DAML-S has

become a standard for industrial service composition. OWL-

S [18] is an ontology for describing Semantic Web services

that enables their automated discovery, composition and

use. Ontology-driven description of services proved to be

efficient for selection and composition [6].

C. Analysis

There are many solutions for functional and extrafunc-

tional service description. Most of them focus on service

discovery, selection, and top-down composition in order to

build a complex service from unit ones. In our bottom-

up approach, as the complex service to be built is un-

known, there exists no solution which aims at combining

descriptions. In most cases, service description supports

automation, for example when based on ontologies. But

in that case, descriptions are little or not at all intelligible

by average human users. In addition, when extrafunctional

properties are considered, they mainly concern the quality

of services, but not their usage. In conclusion, to the

best of our knowledge, there is no work that meets our

requirements, mainly those concerning usage, intelligibil-

ity, and automated processing, in the context of bottom-

up and goal-free application construction. Nevertheless,

a functional description of services using signatures with

preconditions and effects [15] may help in extracting the

semantic information about the components’ behavior and

their interactions, that should be useful for the entire

application description.

IV. PROPOSITION

This section presents our approach to describe compo-

nents and their services, and to compute user-oriented

descriptions of emerging composite ambient applications

(assemblies of software components). Descriptions mainly

consist of rules that explain the components and the appli-

cations. Composite application descriptions are generated

from the unit descriptions of the components that are

given at component design time, and the bindings between

services that are supplied by the engine. Generation is

achieved by combining the descriptions together, precisely

the rules that belong to each unit description. At the

end, the combination process aims at building a rule or

a set of rules that describes the application, that can be

then transformed into a text readable by the user. Our

contributions are: (i) a language for the description of

components’ services and (ii) a combination method.

In the following, our proposition is explained in details.

A. Component and Service Description

A component description (CD) is a tuple that expresses

how the component and its services work and interact with

other connected components.

C D =<Component N ame,Role,St ates,

Pr ovi dedSer vi ces,Requi r edSer vi ces >

ComponentName and Role are strings: the name of

the component and a free text (e.g., ComponentName =

“Switch”, Role = “Send a signal when pressed”). As com-

ponents may have an internal state, such as a lamp that

is ON/OFF, States is the (possibly empty) set of possible

states (e.g., States = {“ON”,“OFF”}). Last, the component’s

required and provided service descriptions are gathered in

the ProvidedServices and RequiredServices sets.

A service, whether provided or required, is also described

by a tuple (SD).

SD =< Ser vi ceN ame, IO Acti on,

Launcher,Ser vi ceDescr i pti on,

BoundTo,Rul es >

ServiceName is a string (e.g., ServiceName = “Command”).

IOAction represents how the service interacts with other

services. It may have the following forms: VAL@OUTPUT or

TRIGGER ServiceName. The first form refers to the emission

of a message on the output interface of a required service.

VAL covers all possible data types that the service handles

(as the services have previously been composed by the

engine, the type matching problem has been already re-

solved; thus types are useless for our descriptions), and may

even be omitted. The second form refers to the transfer of

control between services inside a component. Furthermore,

IOAction can be empty for a provided service handling only

the evolution of the component’s state, without any output

(e.g., the OnOff provided service of the lamp that changes

the state to ON/OFF).

Launcher is a key defining what activates the service. It

covers two cases. The first refers to an external interaction

coming from another component (onRequired) or to an in-

ternal one coming from the component itself (onTriggered).

The second case refers to an interaction coming from the

user and can have multiple values such as onButtonPressed,

onSliderDragged, onCheckBoxChecked. . .

ServiceDescription describes the service in a free text

(e.g., ServiceDescription = “Turn ON/OFF the lamp”). This

attribute is used by our combination algorithm to generate

a textual form of the description (see section IV-B).

BoundTo is a set of services within their component (C-S)

described as follows.

C −S =Component N ame.Ser vi ceN ame

For example, C −S = Switch.Command.

Rules is a set of logic rules of the form “Condi ti on =⇒

Consequence ′′ that describes the service behavior. It is

written as follows in BNF notation [19] where < cp > is

a comparator, S ∈ St ates and V is a value. Note that

IOAction and Launcher have been put out of the rules for

expressiveness and separation of concerns purpose.

Launcher

[∧ (ST AT E < cp > S)]

[∧ (V AL@I N PU T < cp > V)]

=⇒

IO Acti on |

ST AT E = S |

IO Acti on ∧ (ST AT E = S) |

NOP

The common case is “Launcher =⇒ IOAction”. Premises

concerning the component’s state and the inputted value

are optional. It is usually the case for services that have

no condition to check, other than their Launcher, before

triggering their action. For example, for a switch to issue a

command, it is only necessary that the button is pressed

by the user.

In the general case, the condition part of a rule may

contain a test on the component’s state or on an inputted

value. For the consequence part of the rule, several forms

are possible. In particular, it may contain a state changing

operation. Furthermore, NOP is a special key used if the

service does not carry out any operation.

Here are examples of service descriptions of the Com-

mand service required by a switch and the OnOff service

provided by a lamp, that have been connected by the

assembly engine. Component and service descriptions have

initially been written by the designer. They are completed

by the engine by filling the BoundTo attribute according to

the emerging assembly.

< (ServiceName) Command ,

(IOAction) @OU T PU T,

(Launcher) onBut tonPr essed ,

(ServiceDescription) Send a si g nal ,

(BoundTo) {Lamp.OnO f f },

(Rules) {Launcher =⇒ IOAction} >

< (ServiceName) OnO f f ,

(IOAction),

(Launcher) onRequi r ed ,

(ServiceDescription) Tur n ON /OF F the l amp,

(BoundTo) {Swi tch.Command},

(Rules) {Launcher ∧ (ST AT E ==OF F)

=⇒ ST AT E =ON ,

Launcher ∧ (ST AT E ==ON)

=⇒ ST AT E =OF F } >

The next section presents the method for combining

descriptions.

B. Combination of descriptions

Application descriptions are generated mainly from the

rules that describe the services, and then from the re-

maining attributes (if used by the rules). If a service S1 is

connected to a service S2 then the rules of S1 are combined

with the rules of S2 to generate the rules that describe the

composition.

The combination algorithm first finds matching keys

available in each possible pair of rules which belong

to S1 and S2 descriptions. For example: VAL@OUTPUT

matches onRequired and VAL@INPUT ; TRIGGER Service-

Name matches onTriggered. Then, the algorithm infers the

combined rules by transitivity. For example:

∗ R1: A =⇒ B ∧ C

∗ R2: C =⇒ D

R1 and R2 are combined into:

∗ R: A =⇒ B ∧ D

Note that there might be several combined rules at the

same time, for example:

∗ R1: A =⇒ B

∗ R2: B ∧ B ′ =⇒ C

∗ R3: B ∧ B ′′ =⇒ D

R1, R2 and R3 are combined into:

∗ R ′: A ∧ B ′ =⇒ C

∗ R ′′: A ∧ B ′′ =⇒ D

Here is an example for the Switch-Lamp application:

∗ R ′: LauncherCommand ∧ (ST AT E == ON) =⇒

ST AT E =OF F

∗ R ′′: LauncherCommand ∧ (ST AT E == OF F) =⇒

ST AT E =ON

The combined rules are transformed into a

textual form to be presented to the user. An

attribute is linked to its component and the label is

replaced by its content (LauncherCommand becomes

OnBut tonPr essed o f Swi tch). The Ser vi ceDescr i pti on

content is used to make the elements of the rule more

explicit (the ST AT E element and Tur n ON /OF F the l amp

are compared). Finally, the =⇒ is translated in a verbal

form (I MPLI ES . . . I F). In addition, the algorithm is able

to group rules that have the same launcher. The textual

presentation of the Switch-Lamp application is:

onButtonPressed of Switch IMPLIES

Turn OFF the lamp IF Lamp is ON

Turn ON the lamp IF Lamp is OFF

Note that the generated textual description may some-

times not be grammatically correct. At this point, syntax

improvement is left for future work.

The above example has the simplest topology, but the

solution targets more complex ones: pipeline, star. . . Our

description language can easily be extended. For example

in order to cover the case of a component that requires

several services sequentially, a sequence operator could

be added to the description language and handled by the

combination algorithm.

The next section shows the experimentation we have

carried out and analyzes our solution in relation to the

requirements.

V. EXPERIMENTATION AND ANALYSIS

A. Proof of concept

In order to demonstrate the feasibility of our approach,

we have developed a prototype in Java, where each com-

ponent and its services XML-like descriptions are stored

in a separate file. It was tested on different composite

applications built by our assembly engine.

Here is an example with three components assembled

in pipeline mode: a slider, a converter and a lamp. The

slider acts as a switch. It requires the ProcessVal service.

The converter provides the Transform service: it receives

a value and, if greater than 50, transforms it into an

order for the lamp through the Order required service.

As in the previous section, the lamp provides the OnOff

service. The descriptions of the services are given below

(see Section IV-A for OnOff).

< (ServiceName) Pr ocessV al ,

(IOAction) V AL@OU T PU T,

(Launcher) onSl i der Dr ag g ed ,

(ServiceDescription) Send a value ∈ [0,100],

(BoundTo) {Conver ter.Tr ans f or m},

(Rules) {Launcher =⇒ IOAction} >

< (ServiceName) Tr ans f or m,

(IOAction) T RIGGER Or der,

(Launcher) onRequi r ed ,

(ServiceDescription) C hang e val ue i nto si g nal ,

(BoundTo) {Sl i der.Pr ocessV al }

(Rules) {Launcher ∧ (V AL@I N PU T > 50)

=⇒ IO Acti on,

Launcher ∧ (V AL@I N PU T <= 50) =⇒ NOP } >

< (ServiceName) Or der,

(IOAction) @OU T PU T,

(Launcher) onTr i g g er ed ,

(ServiceDescription) Send a si g nal ,

(BoundTo) {Lamp.OnO f f },

(Rules) {Launcher =⇒ IOAction} >

Fig. 3 shows the rules resulting from the combination

algorithm. Then, the rules are transformed into a more

intelligible textual version to describe the emerging appli-

cation (Fig. 4).

Fig. 3. Description’s rules of the emerging application

Fig. 4. User-oriented description of the emerging application

B. Analysis

Rules describing the composite application are actually

inferred. They provide the information about both the

function of the application and how the user can interact

with it. Thus, the rule-based description of the components

and their services in an assembly makes possible to satisfy

the main requirements we have defined (see Section II-B)

concerning semantics, usage, and automated processing. By

transforming rules into text, the understanding is made

easier. Nevertheless, no real users have yet assessed the

intelligibility. User assessment experiments could help us

in improving the description language and the rule combi-

nation process. Concerning expressiveness, we consider that

the rule-based language is expressive enough for software

engineers. Moreover many elements of CD and SD could

be automatically extracted from the code of components,

in particular from the signatures of methods. Presentation

scalability requirement has yet to be improved. We would

like to allow the folding and unfolding of descriptions when

a number of components are involved, and therefore offer

a kind of “responsive” presentation of applications with

different levels of abstraction.

VI. CONCLUSION

In this paper, we have exposed an approach that aims

to answer the requirements to generate user-oriented in-

telligible descriptions of emerging assemblies of software

components. We have presented the limitations of the

current solutions and highlighted the benefits of our one.

We have developed a proof of concept that shows that our

approach can meet the requirements. Further experiments

must now be carried out on more complex composite

applications and topologies in order to consolidate our

solution and enrich the description language. Real users

should be involved in the experiments to improve and

validate intelligibility and scalability of the presentation.

Our next step towards addressing the scalability issue

will be to fully use the power of Model-Driven Engineering

(MDE) approaches and tools to support the automatic

generation of combination algorithms from the description

language definition itself. Our description language being

a domain-specific language (DSL), and our input assembly

being a model, MDE which has been proved useful in this

particular case [20] will allow us to define transformation

between assemblies and their descriptions.

REFERENCES

[1] I. Sommerville, “Component-based software engineering,” in Software
Engineering, ch. 16, pp. 464–489, Pearson Education, 10 ed., 2016.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, pp. 41–50, Jan. 2003.

[3] W. Younes, S. Trouilhet, F. Adreit, and J.-P. Arcangeli, “Towards an
intelligent user-oriented middleware for opportunistic composition
of services in ambient spaces,” in Proceedings of the 5th Workshop
on Middleware and Applications for the Internet of Things, M4IoT’18,
(New York, NY, USA), pp. 25–30, ACM, 2018.

[4] M. Koussaifi, S. Trouilhet, J.-P. Arcangeli, and J.-M. Bruel, “Ambient
intelligence users in the loop: Towards a model-driven approach,”
in Software Technologies: Applications and Foundations (M. Mazzara,
I. Ober, and G. Salaün, eds.), pp. 558–572, Springer, 2018.

[5] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and
X. Xu, “Web services composition: A decade’s overview,” Information
Sciences, vol. 280, pp. 218 – 238, 2014.

[6] H. Xiao, Y. Zou, R. Tang, J. Ng, and L. Nigul, “Ontology-driven
service composition for end-users,” Service Oriented Computing and
Applications, vol. 5, p. 159, Mar 2011.

[7] “Web Services Description Language.” https://www.w3.org/TR/wsdl/.
Accessed: 2019-01-31.

[8] H. Nacer and D. Aissani, “Semantic web services: Standards, appli-
cations, challenges and solutions,” Journal of Network and Computer
Applications, vol. 44, pp. 134–151, Sept. 2014.

[9] Y. Charif and N. Sabouret, “An overview of semantic web services
composition approaches,” Electronic Notes in Theoretical Computer
Science, vol. 146, no. 1, pp. 33 – 41, 2006. Proceedings of the First
International Workshop on Context for Web Services (CWS 2005).

[10] E. Chindenga, M. S. Scott, and C. Gurajena, “Semantics Based Service
Orchestration in IoT,” in Proceedings of the South African Institute of
Computer Scientists and Information Technologists, SAICSIT’17, (New
York, NY, USA), pp. 7:1–7:7, ACM, 2017.

[11] A. Hurault, F. Camillo, M. Daydé, R. Guivarch, M. Pantel, C. Puglisi,
and H. Astsatryan, “Semantic description of services: issues and
examples.” Computer Science and Information Technologies, Yerevan
(Arménia), 2009.

[12] J. M. Gomez, S. Han, I. Toma, B. Sapkota, and A. Garcia-Crespo, “A
Semantically-enhanced Component-based Architecture for Software
Composition,” in Int. Multi-Conf. on Computing in the Global Infor-
mation Technology (ICCGI’06), pp. 43–47, Aug 2006.

[13] Y. Fanjiang, Y. Syu, S. Ma, and J. Kuo, “An overview and classification
of service description approaches in automated service composition
research,” IEEE Transaction on Services Computing, vol. 10, pp. 176–
189, March 2017.

[14] “Java Remote Method Invocation (RMI).” https://docs.oracle.com/
javase/tutorial/rmi/index.html. Accessed: 2019-01-31.

[15] M. Klusch, “Semantic web service description,” in CASCOM: Intelli-
gent Service Coordination in the Semantic Web, (Basel), pp. 31–57,
Birkhäuser Basel, 2008.

[16] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Composing web
services on the semantic web,” The VLDB Journal, vol. 12, pp. 333–
351, Nov. 2003.

[17] M. Paolucci and K. Sycara, “Autonomous semantic web services,” IEEE
Internet Computing, vol. 7, pp. 34–41, Sept. 2003.

[18] “OWL-S: Semantic Markup for Web Services.” https://www.w3.org/
Submission/OWL-S/. Accessed: 2019-01-31.

[19] “Backus–Naur Form (BNF).” https://www.w3.org/Notation.html. Ac-
cessed: 2019-01-31.

[20] H. Bruneliere, R. Eramo, A. Gomez, V. Besnard, J.-M. Bruel,
M. Gogolla, A. Kästner, and A. Rutle, “Model-Driven Engineering
for Design-Runtime Interaction in Complex Systems: Scientific Chal-
lenges and Roadmap,” in MDE@DeRun 2018 workshop, vol. 11176 of
LNCS, June 2018.

