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Abstract  

The exact neurobiological underpinnings of gender identity (i.e. the subjective perception of 

oneself belonging to a certain gender), still remain unknown. Combining both resting-state 

functional connectivity and behavioral data, we examined gender identity in cis- and 

transgender persons using a data-driven machine-learning strategy. Intrinsic functional 

connectivity and questionnaire data were obtained from cisgender (men/women) and 

transgender (trans men/trans women) individuals. Machine-learning algorithms reliably 

detected gender identity with high prediction accuracy in each of the four groups based on 

connectivity signatures alone. The four normative gender groups were classified with 

accuracies ranging from 48% to 62% (exceeding chance level at 25%). These connectivity 

based classification accuracies exceeded those obtained from a widely established behavioral 

instrument for gender identity. Using canonical correlation analyses, functional brain 

measurements and questionnaire data were then integrated to delineate nine canonical vectors 

(i.e., brain-gender axes), providing a multi-level window into the conventional sex dichotomy. 

Our dimensional gender perspective captures four distinguishable brain phenotypes for gender 

identity, advocating a biologically grounded re-conceptualization of gender dimorphism. We 

hope to pave the way towards objective, data-driven diagnostic markers for gender identity and 

transgender, taking into account neurobiological and behavioral differences in an integrative 

modeling approach. 

 

 

  

Mis en forme : Gauche
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Introduction  

Although visible anatomy and gender identity are identical in most individuals, there 

are exceptions. Throughout the manuscript, we will use the term “biological sex” to describe 

the sex assigned to each human being at birth, based on the anatomy of the reproductive system. 

The term “gender identity” will be used to describe the subjective perception of oneself 

belonging to a certain gender, which can be male, female, neither or a combination of both. 

Different terms have been used to describe persons whose gender identity does not align with 

their biological sex. Of all these terms, “transgender” has become the preferred term, whereas 

“cisgender” refers to persons whose biological sex aligns with their gender identity. 

Transgender individuals can be either trans men (Tm), describing individuals born with the 

biological sex of a woman but identify as men, or trans women (Tw), describing individuals 

with female gender identity but male biological sex. An additional term, which has been used 

in several classification systems but is now being discarded, is “gender dysphoria”. This mental 

health diagnosis entails severe discomfort arising from the discrepancy between gender identity 

and biological sex (American Psychiatric Association 2013). Importantly, being transgender 

does not equate with a mental health condition and not all transgender persons suffer from 

gender dysphoria (Safer and Tangpricha 2019). To reduce stigma and facilitate access to 

relevant health care needs for transgender persons, the plan for the ICD-11 is to add gender 

incongruence to the sexual health section and remove gender dysphoria entirely (Reed et al. 

2016). In accordance with this fundamental change in terminology, we will also avoid the term 

gender dysphoria and use the term gender incongruence throughout the manuscript. 

According to a recent estimate, more than 1.45 million transgender individuals, 

representing at least 0.6% of the overall population, live in the U.S.A. alone (Flores et al. 2016). 

Prevalence rates, however, might have been severely underestimated (Mędraś and Jóźków 

2010). Most likely, these numbers will continue to increase in the near future due to changes in 
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legislation, increased visibility of transgender celebrities in the media, increased availability of 

medical procedures and decreased stigmatization. One of the most severe problems for 

transgender persons are the numerous barriers to accessing appropriate and competent medical 

care (Safer and Tangpricha 2019). These challenges in accessing health care services, a lack of 

knowledgeable primary care providers and societal stigmatization have been shown to 

contribute to multiple health issues in transgender persons: substance abuse, mental health 

conditions, increased rates of certain types of cancer, infections, and chronic diseases (Jaffee et 

al. 2016; Reisner et al. 2016). This exemplifies the need for clinicians and scientists to further 

increase our understanding of the specific medical issues and underlying neurobiological 

mechanisms that are relevant to this population. 

Recent works also suggests the existence of a biological underpinning to gender identity 

that is present already at birth (Safer et al. 2008; Saraswat et al. 2015), with twin studies 

demonstrating greater concordance with regard to transgender identity for identical twins as 

compared to fraternal twins (Heylens et al. 2012). Furthermore, the sex hormone androgen 

seems to play an important role. People who were exposed to excess androgen in utero show 

increased rates of male gender identity (Dessens et al. 2005), whereas individuals with androgen 

insensitivity syndrome exhibit increased rates of female gender identity (Mazur 2005). So how 

exactly do transgender individuals differ from cisgender individuals with respect to brain 

morphology, connectivity and functioning? This question seems relevant from a scientific, 

societal and clinical standpoint. The scarce neuroscience findings have pulled the discussion in 

different directions: data from functional magnetic resonance imaging (fMRI) studies provide 

a complex pattern of results and are often based on small samples, which have mostly not been 

replicated and in many cases involve studies with trans women only (Smith et al. 2015; Mueller 

et al. 2017). While earlier post mortem studies indicated a feminization of hypothalamic nuclei 

and the bed nucleus of the stria terminalis in Tw (Zhou et al. 1995), a more complex pattern 
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emerges when also incorporating results from later post mortem studies investigating 

transgender subjects (Garcia-Falgueras and Swaab 2008; Garcia-Falgueras and Swaab 2009). 

Overall, there is a common thought pattern that hinders insights from psychological and 

neuroscientific studies of transgender: Traditional approaches have routinely assumed two strict 

gender categories, thus reinforcing a sexually dimorphic view of human behavior and cognition.  

In contrast, our study strives for a dimensional across-group perspective on the neural 

basis of transgender. Using a comprehensive sample of men, women, trans men and trans 

women, we leveraged machine-learning algorithms to elucidate the complex interactions 

between gender identity and biological sex, thereby defining multidimensional markers that 

delineate gender phenotypes across cisgender and transgender. The overarching goal of our 

approach is to better understand the neurobiological basis of transgender by searching for bio-

behavioral markers instead of relying simply on primary sexual characteristics. Considering 

accumulating evidence for more nuanced views on gender and its manifestation in the human 

brain (Joel et al. 2015; Manzouri et al. 2017; Manzouri and Savic 2018), one might argue that 

there may be no such thing as a categorically male or a female brain. Using this strictly 

categorical approach, there has been little progress towards answering an important question, 

which resides at the core of all neurobiologically oriented transgender research: do trans men 

and trans women represent separate and dissociable subtypes of gender, or can we classify all 

people as either male or female? For the present study, we employ a data-driven, machine 

learning approach, hoping to answer the aforementioned question and shed light on the 

neurobiological underpinnings of transgender and gender incongruence. 
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Methods 

Participants 

 92 participants were recruited in the present study, including 23 cisgender males, 23 

cisgender females, 23 trans men and 23 trans women. All cisgender participants were recruited 

via public announcement around Aachen (Germany). Tm and Tw were recruited in self-help 

groups and at the Department of Gynaecological Endocrinology and Reproductive Medicine of 

the RWTH Aachen University Hospital, Germany. All transgender participants declared their 

intention of undergoing cross-sex hormone therapy in the future, expressed a strong sense of 

belonging to the opposite sex and lived the desired role in everyday life. Furthermore, all 

transgender participants fulfilled diagnostic criteria for gender dysphoria, as diagnosed by a 

board-certified mental-health professional. The German version of the Structured Clinical 

Interview of the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders 

(DSM-IV) (Wittchen et al. 1997) was used to ensure the exclusion of participants with mental 

disorders unrelated to gender incongruence. For all cisgender and transgender participants, 

further exclusion criteria were neurological disorders, other medical conditions affecting the 

brain metabolism, and first degree relatives with a history of mental disorders. The local Ethics 

Committee of the Medical Faculty of RWTH Aachen University approved the study (EK 

088/09). Participants were financially reimbursed and gave their written informed consent for 

participation in the current study. 

Table 1 – Demographic information in the participant sample 

 Female (F) Male (M) Trans men (Tm) 
Trans women 

(Tw) 

Age 32 (11) 32 (9) 25 (7) 31 (10) 

Years of education 15 (3) 15 (3) 14 (2) 14 (3) 

Biological Sex 46 46 n.a. n.a. 

Gender Identity 23 23 23 23 
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The table gives relevant demographic information (means, with standard deviations in brackets) about 

participants, divided by groups. Since the term biological sex refers to the anatomically determined sex, 

which does not include transgender sub-groups, the respective cells in the table remain empty. 

 

Procedures  

 Our dataset consisted of two parts: questionnaire data assessing self-perceived gender 

identity and resting-state fMRI scans. In recent years, functional connectivity fMRI approaches 

found several brain regions whose spontaneous low-frequency fluctuations (<0.1 Hz) of the 

blood oxygen level-dependent (BOLD) signal registered during resting-state correlate with 

each other. Those regions are believed to be functionally connected to each other in the absence 

of any particular task constraints, reflecting the brain’s intrinsic functional architecture (Biswal 

et al. 2010; Smith et al. 2009). Furthermore, our data included the detailed, quantified 

information regarding gender identity, which is offered by the Bem Sex-Role Inventory (BSRI; 

(Bem 1974)) (cf. methods). This questionnaire asks participants to rate themselves on culturally 

desirable male and female traits. The BSRI is one of the very few empirically based 

questionnaires to examine gender identity, with the resulting gender categorizations correlating 

with various stereotypical gendered behaviors (Bem 1977; Lee 1982; Hoffman and Borders 

2001; Savic and Arver 2011). While several psychometric instruments have been specifically 

designed for the assessment of gender identity in transgender individuals, we did not choose 

one of these specialized questionnaires here because this would have hindered directly 

comparing and jointly analyzing cis- and transgender individuals. Studies reporting results 

about the application of the BSRI to transgender populations remain rare. However, several 

previous studies, conducted in Spain (Gòmez-Gill et al. 2012) and Poland (Herman-Jeglinska 

et al. 2002), have employed the BSRI to compare cisgender controls and transgender 

individuals. Both reports revealed that transgender individuals scored on the BSRI as a function 
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of their gender identity instead of their biological sex. These results substantiate the BSRI as a 

useful measure of gender identity, also in transgender individuals.  

 

Brain imaging data acquisition  

 Using a 3 Tesla Siemens Trio MR Scanner (Siemens Medical Systems, Erlangen, 

Germany) at the Department of Psychiatry, Psychotherapy and Psychosomatics of the RWTH 

Aachen University Hospital the following sequences covering the entire brain were obtained 

for each participant: a) 4 min T1-weighted MP-RAGE 3D measurement (TR=1900, TE=2.52, 

TI=900; α=9°, FoV=250 mm2, voxel size: 1×1×1 mm³, slices=176) and b) a 6.2 min T2*-

weighted echo-planar imaging (EPI) resting state condition (TR=3000, TE=35, α=84°, 

FoV=192 mm, voxel size: 3×3×3 mm³, 44 slices, gap 15%, 64×64 matrix, repetitions=124). For 

the resting state condition, participants were asked to relax in the scanner, keep their eyes open 

and avoid falling asleep, which we confirmed in post-scan interviews. 

 

Image processing 

 Pre-processing of the fMRI data was carried out using a standard pipeline, including 

spatial and temporal data normalization and accounting for in-scanner head motion. All pre-

processing was done with FEAT (FMRI Expert Analysis Tool) Version 6.00, part of FSL 

(FMRIB's Software Library). We discarded the first three images of each functional series to 

avoid T1 saturation effects; the remaining 121 volumes were utilized. The following signal 

processing was applied; motion correction using MCFLIRT (Jenkinson et al. 2002), non-brain 

removal using BET (Smith 2002), spatial smoothing using a Gaussian kernel of FWHM 6.0mm, 

grand-mean intensity normalization of the entire 4D dataset by a single multiplicative factor, 

high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with 
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sigma=360s). Low-pass filtering was avoided to preserve high-frequency content and keep the 

largest frequency range. Registration to high resolution structural and/or standard space images 

was carried out using FLIRT (Jenkinson and Smith 2001). Registration from high resolution 

structural to standard space was then refined using FNIRT nonlinear registration.  

 Additional preprocessing steps included masking of non-brain voxels, voxel-wise de-

meaning of the data, and normalization of data to MNI space. To further reduce spurious 

correlations associated with head-motion in all 92 participants, variance that could be explained 

by head motion was removed from each voxel’s time series. Adhering to previously published 

studies (Chai et al. 2012; Kernbach et al. 2018; Satterthwaite et al. 2013), we helped remove 

nuisance signals based on 24 regressors of no interest: a) the 6 motion parameters derived from 

the image realignment, b) their 6 first derivatives, and c) their respective 12 squared terms. This 

regression approach has been shown to increase specificity and sensitivity of functional 

connectivity analyses and to detect valid signal correlation at rest (Satterthwaite et al. 2013). 

 

Statistical analysis: pattern classification of four gender groups from brain connectivity  

Please also refer to Figure 1 for a schematic overview of all statistical analyses 

conducted for the present study. First, we aimed to classify correlated patterns of functional 

connectivity and behavioral data that can simultaneously appreciate our four gender groups - 

men, women, trans men and trans women. To this end, we used maximum-margin linear support 

vector machines (SVM; C hyper-parameter set to default) to reveal whether a 6-minute resting-

state fMRI scan enables grouping of participants reflecting gender identity. SVMs were chosen 

because they are probably the most pervasively used pattern classification algorithm in 

bioinformatics in general (Hastie et al., 2001), with many previous applications in the 

neuroimaging domain (e.g. Hanson et al., 2008). To avoid overfitting, we re-expressed the 
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whole-brain time-series maps in a quintessential network representation as effective summary 

of distributed data variation. First, independent component analysis (ICA) was conducted at the 

group level based on a concatenated subsample of functional maps (25 fMRI scans randomly 

drawn for each of the participants) and then, 50 spatiotemporal network units (Bzdok et al. 

2016) were extracted for further analysis (preserving blindness to class labels, cf. Hastie et al., 

2001). Second, functional connectivity was computed as linear correlation between each pair 

of the extracted ensemble of 50 distributed macroscopic networks. This approach yielded 1,225 

unique network-network coupling relations in each participant. Third, these 1,225 subject-

specific measures of between-network communication were further reduced using principal 

component analysis (PCA) to obtain 50 expressions of the main underlying directions of 

functional network variation idiosyncratic to each participant.  

To obtain an unbiased estimate of the expected performance in future brain-imaging 

data, cross-validation was performed in 100 random, but group-balanced data splits (Witten et 

al. 2009). 95% of the data were used for model training and 5% of the data for model evaluation 

of prediction performance. The analysis strategy provides insight into how the neural signature 

underlying male vs. trans men vs. female vs. trans women trade off against each for prediction 

at the single-subject level. Specifically, predictive models were derived in a one-versus-rest 

scheme were each sub-type was classified against the three remaining gender sub-types (Hastie 

et al., 2001). Thus, we were able to quantify, for instance, how many Tm were falsely 

recognized to belong to the male, female or Tw groups.  
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Figure 1 – Overview of the analysis workflow  

Depicts the flow of analyses for both functional imaging and behavioral data. After standard 

preprocessing, resting-state scans of all 92 participants were subjected to independent component 

analysis (ICA) and time series extraction to obtain spatiotemporally coherent networks. The resulting 

time courses of each ensuing network were used to compute between-network functional connectivity 

strengths. We then applied dimensionality reduction via principal component analysis (PCA) to these 

connectivity indices. The same dimension reduction procedure was separately applied also to the 

behavioral data, i.e. scores of each participant for the 60 items of the Bem Sex-Role Inventory (BSRI). 

In this way, we obtained 50 principal components of functional connectivity and 25 principal 

components of BSRI items. On the one hand, the essential functional coupling components were fed into 

the maximum-margin linear support vector classifier (SVC), which after cross-validation resulted in the 

values for prediction accuracies to be expected in individuals assessed in the future, as depicted in 

Figure 2. In a separate analysis of our study, both BSRI and functional connectivity components were 

jointly fed into canonical correlation analysis (CCA). By means of 1,000 permutation iterations, 

allowing for a best-possible significance threshold of 0.001, a null distribution of random association 

between brain network dynamics and behavioral gender tendencies across individuals was obtained. P-
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values were derived from the number of correlations r that exceeded the null CCA model and this non-

parametric hypothesis testing procedure yielded k=9 statistically significant CCA modes. These 

significant variants of brain-gender association are depicted in Figure 3a. Explicit correction for 

multiple comparisons was carried out searching through all estimated CCA modes (all P < 0.001, 

family-wise-error-corrected). 

 

Statistical analysis: extracting continuous brain-gender phenotypes 

 Subsequently, we sought to assess the feasibility of extracting continuous brain-

behavior associations underlying gender variability. We acquired detailed information 

regarding gender identity and gender role, which is offered by the BSRI (Bem 1974). The BSRI 

constitutes one of the very few empirically based questionnaires to examine how people identify 

themselves with respect to gender (Lee 1982; Hoffman and Borders 2001). Designed to 

facilitate research on the concept of psychological androgyny, the BSRI presents participants 

with 60 different personality traits which they rate themselves on using a 7-point Likert scale, 

ranging from 1 (never or almost never true) to 7 (always or almost always true). Among these 

60 traits, 20 are stereotypically masculine (e.g., forceful, dominant), 20 are stereotypically 

feminine (e.g., affectionate, sympathetic), and 20 are described as ‘filler traits’ thought to be 

gender neutral. Both the typical masculine and the typical feminine traits in the BSRI represent 

culturally desirable traits for men and women, respectively, while 10 of the gender-neutral items 

were conceptualized as desirable for both sexes (e.g., adaptable, sincere) and the other 10 were 

undesirable for both sexes (e.g., inefficient, jealous) (Bem 1974). Attempting gender 

assignments based on behavioral traits captured by the BSRI, we used the original median-split 

scoring procedure (Bem 1977). We used the German version of the BSRI, which has been 

shown to possess good validity and reliability in a population sample totaling 580 German men 

and women (Schneider-Düker and Kohler 1988). For the canonical correlation analyses (CCA) 
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reported here, we used the raw scores for each single item of the BSRI for each individual 

participant. 

 Across all 92 participants, we sought dominant coupling regimes - “modes” of 

population variation - that provide insight into how functional variation inside functional 

networks can explain how individuals vary in gender-characteristic behavior. An important 

advantage of resting-state fMRI data, as compared to task-based fMRI, is that it is not 

influenced by the constraints of a specific task that might confound results with respect to 

gender. Combining both variable sets (BSRI & resting-state fMRI) in the context of the CCA, 

will give us an innovative original combination of self-assessment questionnaire and 

neurobiological data on which we will demonstrate the feasibility of a continuous brain-gender 

axis across the four participant groups. CCA is a natural choice of method to interrogate such a 

multivariate correspondence between two high-dimensional variable sets. For the CCA, the 

same connectomic information was used as in the aforementioned SVM analyses. A first 

variable set X corresponded to the subject-specific between-network communication measures 

(92 x 50 matrix) and a second variable set Y was constructed from the between-network 

coupling strengths (92 x 25 BSRI items, reduced by PCA to avoid overfitting). CCA involves 

finding the canonical vectors u and v that maximize the symmetric relationship between a linear 

combination of functional network connectivity (X) and a linear combination of gender facets 

(Y). The multivariate pattern learning technique thus reveals a series of functional connectivity 

modes, each of which identifies the two projections Xu and Yv that yielded maximal linear co-

occurrence between sets of large-scale network couplings and sets of behavioral tendencies 

across our four gender groups. 

 Each estimated brain-gender mode was assessed for statistically significant robustness 

as determined by hypothesis testing in a permutation procedure used in previous research 

(Miller et al. 2016). Relying on minimal modeling assumptions, a null distribution was derived 
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for the achieved correlation between canonical variations resulting from CCA analysis. In 1,000 

permutation iterations, corresponding to a best-possible significance threshold of 0.001, the 

between-network connectivity matrix was held constant, while the BSRI questionnaire items 

were subject to participant-wise random shuffling. The constructed surrogate data preserved the 

statistical structure idiosyncratic to the functional network relationships, yet permitted to 

selectively destroy the signal property related to the gender behavior. The distribution generated 

here from reflected the null hypothesis of random association between brain network dynamics 

and behavioral gender tendencies across individuals. Pearson’s correlation coefficient between 

the perturbed canonical vectors of the network side and the behavior side was recorded in each 

iteration to obtain a null distribution of the test statistic. P-values were obtained from the 

number of correlations r that exceeded the null CCA model (Miller et al. 2016). This non-

parametric hypothesis testing procedure yielded k=9 highly significant CCA modes, where 

explicit correction for multiple comparisons was carried out searching through all estimated 

CCA modes (all P < 0.001, family-wise-error-corrected). Our CCA analysis pipeline therefore 

directly follows several previous studies (Smith et al. 2015; Miller et al. 2016; Kernbach et al. 

2018). Analogous to this research, the present validation using null-hypothesis permutation 

testing built confidence that our modes of brain-behavior variation are statistically significant 

and unlikely explained by noise. 
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Results  

All participants were right-handed native German speakers, except for one left-handed 

participant in each of the four groups. Handedness was assessed by means of the Edinburgh 

Handedness Inventory (Oldfield 1971). Participants took part in two functional MR tasks, 

which were partly reported elsewhere (Junger et al. 2014). The four groups did not differ 

significantly regarding years of education (F=1.158, p=.331), but there was a small group 

difference with respect to age (F=3.151, p=.029) (see Table 1). This was due to the younger 

age of the trans men group, as compared to all other three groups.  

Machine-learning algorithms were able to accurately distinguish men (n=23), women 

(n=23), trans men (n=23) and trans women (n=23) (see Table 1 for demographic info) based 

on brain scans of intrinsic functional connectivity. As a first step, we assessed the usefulness 

of our brain-based approach for classifying male and female participants, comparing our 

pattern classification results with those from the BSRI. Using BSRI data alone enabled us to 

classify male and female participants with accuracies of 26% and 43%, respectively (see 

Table 2). Our algorithm-based classification using intrinsic connectivity from the resting brain 

(see Figure 2) resulted in superior accuracies for both male (52%) and female (63%) 

participants (see Table 2). Note that the chance probability of correct classification, assuming 

4 groups, was 25%. This classification performance provides a validity check for our 

automatic gender detection, showing that we can accurately classify biological sex based on 

our resting-state fMRI scans. The brain-derived gender signatures thus allowed for 

classification performances that exceeded the normative level of a widely used behavioral 

questionnaire for gender identity.  
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Figure 2 – Men, women, trans men and trans women can be detected from brain 

connectivity 

Each brain rendering shows how local grey-matter pattern contribute to predictive a given sub-type 

(e.g., man), relative to the three remaining sub-types. The confusion matrix in the middle indicates the 

variability of sub-group predictions, and that each is roughly equally mistaken in falsely predicting 

other sub-groups. SVM algorithms successfully distinguished all four gender groups based on intrinsic 

functional activity alone. Transgender participants were not preferentially classified as either men or 

women. As such, these two gender groups were uniquely defined in brain biology rather than 

representing mere variants of male or female brain activity signatures. All numbers inside the cells 

represent percentages of correctly classifying a particular group member as that group or 

misclassifying as one of the three other groups. The horizontal axis lists the psychological gender 

indicated by participants; the vertical axis lists the groups as predicted by the SVM algorithm. The 

discriminative classifier weights in the whole brain are rendered on the MNI-152 template for each 

group. Red-to-yellow colors indicate brain regions from which the SVM algorithm could best detect a 

given psychological gender. Blue-to-green colors indicate brain regions from which the SVM classifier 

build confidence against that particular self-reported gender. Lateral pre-motor and superior frontal 

areas had high predictive strength for male participants and vice versa for female participants. For 

trans women, discriminative regions covered large parts of temporal, parietal, occipital, frontal and 

sub-cortical midline areas. The brain signature for trans men on the other hand was confined to a small 
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number of areas located in the posterior part of the temporal gyrus, the pre-motor cortex and the middle 

frontal gyrus. 

 

Table 2 - Clinical and algorithm-based gender classifications of our sample 

 Female (F) Male (M) Trans men (Tm) Trans women 

(Tw) 

BSRI classification 

accuracy per group 
43% 26% n.a. n.a. 

SVM classification 

accuracy per group 
63% 52% 49% 52% 

The table summarizes the accuracy with which subjects were classified as either male or female for both 

the BSRI and the support vector machine (SVM) procedure. Whereas the BSRI classification was solely 

based on self-reports, all SVM classification results are based on resting-state functional connectivity 

data. As the BSRI does not allow for classification of trans men or trans women, these cells remain 

empty. 

 

To seek neurobiological manifestations of gender identity subtypes beyond the common 

gender dichotomization, we were interested in how well the machine-learning algorithm was 

able to predict the two transgender groups. In accordance with our hypothesis of intermediate 

gender brain-types, we successfully detected both trans men and trans women as 

neurobiologically distinct phenotypes. Classification accuracies were 49% for trans men and 

52% for trans women (see Figure 2 & Table 2), compared to the random guessing probability 

of 25% each. In other words, transgender individuals were not systematically misclassified as 

skewed towards male or female. The brain-derived gender signatures (see Figure 2) show that 

each of the four groups is associated with a distinct, non-overlapping pattern of discriminative 

brain regions as determined by the support-vector classifier. These areas designate the parts of 

the brain where the algorithm could best classify the respective groups. 
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A crucial aspect of these findings is that each of the four gender groups in our sample 

could be associated with distinct and non-overlapping brain connectivity patterns that 

differentiate them from the other three groups. Men and women exhibited largely distinct 

patterns for the superior frontal gyri and premotor areas: in our data set, these areas are highly 

predictive for correctly disambiguating male participants and the opposite is the case for female 

participants. Females are best predicted by an area located in the inferior parietal lobe. 

Successful prediction of trans men is associated with a few areas located close to the posterior 

part of the temporal gyrus, the pre-motor cortex and the middle frontal gyrus. Trans women on 

the other hand were best identified based on a widespread pattern involving temporal, parietal, 

occipital and frontal areas. 

The next step in our analyses was to use canonical correlation analyses (CCA) to 

delineate multivariate relationships between functional connectivity and an array of gender-

characterizing behavioral traits from the BSRI across all 92 participants. CCA extends the idea 

of principal component analysis to two data matrices. We want to find 2 one-dimensional 

projections of the two variable sets such that the correlation between these two variables is 

maximized. The aim was to extract brain phenotypes for gender and transgender directly from 

the data. These phenotypes should allow us to delineate the brain-based gender continuum of 

individuals, irrespective of their physical sex characteristics. The CCA procedure was 

completely naive to the a-priori assignment of each participant to one of the four gender groups. 

Based on the statistically significant co-variance explained, the first nine canonical dimensions 

reached significance (p < 0.001; non-parametric permutation test, c.f. methods). Each one of 

these nine canonical dimensions represented a distinct pattern that associates a weighted set of 

BSRI responses with a weighted set of functional connections (see Figure 3). Thus, without 

using information on the particular group of a given participant, we were able to specify nine 

canonical dimensions, or brain-gender axes, that are sensitive to differences between cisgender 
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and transgender individuals. How these nine brain-gender axes relate to both patterns of resting-

state functional connectivity and BSRI response patterns is depicted in Figure 3. 

 

Figure 3 – Brain-gender axes revealed across cisgender and transgender participants 

To test the feasibility of exploring continuous brain-behavior associations underlying gender variability 

more broadly, nine brain-gender axes (i.e., canonical vectors) are derived from the CCA. Here, we 

depict how these axes relate to both patterns of resting-state functional connectivity (panel A) and BSRI 

response patterns (panel B). The present brain-gender associations offer a gradual representation 

jointly describing cismen, ciswomen, trans men, and trans women. By combined analysis of BSRI data 

and resting-state functional connectivity, we define continuous dimensions underlying brain gender 

phenotypes. Notably, this CCA approach was naive to the gender group of each of the 92 participants, 

which was only used in the depicted post-hoc associations. (A): The nodes of the circle indicate the 50 

spatial-temporally coherent brain networks extracted by ICA. Their edges indicate the positive or 

negative importance of a particular network-network coupling for each of the 9 brain-gender axes. The 
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revealed nine brain-gender axes represent continuous degrees expressed in each of the 92 participants 

that transcended the four a-priori gender groups regarding their relation to the 50 different brain 

networks. Each of the nine brain-gender axes was associated with a specific pattern of connectivity 

among the 50 resting-state networks extracted via ICA. The colors on the circle indicate ICA nodes, 

whose mutual functional correlations were fed into the CCA procedure. Red (blue) color indicates 

increased (decreased) connectivity among two networks. (B): The relevance of 60 gender-related items 

is shown with their relation to the 9 brain-gender axes. The nine brain-gender axes represent continuous 

degrees expressed in each of the 92 participants that transcended the four a-priori gender groups 

regarding their relation to the 60 items of the BSRI questionnaire of gender-typical characteristics. Blue 

(red) color indicates a positive (negative) association of the specific item with a certain brain-gender 

axis. 
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Discussion  

Our results support the conclusion that the two existing categories of men and women 

are insufficient to be mapped to actual, modern-day gender identity categories. An individual’s 

gender identity is one of the most important determinants of professional and personal life 

trajectories in human societies. Gender distinctions influence modern-day societies with respect 

to income levels, leadership, participation, health and academic status. Not conforming to the 

socially established gender norms might likely mean to face stigma, social exclusion and 

discriminatory practices, which in turn can have detrimental effects on physical and mental 

health. Specifically, many previous studies examining brain correlates of transgender tended to 

neglect the possibility of a dimensional gender construct, thus reinforcing a sexually dimorphic 

view of gender identity. This is worrisome, considering the steep increase in prevalence of 

gender incongruence and the associated social, psychological and monetary burdens for the 

affected individuals and our health care system.  

The present study provides important quantitative evidence for future decision making 

in a clinical or societal context. We substantiated the existence of specific intermediate 

phenotypes for gender identity: besides male and female participants, our support-vector 

classifier was able to predict both trans women and trans men as distinct gender groups, with 

prediction accuracies above chance level for all four groups. Transgender sub-groups were 

identified with prediction accuracies comparable to men and women and were not 

systematically misclassified as skewed towards male or female. These results clearly support a 

dimensional gender perspective that captures four distinguishable brain phenotypes for gender 

identity. And since trans women and trans men were not primarily ‘misclassified’ as either men 

or women, these two groups constitute distinct gender subtypes which are associated with 

unique brain phenotypes. Thus, applying a simple, binary gender variable may incur an 

oversimplification that does not accurately capture the existing spectrum of human gender 
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identities. Importantly, behavioral studies revealed that gender categorizations resulting from 

the BSRI correlate with various stereotypically gendered behaviors (Lee 1982; Hoffman and 

Borders 2001). Despite being widely employed for over 30 years now, the BSRI has also been 

criticized with respect to its underlying theoretical rationale, scoring methods and the item 

selection procedure (Hoffman and Borders 2001). Most critics pertained to the idea of labeling 

individuals solely based on BSRI scales: drawing conclusions merely on this measure might 

result in highly heterogeneous results and false conclusions. We suggest that this is irrelevant 

in the present study, due to the following reason: in our approach, the BSRI is not used to make 

definite predictions regarding male or female categorizations. We rather try to do the opposite: 

by gathering BSRI data from participants in addition to neurobiological measures and then 

combining the two variable sets, we explicitly do not rely on a single questionnaire. And despite 

some criticism, the BSRI is still considered to be a valid measure of gender identity and has 

undoubtedly provided useful input for research and discussion related to gender-related 

constructs and stereotypes (Beere 1990; Hoffman and Borders 2001). The BSRI has become 

the method of choice for the majority of researchers studying gender identity and has proven 

effective in different cultural settings (Hoffman and Borders 2001). 

One thing that was not taken into account in our analyses was the influence of hormonal 

treatment and the menstrual cycle on the observed differences in resting-state networks. It has 

been shown in previous studies by our group and another lab (Van Goozen et al. 2002; Junger 

et al. 2014) that the presence or absence of hormonal treatment and the menstrual cycle do not 

substantially affect functional brain connectivity. Thus, even when explicitly controlling for 

hormonal/menstrual cycle status, no differences between gender dysphoric individuals were 

observed. On the other hand, there are studies which found hormonal effects on resting-state 

networks. These effects were only present for Tm and not Tw, and they were spatially confined 

to the frontal cortex and the cerebellum (Mueller et al. 2017). In a different study comparing 
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Tm and cis-controls, significant changes due to hormonal treatment in functional connectivity 

between parietal and frontal regions have been reported (Burke et al., 2018). Differences in 

measures of resting-state functional connectivity due to hormonal effects thus seem to be more 

prominent in Tm and rather subtle, if present at all. Understanding the exact nature of such 

mechanisms will be an important goal for future studies, at best employing multimodal, 

longitudinal approaches in comprehensive samples containing both Tm and Tw. Furthermore, 

we acknowledge that future studies should gather additional information regarding recognition 

of gender incongruence, sexual orientation of subjects as well as beginning and exact nature of 

treatment. These factors might further influence brain phenotypes underlying gender identity. 

In contrast to our fMRI connectivity investigation, many previous neuroimaging studies 

on gender identity focused on differences in brain volume. Overall, the results from studies 

investigating structural neuroanatomy are highly discrepant, mostly centered on a single or a 

small number of brain regions and in many cases even contradictory. Findings typically range 

from no differences between men and Tw (Savic and Arver, 2011), differences between Tw 

and both men and women (Luders et al., 2009), to an intermediate position for Tw between 

male and female brains (Rametti et al., 2011). Whereas the first two studies examined gray 

matter volumetric differences, Rametti and colleagues (2011) investigated fractional anisotropy 

(FA) of white matter fibers. Overall, these investigations indicate that specifically the 

hypothalamus and other subcortical structures seem to differ in either size or thickness between 

trans- and cisgender individuals. Investigating a different aspect of brain anatomy, other studies 

focused on comparing cortical thickness between transgender individuals and cisgender 

controls. Zubiaurre-Elorza and colleagues (2013) found evidence of subcortical gray matter 

masculinization for Tm and feminization in Tw, both right-lateralized. Luders and colleagues 

(2012) were also able to associate cortical thickness with gender identity, as they demonstrated 

thicker cortices in Tw, as compared to cis gender male controls, within several regions of the 
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left and right hemisphere spread throughout the whole brain. Finally, Manzouri and Savic 

(2018) report multimodal imaging data, but focus mainly on cortical thickness, for a 

comprehensive sample of Tm, Tw, and hetero- as well as homosexual controls. For both Tm 

and Tw, they demonstrate increased cortical thickness as well as weaker structural and 

functional connections in the anterior cingulate-precuneus and right occipito-parietal cortex, 

regions known for mediating self–body perception. The authors implicate that the higher 

proportion of homosexual individuals in transgender groups may influence brain differences 

and controlling or correcting for sexual orientation may have a substantial effect on 

neuroimaging results (Manzouri and Savic 2018). 

The most common denominator across all these studies investigating brain anatomy is 

that Tm and Tw represent an intermediate phenotype which seems to shift further towards the 

desired gender throughout the course of cross-sex hormone therapy (Mueller, De Cuypere, et 

al. 2017). In light of our current and previous (Clemens et al. 2017) resting-state connectivity 

findings, we concur with this statement, corroborating the existence of intermediate gender 

phenotypes for Tm and Tw which cannot be grouped together with men and women with 

respect to brain anatomy and functional connectivity. Previous findings from fMRI studies 

investigating transgender are typically interpreted in strict relation to males and females, 

neglecting the possibility that Tm and Tw may be characterized by distinct signatures in the 

brain. Like structural MR studies, these task-based and resting-state fMRI studies provide a 

complex and often contradictory pattern of results, with activation similarities and 

dissimilarities between transgender individuals and their cisgender counterparts (Mueller, De 

Cuypere, et al. 2017). 

According to neurobiological theories (Garcia-Falgueras and Swaab 2009; Mueller, De 

Cuypere, et al. 2017), a combined influence of incongruence between hormonal effects on 

physical sex characteristics and brain sex and multiple genetic factors might explain the origins 



25 
 

of transgender. Thus, a discrepancy between brain and genital differentiation, caused by genetic 

and hormonal factors, plays an important role in explaining the etiology of transgender. 

However, with respect to genetic factors, it is important to point out that so far, compelling 

evidence for a single gene tied directly to transgender is missing. Most likely, phenotypes 

relating to transgender and gender incongruence arise from the expression of polygenic 

genotypes or multiple genes (Zucker et al. 2016). Furthermore, Guillamon and colleagues 

(2016) stressed the difference in brain morphology between homo- and heterosexual Tw. Based 

on cortical thickness, diffusion tensor imaging and postmortem studies, they suggest that the 

observed differences between homosexual Tw and Tm and cis male and cis female controls are 

due to differently timed cortical thinning in various brain regions for each group. This 

differential cortical thinning process might occur primarily due to atypical effects of sex 

hormones and associated metabolites. While this aspect of differential cortical development 

might be important for the development of gender incongruence, other approaches stressed the 

incongruence between perception of own body and self (Manzouri and Savic 2018). They state 

that especially the emergence of a masculine or feminine identity is strongly influenced by the 

early development of a female or male body-self-perception. Accordingly, the underlying 

neurobiological mechanisms for gender incongruence and transgender could be linked to 

cortico-subcortical networks mediating self–body perception, which might be influenced by 

certain developmental and acquired changes (Manzouri and Savic 2018). Taking into account 

these various theoretical approaches and our own results, we suggest that the neurobiological 

mechanisms underlying transgender involve complex brain networks processing body 

perception and other self-reflective cognitive functions. A mixture of developmental, hormonal 

and genetic factors, particularly during youth and adolescence, might in turn influence these 

networks, resulting in changes of both functional and structural connectivity. From a clinical 

standpoint, it would make most sense to assess whether brain phenotypes of transgender persons 

observed in this and other studies exhibit long-lasting changes when receiving hormonal 
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treatment, checking whether a shift to a risk profile for certain brain-based pathologies occurs. 

Optimally, initiatives to further clarify this matter would incorporate longitudinal studies with 

pooled transgender samples and multimodal imaging as well as multivariate pattern 

classification. 

Employing a complex machine-learning approach, we demonstrate the ability to predict 

gender identity based on brain-behavior phenotypes. The fact that it takes less than 90 minutes 

to assess the data and the wide-spread availability of MR machines makes this procedure more 

appealing. Using such data-driven methods in the future to gather additional information about 

the gender identity of an individual might yield more objective data than the often rather 

subjective clinical evaluation. The overall goal of implementing such machine-learning 

techniques in the classification of gender identity is to provide additional, neurobiologically 

validated information, that is not influenced by societal pressure or social desirability, for both 

clinicians and patients. We are sure that assessing and providing such information will provide 

important additional information for many individuals and their relatives who are dealing with 

gender identity related issues. The goal here is to help those affected by gender incongruence 

to make decisions in the light of all available evidence, using not only the present study but 

future studies that should aim at replicating and extending our results to larger samples. Thus, 

we do not proclaim that clinical evaluation and other standard diagnostic procedures in the 

context of transgender should be abandoned. We merely provide additional data to assist and 

optimize decision making for those affected by gender incongruence. The goal is to establish 

an accurate biological characterization of transgender and gender identity, which in turn might 

aid early identification and medical guidance of transgender individuals. This approach would 

represent a significant step towards data-driven diagnostic markers, taking into account 

neurobiological and behavioral differences in an integrative modeling approach. Such an 

approach is in line with the development of the National Institute of Mental Health’s Research 
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Domain Criteria, which seek to construct a biologically-grounded framework for 

transdiagnostic characterization of biological markers (Cuthbert and Insel 2013).  

Here, we extend previous knowledge on human gender identity by showing that trans 

men and trans women represent separate and gradual gender identity subtypes using two 

machine-learning algorithms and brain imaging data. While we found at least 4 separable 

gender identity subtypes, it should be noted that this result might have been partly due to 

inherent limitations of our analytic approach and that additional gender identity subtypes might 

exist. Thus, we acknowledge that our results can only indicate first steps towards unraveling 

the brain basis of gender identity. Given the challenging recruitment of our unique sample, we 

are happy about a sufficient sample size that showed out-of-sample prediction accuracy well 

above chance level. While future studies will need to corroborate our findings, we have made 

first steps towards a more nuanced conceptualization of gender dimorphism. These first steps 

should help to move away from the binary gender concept, hence taking away the pressure from 

transgender and intersexual individuals to fit into one of two categories. We should re-define 

the way we think and speak about transgender and other conditions that are not conforming to 

traditional gender concepts prevalent in modern societies.  
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