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Abstract

In this experimental study, a natural convection flow in a differentially heated
cavity has been disturbed in order to modify heat transfers. The disturbance
is achieved by introducing a localized obstacle which acts as a small spatial
extent passive system. The obstacle is placed inside the hot boundary layer
of the cavity flow. Measurements have been carried out in terms of velocity
fields, temperature profiles and heat transfers. The influence of the length
and the vertical location for an insulating and a conducting obstacle have
been analyzed. For the insulating obstacle, a part of the flow is deviated in-
side the colder core region in front of the obstacle, which leads to an increase
of the downstream heat transfers as the deviated colder flow returns along
the hot wall. For the conducting obstacle, a hot thermal plume is generated,
which counters the obstacle effect observed for the insulating obstacle. In
that case, the downstream heat transfer is increased or reduced depending
on the vertical location of the obstacle. Relative changes on heat transfers
compared to the case without obstacle are larger for longer obstacles and
for higher vertical locations of the obstacle, for any conductivity. For ins-
tance, a relative heat transfer increase up to 83% is observed downstream
the insulating obstacle for the largest length and highest vertical location.
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Nomenclature

A aspect ratio
D cavity depth, m
g gravitational acceleration, m.s−2

H cavity height (reference length), m
l dimensionless cylindrical obstacle length (scaled by H)
L cavity width, m
Nu1D(Z) local Nusselt number, Nu1D(Z) = − ∂θ

∂X (Y = 0.146, Z)
Pr Prandtl number, Pr = ν/α
r dimensionless cylindrical obstacle radius (scaled by H)
RaH Rayleigh number based on cavity height, RaH = gβ∆TH3

να

S stratification parameter, S = ∂θ
∂Z (X = 0.125, Y = 0.146, Z = 0.50)

t dimensionless time (scaled by H2/(α
√
RaH))

T temperature, K
T0 mean temperature in the cavity, T0 = 1

2(Th + Tc), K
U, V, W dimensionless velocities (scaled by α

√
RaH/H)

x, y, z physical cartesian coordinates, m
X, Y, Z dimensionless coordinates, (X,Y, Z) = (x, y, z)/H

Greek symbols

α thermal diffusivity, m2.s−1

β thermal expansion coefficient, K−1

∆T temperature difference between the isothermal walls, ∆T = Th − Tc, K
δ dynamic boundary layer thickness
ε wall emissivity
λ thermal conductivity, W.m−1.K−1

ν cinematic viscosity, m2.s−1

ρ density, kg.m−3

θ dimensionless temperature, θ = (T − T0)/∆T
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Subscripts and superscripts

c cold
d downstream
h hot
hori horizontal
rel relative to the cylindrical obstacle
ref reference value
u upstream
vert vertical

Abbreviations

CO Cylindrical Obstacle
DHC Differentially Heated Cavity
RB Rayleigh-Benard

1. Introduction

Natural convection occurs in nature in many meteorological and geophy-
sical situations as well as in many industrial applications. Close cavities are
good candidates to study natural convection since boundary conditions are
well defined which is crucial to understand the underlying physics or for
further numerical simulations. Natural convection in enclosed parallelepipe-
dic cavities usually appears into two configurations : the Rayleigh-Benard
(RB) configuration and the Differentially Heated Cavity (DHC) configura-
tion, for which the isothermal walls are respectively orthogonal and parallel
to the direction of gravity. In this work, the DHC has been considered. This
configuration is encountered in a wide range of applications such as cooling
processes for electronic devices, solar collectors, nuclear power plants, in the
under-hood space of cars or in building design for thermal comfort. In this
configuration, due to the temperature difference between the vertical isother-
mal walls, a movement of the fluid arises. When this difference increases, the
flow turns into a vertical boundary layer flow with jets along the horizon-
tal walls, whereas the central zone remains almost at rest and stratified in
temperature. In the past decades, differentially heated cavities have been wi-
dely studied theoretically, experimentally and numerically from laminar to
transient and turbulent flows [1, 2, 3, 4, 5, 6].

Heat transfer enhancement has been studied in this configuration through
several strategies. Indeed, the flow developing in a DHC can be disturbed wi-
thin the objective of acting on heat transfers of the isothermal walls. Several
studies have shown that the flow can be actively modified by mechanical [7],
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acoustic [8] or thermal [9, 10] disturbances or cavity inclination [11]. These
modifications by active systems require a continuous external action and in-
duce an additional energy consumption and maintenance. Another solution
is the use of a passive disturbance.

One way to act on a natural convection flow passively is to introduce
wall roughness, the walls being normally considered as smooth walls. Several
shapes and sizes of roughnesses have been previously studied both in RB
and DHC configurations. In the RB configuration, Du and Tong [12] studied
experimentally the influence of pyramidal grooves on the isothermal walls.
For 109 ≤ Ra ≤ 1011, the authors observed an increase of 76% of heat transfer
compared to the smooth wall case. Salort et al. [13] placed square-studs on
the hot bottom wall. They observed that on the rough wall the overall Nusselt
number is larger due to a local increase in transfers above the studs, which is
greater than their reduction in the notches. In the DHC configuration, Yousaf
and Usman [14] placed sinusoidal roughness elements on the vertical walls
of a square cavity. At Ra = 106 and for 10 roughness elements, the authors
observed a reduction in the overall Nusselt number up to 17%.

Another passive disturbance in the DHC configuration is the insertion of
one or more fins positioned on the walls. These fins are either insulating or
highly conducting, and a variety of sizes and locations have been studied.
One of the first studies with this kind of perturbation disturbance was done
by Shakerin et al. [15]. For a conducting fin placed on the hot wall of a square
cavity, the calculation of the global heat transfer indicated an increase of the
Nusselt number of 12%. This increase is limited by the deviation of the flow
and the resulting thickening of the boundary layer upstream and downstream
the fin. Nag et al. [16] studied numerically the influence of an infinitesimal-
thick fin on the hot wall for several lengths and locations. The authors showed
that the Nusselt number on the cold side increases with a perfectly conducting
fin and decreases with an adiabatic one. Polidori and Padet [17] positioned
three adiabatic fins on a vertical plate heated with a uniform heat flux and
immersed in a water tank. The authors noted a circulation of the fluid in
the area between the fins, an increase of the convective exchange coefficient
close to the lower fin and a reduction close to the upper one. Tasnim and
Collins [18] studied numerically, in a square cavity, the influence of a thin
and perfectly conducting fin for Rayleigh numbers up to 105. An increase of
overall heat transfers is observed, especially when the fin length is large (up
to 31% for the largest size). In several experimental and numerical studies,
Xu et al. [19, 20] and Xu [21] positioned an adiabatic fin at the mid-height
of a DHC with a vertical shape ratio equal to 0.24 and filled with water.
The authors showed that above a certain Rayleigh number, the fin creates
an unsteady flow by the periodic formation of thermal plumes. Therefore,
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with a fin on each active wall, the Nusselt number increases by 7%. Recently,
Ghalambaz et al. [22] used a flexible fin at mid-height with a sinusoidal
oscillation imposed at the end of the fin. At Ra = 106, the authors showed
that, compared to a static fin, the overall Nusselt number increases slightly
with amplitude and period. In addition, the gain is more important when the
fin is more flexible. To sum up, in absence of a change in the flow regime,
adding a fin leads to an increase in global heat transfers if the fin is conducting
and to a decrease if the fin is insulating.

A last category of passive disturbance of a natural convection flow in a
confined enclosure is the use of discrete elements or obstacles. Unlike fins,
they are not necessarily located on the walls and can have a large size. Mer-
rikh and Lage [23] placed several solid blocks within a square cavity. They
showed that the deviation of the flow into the inner core of the cavity reduces
drastically the wall heat transfers. Laguerre et al. [24] positioned in a rectan-
gular cavity an arrangement of 40 cylindrical obstacles parallel to the cold
wall. These obstacles are 10 times smaller in size than the width of the cavity.
The fluid is humid air and the flow is described in terms of temperature, flow
velocity and moisture. They observed a modification of the cold boundary
layer flow due to the presence of obstacles, which induces a flow circulation
in the areas between them.

These studies demonstrate the possibility to act on natural convection
flows by means of fins and obstacles, in order to modify heat transfers. These
disturbances occupy generally a large space within the cavity. In order to
reduce the size and therefore the mass and the cost of such devices, a lo-
calized disturbance is used in this experimental study. The disturbance is a
cylindrical obstacle of small spatial extent, with a maximal length equal to
4% of the height of the cavity. The obstacle is placed on the hot wall of the
cavity.

The purpose of this work is to study the modification of heat transfers
downstream an obstacle. We will first introduce the DHC experimental set-
up and the measurement methods that have been used to investigate the
flow and the associated heat transfers. Then the results concerning the dis-
turbed flow (especially in terms of velocity fields and temperature profiles)
and the associated heat transfers are analyzed and compared to those of the
undisturbed flow.

2. Experimental set-up

2.1. DHC description
The Differentially Heated Cavity (DHC) used in this study is a paral-

lelepiped with the following internal dimensions : width L = 12 cm, depth
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D = 14 cm, height H = 48 cm (see Fig. 1). Those three dimensions are
respectively associated with the x, y and z axes. The vertical and horizontal
aspect ratios are equal to Avert = H

L
= 4 and Ahori = D

L
= 1.167.

The vertical walls, with an imposed temperature, are made of duralumin
(conductivity λ = 164 W.m−1.K−1, emissivity ε ∈ [0.1; 0.2]) with a thickness
of 5 mm. A vertical slit of 10 mm width is located at the mid-depth of the cold
wall to let a laser sheet pass through a glass window for PIV measurements.
It has been checked that the slit has no influence on the dynamics of the flow.
Thus, due to this experimental limitation, all the measurements presented in
this work were carried out along the vertical mid-depth plane.

The horizontal walls are made of expanded polystyrene with very low
conductivity (λ = 0.035W.m−1.K−1, 9 cm in thick for the bottom wall and
16 cm in thick for the top wall) and covered with an aluminum foil to minimize
radiative exchanges (ε = 0.080± 0.005).

The measurement cavity is framed by two guard cavities with the same
dimensions and located behind and in front of it. The two guard cavities
are also differentially heated so that the same natural convection flow is
established there. Under these conditions, the walls separating the cavities
are planes of symmetry, which improves the insulation of these walls. Those
three cavities are separated by 1 mm thick transparent polycarbonate walls
(ε ∈ [0.92; 0.96]) to allow the visualization of the flow. The two guard cavities
are insulated from the outside by an air gap.

The temperature of the isothermal walls is applied by a water circulation
located on their outer face. The temperature of the circulation is controlled
by means of two thermostatic baths (temperature stability : 0.02 K). To reach
a Rayleigh number for this study equal to RaH = (1.10± 0.04)× 108 and for
a mean temperature T0 = 1

2
(Tc + Th) of 293 K, the temperature difference

between the hot wall and the cold wall, ∆T = Th − Tc, is set at 9.50 K.
In order to ensure the temperature uniformity of the duralumin walls, the
temperature difference between the inlet and the outlet of these circulations
is measured by thermocouples. This difference is found to be smaller than
0.10 K.

A particular attention was taken to ensure that the average temperature
of the two thermostatic baths, T0, is close to the ambient temperature (mea-
sured by a Pt100 probe) in order to minimize heat exchanges between the
cavity and the room. The temperature T0 is set so that the difference between
T0 and the ambient temperature is smaller than 0.5 K.

2.2. Temperature measurements
The temperature is measured in the vertical mid-depth plane (located at

y = 7 cm, i.e. Y = 0.146) by a K-type mobile micro-thermocouple (see Fig.
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2 (left)). This micro-thermocouple, of 12.7 µm diameter, is compensated
(at its cold junction) by another thermocouple located in an environment
of high thermal stability (variation below 0.01K during each temperature
measurement) whose temperature is continuously recorded. In order to mi-
nimize the disturbance of the flow due to the temperature probe, the micro-
thermocouple is inclined at 45° with respect to the vertical flow and placed
at the end of a rigid rod with a diameter of 4mm, located in a plane behind
the measurement plane. The rod displacement within the median plane is
provided by a motorized system implemented on two orthogonal axes. The
top wall is extruded on a width of 6mm to allow the rod access, and a sliding
groove system is installed on the outer face of the top wall. The measurement
uncertainty on the temperature is less than 0.2K.

2.3. Heat transfer measurements
Heat transfer on the hot wall is quantified by the local Nusselt number,

Nu1D(Z), which is equal to the dimensionless temperature gradient at the
wall : − ∂θ

∂X
(Y = 0.146, Z). In order to measure this gradient, the micro-

thermocouple is progressively moved away from the wall by 100µm incre-
ments. The slope of the mean temperature profile over 5 measuring points
gives the local measurement of the Nusselt number. This number of points
enables to stay close to the wall in a linear temperature profile region while
keeping a sufficient number of points to reduce the uncertainty on the cal-
culated slope (correlation coefficient : R2 > 0.995). This method leads to an
uncertainty of less than 10% on the Nusselt number value.

2.4. Velocities measurements
Horizontal and vertical velocity components are measured in the mid-

depth plane by PIV technique (see Fig. 2 (right)). The flow tracers are par-
ticles of paraffin oil (ρ = 856 kg.m−3) of a few micrometers diameter and
provided by a smoke generator. The laser beam is created by a double-head
Nd-YAG Litron laser. The laser beam, of 4 ns duration, emits a 1mm thick
laser sheet by means of optical lenses.

Particle observation is achieved by a 9.2 Phantom CCD camera with a
resolution of 1632 × 1200 pixels2. The pixel size is 11.5µm × 11.5µm and
their dynamic range is chosen at 12 bits. The scale factor, which is the ratio
of the size of an object to the size of its image, is equal to 6.39. This scale
factor results in an image with a spatial resolution of 12.0 × 8.8 cm2, so that
the width of the image matches with the width of the cavity.

Each measurement contains 512 pairs of images recorded at the acquisi-
tion rate of 5Hz. The duration between two images of a pair is 3ms. The
background is subtracted from each image to enhance the contrast. The low
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flow speed in the center area of the cavity is determined with another pairs of
images, constructed by taking the first image of two successive original pairs,
which enables to determine the small corresponding displacements. For both
processing techniques, image processing is carried out by using 64× 64 initial
and 32 × 32 final interrogation window size with a 50% overlap to enhance
the velocity fields resolution. Velocity ranges covered by these two processings
overlap.

2.5. Comparison with previous studies for an undisturbed flow
A comparison is made with previous studies on an undisturbed flow at

RaH = (0.92± 0.03)× 108 to ensure both that this experimental device cor-
rectly reproduces a reference DHC flow and that the measurement methods
are able to measure it accurately. For this purpose, profiles of temperature
and vertical velocity component at mid-height, from X = 0 up to X = 0.07
are plotted in Fig. 3. The profiles are compared with the profiles obtained in
an experimental study [25] at RaH = 0.92 × 108 and with a 2D numerical
simulation [26] at RaH = 0.90 × 108. Concerning the temperature profiles,
the maximum deviation with the experimental reference profile is equal to
0.016, lower than the maximal estimated uncertainties (δθ)max = 0.027. A
larger difference (up to 0.034) is observed with the profile coming from the 2D
numerical simulation. This difference remains however close to the estimated
uncertainties. For the velocity profiles, the observed deviations compared to
the profile from [25], all below 0.016, are lower or close to the measurement
uncertainties δW = 0.010. The difference with the numerical results from
[26] is related to the three-dimensional flow.The stratification parameter S,
which is equal to the vertical temperature gradient at the center of the cavity,
is compared to the value from [25] in Table 1. The measured stratification
parameter fits with the reference one in regard of the uncertainties. Hence,
a good agreement between our measurements and reference data is noticed
which validate the measurement methods and ensure the quality of the un-
disturbed reference flow. The case without obstacle is now called reference
case.

2.6. Cylindrical obstacle
A cylindrical obstacle (CO) is now introduced into the DHC and positio-

ned in the median plane on the hot wall. This obstacle is a cylinder with a
radius of 1 cm (dimensionless radius r = 0.021) and its axis is set orthogonal
to the wall. In one case, the obstacle is thermally passive (very low conducti-
vity) in order to only influence on its own the dynamic of the flow that rounds
it. In that first case, it is called insulating CO. In the other case, the obstacle
is thermally active (high conductivity) in order to additionally influence on
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its own the temperature of the circumventing flow. In that second case it is
called conducting obstacle.

The materials chosen for the insulating CO and the conducting CO are
respectively cork and aluminum. Cork has a low thermal conductivity, which
leads to a conductivity ratio against air equal to 1.8 . On the contrary, alu-
minum conductivity ratio against air is higher than 9000. To ensure that the
aluminum CO is actually close to the perfectly conducting case, the corres-
ponding Biot number is calculated. For a CO of 2 cm length (dimensionless
length l = 0.042) and an exchange coefficient h taken at 5 W.m−2.K−1, the
Biot number is calculated as follows :

Bi =
hVCO
λSCO

=
h(πr2l)H

λ(2πrl + πr2)
= 8.5× 10−5

where VCO and SCO are the volume and the surface of the obstacle, res-
pectively. As Bi � 1, the thermal gradient within the conducting CO is
negligible, and the conducting CO is almost isothermal. The insulating and
the conducting CO are stuck on the hot wall with double-sided tape. This
tape introduces a thermal resistance causing a temperature drop between
the CO and the hot wall. In order to determine this temperature drop, the
temperature on the tip of the conducting CO is measured by positioning
the micro-thermocouple in contact with it. Indeed, as the conducting CO is
isothermal, the temperature on its external face is equal to the temperature
on the external side of the adhesive tape. A gap of 1K is measured between
the temperature of the conducting CO and the temperature of the hot wall.
This gap represents only 10% of the temperature gap between isothermal
walls ∆T . Finally, the adiabaticity of the insulating CO is checked with the
measurement of the local Nusselt number at the center of its tip. For the
2 cm insulating CO, Nu1D(Z = ZCO) = 1.4 is found. Since Nu1D(Z = ZCO)
is very low, there is negligible convective exchanges between the tip of the
insulating CO and the fluid.

3. Results

3.1. Influence of the obstacle length
Three obstacle lengths are studied in this part. These lengths are equal

to 0.5 cm, 1 cm and 2 cm, which corresponds to dimensionless lengths of
l = 0.010, l = 0.021 and l = 0.042 respectively. They are chosen so that the
obstacles are smaller or almost reach the size of the dynamic boundary layer
(described in the next paragraph). The CO center is located at ZCO = 0.25,

9



i.e. at the beginning of the boundary layer and outside the recirculation zone
at the bottom of the cavity. This also enables to obtain a large zone downs-
tream the CO on the hot wall. Throughout this study the Rayleigh number
is set at RaH = (1.10 ± 0.04) × 108, which corresponds to the beginning of
the unsteady laminar boundary layers flow regime [27] for the reference case
configuration.

Vertical velocity component
The time-averaged fields of the vertical velocity component for the case wi-
thout obstacle and the cases with insulating and conducting CO of lengths
l = 0.021 and l = 0.042 are plotted in Fig. 4. The observation area ranges
from Z = 0.20 (upstream and close to the CO) to Z = 0.60 (far downstream)
across all the width of the DHC. The location of the CO, the streamlines as
well as the dynamic boundary layer thickness, δ5%, are also represented. δ5%

corresponds to the abscissa for which the speed is equal to 5% of maximum
or minimum speed (depending on which boundary layer is considered) :

for a given Z,
{
W (X = δ5%(Z)) = 0.05 max[W (X)] hot wall side
W (X = δ5%(Z)) = 0.05 min[W (X)] cold wall side

In the reference case, the boundary layers are vertical and their thickness is
δ5% = 0.05 ± 0.005. The value of the uncertainty is taken as the size of an
interrogation window of the PIV technique. Inside the hot boundary layer, the
maximum velocity increases from Wmax = 0.18 at Z = 0.20 to Wmax = 0.22
at Z = 0.60 . Even if a complex flow is observed in the stratified core, the
velocity values are at least four orders of magnitude smaller than the velocity
within the boundary layers. Therefore, this secondary flow does not take a
significant part in the energy transport from the hot wall to the cold wall,
this transport being carried out by the main flow along the walls. This is why
the study focuses on this part of the flow.

The introduction of the insulating CO causes a deviation of a part of the
flow around the tip of the CO (see Fig. 4, left). This deviation is quantified
through the displacement of the location of δ5%. With l = 0.021, δ5% reaches
its maximum value 0.070 ± 0.005 at Z = 0.30, while for l = 0.042, δ5%

exceeds 0.094 ± 0.005 around Z = 0.27. For those two lengths, the flow
gradually rejoins a boundary layer thickness close to the one observed for the
reference case. Moreover, there is, in the vertical mid-plane, a low velocity
area directly downstream the CO, linked to the blocking effect of the obstacle.

For the conducting CO (Fig. 4, right), the deviation of the flow is less
pronounced : δ5% reaches 0.057 ± 0.005 for l = 0.021 and 0.089 ± 0.005 for
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l = 0.042. In addition, the thickness of the hot boundary layer approaches
the value of the reference case farther than for the insulating obstacle case.
In particular, δ5% is equal to 0.061 at Z = 0.60 for the conducting CO
and l = 0.042, against 0.054 for the insulating one with the same length.
However, the vertical velocity component within the boundary layer is larger
with the conducting CO. For instance, for l = 0.042 the maximum vertical
velocity is Wmax(Z = 0.60) = 0.27 for the conducting CO, versus 0.23 for
the insulating one. As for the insulating CO, a low velocity area is located
directly downstream. However, the area is smaller for the conducting obstacle
than for the insulating one. These differences are due to the development of a
thermal plume downstream the conducting CO and will be analyzed further
in more details in the thermal analysis part.

For the two lengths and the two types of obstacles considered, no change
is observed for the vertical velocity or for the thickness of the boundary layer
on the cold wall. Thus, the impact of the flow modification does not spread to
the opposite wall. In addition, it can be noted that the secondary flow in the
central zone is strongly disturbed by the presence of the obstacle. However,
velocities in this area appear to be too small to influence significantly heat
transfers, as shown thereafter.

In order to quantify the flow modification at the CO location, profiles of
vertical velocity component, at Z = 0.25 for the insulating and the conduc-
ting CO and for the lengths l = 0.010, l = 0.021 and l = 0.042, are plotted
in Fig. 5. This elevation (Z = 0.25) corresponds to the location of the CO
center. The profiles on the cold side (Fig. 5, right) are plotted versus X.
These profiles confirm that the flow modification does not reach the cold
wall whatever the type of the OC (conducting or insulating).

The profiles on the hot side of the DHC are plotted (Fig. 5, left) versus
relative abscissa, defined as Xrel = X − l, in order to compare the flow from
the tip of the obstacle whatever its length. The profiles in absolute abscissa
X are also inserted in this figure.

For the insulating and the conducting CO with the smallest length, l =
0.010, profiles on the hot side in relative abscissa are close to the profile
obtained without obstacle. As no drop of velocity is observed in these cases,
nearly all the flow seems to be deviated on the tip of the CO. For l = 0.021,
a reduction of the maximum of velocity is observed. The amount of flow that
is deviated along the tip of the CO has also decreased, which means that a
part of the flow circumvents the obstacle by front and back sides. This effect
is amplified for the longest obstacle, l = 0.042.

On the right part of these profiles for the conducting case, the vertical
velocity component tends to reach the near zero value of the stratified core
at a lower abscissa than for the insulating ones. This behavior is related to
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an increase of the temperature difference and consequently of the buoyancy
forces in front of the conducting CO, being isothermal at a temperature close
to the hot wall temperature. This assert will be verified by measuring the
temperature of this deviated flow.

Deviated flow temperature
Temperature profiles from the tip of the insulating and conducting CO for
the three lengths studied and the reference case are plotted in Fig. 6, at
Z = 0.25, corresponding to the vertical location of the center of the obs-
tacle. There are plotted against the relative abscissa, Xrel, which enables to
describe, in terms of temperature, the deviated flow shown in Fig. 5.

For the insulating obstacle, a temperature drop is observed at the tip
of the CO (Xrel = 0) when compared to the case without obstacle. This
temperature drop is larger for longer obstacles : for lengths l = 0.010, l =
0.021 and l = 0.042, the temperature at the tip (θ(Xrel = 0)) are equal to
0.22, 0.11 and −0.04 respectively, which must be compared to a value close
to θh = 0.50 in the reference case. The temperature of the deviated flow is
then lower than the temperature of the flow measured in front of the hot wall,
without obstacle, at the same vertical elevation. Indeed, the flow coming from
the upstream hot boundary layer does not exchange heat with the adiabatic
CO and reaches an area that is located partially or totally in the stratified
core. Furthermore, for the considered elevation Z = 0.25, the temperature of
the stratified core is equal to θ = −0.15. As the deviated flow reaches a colder
environment, a heat exchange occurs which decreases the temperature of the
deviated flow. For all the profiles, the temperatures progressively reach the
stratification temperature when Xrel increases. Note that, the stratification
temperature is determined when the profile reaches the core temperature at
a given elevation.

For the conducting obstacle, the temperature of the deviated flow is close
to the temperature inside the hot boundary layer without obstacle at the
same relative location. Only a small temperature decrease is noticed at the tip
of the conducting CO. Hence, as the conducting CO is quasi-isothermal with
a temperature close to the one of the hot wall, the temperature profiles on the
external side of the obstacles are the same as along the hot wall, regardless the
length of the obstacle. The deviated flow maintains its upstream temperature
although it reaches the stratified core at a colder temperature. Finally, as
for the insulating case, temperatures reach progressively the stratification
temperature when Xrel increases.

As the deviated flow returns to the vicinity of the hot wall, downstream
the CO, these observed changes on the temperature and the structure of the
flow will influence the downstream heat transfers.
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Downstream heat transfers
Local Nusselt numbers Nu1D(Z) have been measured along the hot wall
downstream the CO, for lengths l = 0.021, l = 0.042 and for the reference
case (see Fig. 7). Nu1D(Z) is the local Nusselt number in the vertical mid-
depth plane (Y = 0.146) at the elevation Z. The measurement area in the
vertical mid-depth plane starts at Z = 0.30, directly downstream the CO,
and goes up to Z = 0.80, in steps of 0.10. Beyond Z = 0.80 no changes are
observed on heat transfer.

For the insulating obstacle, an increase of local Nusselt numbers, compa-
red to the reference case, is noticed close to the CO. This increase is more
important for the longest CO (l = 0.042) than for the other (l = 0.021). As
Z increases, Nusselt numbers tend to the value of the reference case. Beyond
Z = 0.50 and considering the measurement uncertainties, they are similar
to those obtained in the reference case. The insulating CO has thus locally
increased heat transfer downstream the obstacle. This can be attributed to
the temperature decrease of the deviated flow observed in Fig. 6 : when this
flow returns to the vicinity of the hot wall, its temperature is lower than the
temperature of the hot boundary layer in the reference case. This leads to
a heat transfer increase due to a larger difference between the flow tempe-
rature and the wall temperature. In addition, the deviated backflow induces
an impacting jet on the wall, which also increases heat transfer compared to
a boundary layer flow parallel to the wall.

For the conducting obstacle, an opposite effect is observed : the heat
transfer decreases downstream the CO compared to the reference case. The
longest CO leads to the largest changes on Nusselt numbers. As for the
insulating CO, the local Nusselt numbers progressively reaches the value of
the reference case when moving downstream. However, for the conducting
case, the location of the convergence is farther at Z = 0.70. Nu1D(Z) is
smaller for l = 0.042 than for l = 0.021 up to the convergence location
at Z = 0.70. The decrease observed on downstream heat transfer, for the
conducting case, is due to the heating of the flow by the conducting CO :
as this CO is isothermal (TCO ≈ Th), the flow that circumvents the CO is
heated. The flow temperature increases in the boundary layer, downstream
the CO. It results in a reduction of the temperature difference with the wall,
and consequently in a smaller heat transfer. Moreover, Nu1D(Z = 0.30) are
close for the two considered lengths and much lower than the value of the
reference case. Indeed, at this location, Fig. 4 showed that the velocity is
lower here due to a blocking effect of the obstacle. The similar heat transfers
in this area are probably due to close velocities and temperatures for both
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cases.
In order to quantify the heat transfer modifications in the downstream

area, the local Nusselt numbers are integrated over Z ∈ [0.30; 0.80]. The
integrated Nusselt numbers downstream the CO, Nu1D,d, are calculated as
follows :

Nu1D,d =
1

Z2 − Z1

∫ Z2=0.80

Z1=0.30

Nu1D(Z) dZ

=
1

Z2 − Z1

0.10

2

(
0.70∑

Zi=0.40

Nu1D(Zi) +
0.80∑

Zi=0.30

Nu1D(Zi)

)

To compare these integrated Nusselt numbers with the one in the reference
case, the relative gain on downstream heat transfer GNu is defined as :

GNu =
Nu1D,d − (Nu1D,d)ref

(Nu1D,d)ref

The downstream Nusselt numbers and the relative gains are given in Table 2.
In the reference case, the integrated Nusselt number is equal to 5.88 ± 0.26.

For the insulating obstacle, Nu1D,d is higher and exceed 3. The increase
for the longest insulating CO compared to the reference case is equal to 6 %,
only slightly larger than the increase of 4 % for the CO of length l = 0.021.

On the contrary, integrated Nusselt numbers for the conducting obstacle
are reduced compared to the reference case : for the lengths l = 0.021 and
l = 0.042 decreases are respectively about −9 % and −15 %. In absolute value
and for each size, the relative changes for the conducting CO are larger than
for the insulating ones.

The relative gains observed for insulating and conducting obstacles are
due to different effects induced by each type of CO :

— For the insulating CO, it has been shown that the heat transfer re-
duction is linked to the deviation of a part of the flow, which reaches
the stratified area and gets colder before returning to the vicinity of
the hot wall. This heat transfer modification is only due to an obs-
tacle effect : by acting on the flow, the downstream heat transfer is
modified.

— For the conducting CO, there is also an obstacle effect, indeed the obs-
tacle is set at the same location and has the same size (the streamlines
are also deviated, see Fig. 4, right). However, the CO temperature is
close to the hot wall temperature, generating a hot thermal plume.
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Hence, a competition occurs between the obstacle effect which leads
to an increase of downstream heat transfer (as for insulating CO) and
a thermal effect which reduces heat transfer by heating the flow. In
that case, the thermal effect is stronger than the obstacle one.

The influence of obstacle length has been described in terms of flow modi-
fication, thermal effect and downstream heat transfer changes. These results
have been found for an obstacle located at ZCO = 0.25 . In order to determine
if these results are similar for other obstacle locations, the influence of the
obstacle vertical location on heat transfers is studied.

3.2. Influence of the obstacle vertical location
As the relative change on heat transfer is increasing with the CO length,

the highest value (l = 0.042) is now chosen. This length allows to observe
larger effects on heat transfer. Several elevations of the obstacle, ZCO, have
been studied along the vertical mid-depth plane on the hot wall side. In
addition to the previous location (ZCO = 0.25) the insulating and conducting
obstacles are successively placed from ZCO = 0.35 to ZCO = 0.65 by step of
0.10. Local Nusselt numbers are measured upstream and downstream the
CO, from Z = 0.10 to Z = 0.90 and are presented in Fig. 8. The bottom
and the top of the obstacle are represented with dashed-lines. Integrations of
Nu1D(Z) over the upstream and the downstream parts, Nu1D,u and Nu1D,d,
are defined as :

Nu1D,u = 1
(ZCO−0.05)−0.10

∫ ZCO−0.05

0.10

Nu1D(Z) dZ

Nu1D,d = 1
0.90−(ZCO+0.05)

∫ 0.90

ZCO+0.05

Nu1D(Z) dZ

Note that for the reference case, the same integration area is considered even
if no obstacle exists for that case. For all the obstacle locations, almost no
changes on upstream heat transfer are observed. The differences noticed are
probably only due to measurement uncertainties.

For the insulating CO, an increase of downstream heat transfers is ob-
served, compared to the reference case, for all the obstacle locations. For
ZCO = 0.25, on the first location beyond the CO, Nu1D(Z) has increased
from 9, in the reference case, to around 11, in the insulating CO case. Whe-
reas, for ZCO = 0.65, on the first location beyond the CO, Nu1D(Z) has
increased from 4 to around 10. Thus, the relative increase is more pronoun-
ced for high locations of the obstacle.
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For the conducting CO, the relative change compared to the reference
case depends on the obstacle location. For ZCO = 0.25 and ZCO = 0.35, a
decrease of the downstream heat transfer is noticed. For ZCO = 0.45 and
ZCO = 0.55, Nu1D(Z) for conducting CO is very close to the reference case.
For ZCO = 0.65, a significant increase of the downstream heat transfer is
observed. Hence, for a higher obstacle location, the conducting CO leads
progressively from a heat transfer reduction to a heat transfer increase when
compared to the reference case. As for the insulating CO, this modification is
not connected to an increase ofNu1D(Z) downstream the CO for higher value
of Z : Nu1D(Z) remains quite similar to the first location downstream the
obstacle, but the associated Nusselt number for the reference case decreases
for higher location.

As previously noticed, for all the values of ZCO, integrated Nusselt num-
bers upstream the obstacle, Nu1D,u, are similar for the reference case and for
cases with obstacle. To quantify integrated Nusselt numbers downstream the
obstacle, relative gains GNu are given in Table 3 for each obstacle elevation
and for insulating and conducting CO.

For both obstacle conductivities, GNu progressively increases. For the
insulating CO, gains are positive and vary from +8 % for ZCO = 0.25 to
+83 % for ZCO = 0.65. For the conducting CO, GNu is first negative : −19%
for ZCO = 0.25, then close to zero for ZCO = 0.45 and positive, up to +25%
for the highest location ZCO = 0.65. This is consistent with the previous
analyses.

4. Conclusions and perspectives

A natural convection flow in a differentially heated cavity of aspect ratio
4 was disturbed by means of a localized cylindrical obstacle. The obstacle
was placed on the hot wall in the mid-depth plane of the cavity.

Two kinds of obstacles are considered : an insulating obstacle that only
influences on its own the dynamics of the flow that rounds it and a conductive
obstacle that influences on its own both the dynamics and the temperature
of the flow that rounds it.

The effects, in the mid-depth plane, of the obstacle length and location
were studied through the analysis of velocity fields, thermal profiles and heat
transfers. The following conclusions can be drawn :

Firstly, the obstacle is placed at the beginning of the hot boundary layer :
— for the insulating obstacle, the upstream flow is deviated toward the

core of the cavity. This part of the cavity is colder, which decreases the
temperature of the flow. Consequently, when it returns to the vicinity
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of the hot wall, the heat transfer downstream the obstacle increases
when compared to the reference case (without obstacle).

— for the conducting obstacle, the flow is also deviated toward the core of
the cavity. However, the heat exchange with the obstacle maintains the
temperature of the deviated flow. Furthermore, the flow that rounds
the obstacle by the front and back sides is heated, inducing a thermal
plume. This results in a decrease of the heat transfer downstream the
obstacle.

— For both insulating and conducting obstacles, these effects are enhan-
ced for longer obstacles.

Secondly, the influence of the vertical location of the obstacle on the hot
wall is analyzed :

— for both insulating and conducting obstacles, no influence is noticed
upstream the obstacle.

— for both insulating and conducting obstacles, the relative gain on heat
transfer downstream the obstacle, compared to the case without obs-
tacle, increases with the vertical location. For the insulating obstacle,
the relative gain starts at +8 % for an obstacle located at Z = 0.25
and reaches +83 % for an obstacle located at Z = 0.65. For the
conducting obstacle the relative gain is negative and equal to −19 %
for an obstacle located at Z = 0.25 and reaches +25 % for an obstacle
located at Z = 0.65. This increase of the relative gain is due to the
decrease of the heat transfer with the vertical position in the reference
case whereas, for both conductivities, heat transfer downstream the
obstacle remains almost constant whatever the vertical location.

Several perspectives to this work can be given :
— Firstly, from the experimental point of view, an analysis of the in-

fluence of several obstacles could be interesting.
— Secondly, as the data provided in this paper can be used for numeri-

cal code validation, such an approach would allows to investigate the
influence of the obstacles into the whole cavity.
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Figure 1: Scheme of the differentially heated cavity with a cylindrical obstacle located at
Z = 0.25 ; other obstacle locations are drawn by black circles.

Figure 2: Scheme of the differentially heated cavities and temperature measurement set-
up (left) ; experimental set-up for PIV measurements (right).
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Figure 3: Temperature, θ, and vertical velocity component, W , along the X axis at
Z = 0.50 and RaH = (0.92± 0.03)× 108 ; comparison with experimental data from [25] at
RaH = 0.92× 108 and numerical data (2D simulations) from [26] at RaH = 0.90× 108.
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Figure 6: Temperature θ profiles at Z = 0.25 for insulating and conducting cylindrical
obstacles.
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Present Study Skurtys [25]
S 0.54± 0.02 0.51± 0.02

Table 1: Stratification parameter S at RaH = (0.92± 0.03)× 108 ; comparison with [25].

l 0 0.021 0.042
Insulating Nu1D,d 5.88 ± 0.26 6.14 ± 0.30 6.24 ± 0.32
obstacles GNu _ + 4% + 6%

Conducting Nu1D,d 5.88 ± 0.26 5.34 ± 0.30 4.98 ± 0.24
obstacles GNu _ − 9% − 15%

Table 2: Integration of local Nusselt numbers, Nu1D,d, and gain relative to reference case,
GNu, for reference case (l = 0) and insulating and conducting obstacles (l = 0.021 and
l = 0.042).

ZCO 0.25 0.35 0.45 0.55 0.65

GNu
Insulating +8 % +24 % +39 % +59 % +83 %
Conducting −19 % −13 % −1 % +5 % +25 %

Table 3: Gain relative to reference case, GNu, in the downstream part (from ZCO + 0.05
to Z = 0.90), for each obstacle location, ZCO, for insulating and conducting obstacles.
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