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Interval Estimation Methods for Discrete-time
Linear Time-invariant Systems

Wentao Tang, Zhenhua Wang, Ye Wang, Tarek Raı̈ssi, and Yi Shen Member, IEEE

Abstract—This paper investigates interval estimation methods
for discrete-time linear time-invariant systems. We propose a
novel interval estimation method by integrating robust observer
design with reachability analysis. By introducing H∞ design into
interval estimation, the proposed method provides a systematic
and effective approach to improve the accuracy of interval
estimation. Moreover, the relationships and comparisons between
the existing results and the proposed method are discussed in
detail. Finally, simulation results are presented to demonstrate
the effectiveness of the proposed method.

Index Terms—Interval estimation, set-membership, interval
observer, reachability analysis.

I. INTRODUCTION

State estimation has been extensively investigated in the
control community and widely used in various applications,
such as feedback controller design, fault diagnosis and so on.
In practice, state estimation may not converge to the real state
due to the existence of model uncertainties. In general, state
estimation methods can be classified into two categories: the
stochastic and the deterministic ones [1]. The state estimation
method based on stochastic theory assumes that the uncer-
tainties have known probability distribution, for instance the
Kalman filtering [2]. Although this assumption is suitable to
deal with measurement noise, it may be less representative
when modeling large disturbances mostly related to not well-
known deterministic behaviors [3]. The deterministic method,
also known as the set-membership estimation, is based on a
more general assumption that model uncertainties are unknown
but bounded. Instead of estimating the state, a set enclosing
the admissible values of state can be obtained under this
assumption. In the literature, there are mainly two kinds of
set-membership estimation methods: the first is based on set
predictions/intersections and the second (known as interval
observer) is based on the monotone system theory. So far,
the set-membership estimation has been applied in a variety
of fields such as biotechnological systems [4], [5], reachability
analysis [6], [7] and fault diagnosis [8], [9].

The set-membership estimation method based on set pre-
dictions/intersections uses geometrical compact sets (e.g. el-
lipsoids and zonotopes) to bound model uncertainties [10] and
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then constructs compact sets to enclose all the admissible
state values that are consistent with the measurements and
the bounded uncertainties [11]. In the pioneering work of
[12], a recursive set-membership estimation method based
on ellipsoids was proposed. Since then, the set-membership
estimation methods using ellipsoids has been studied by many
authors [13]–[16]. However, for the ellipsoid-based method,
the constructed sets can hardly enclose the admissible sets
of state tightly. The set-membership estimation method based
on the minimum-volume paralleltope was proposed in [17] to
obtain more accurate estimation than that based on ellipsoids.
Polytopes were also used to increase estimation accuracy [18],
[19]. However, the method based on general polytopes has
high computational cost and becomes numerically unstable
with dimensions of the constructed sets growing large [20].
Compared with other geometrical sets, zonotopes, a special
class of polytopes, can be used to achieve a good tradeoff
between estimation accuracy and computation complexity.
Basic operations for zonotopes can reduce to simple matrix
calculations [3]. Zonotopes are shown to be suitable compact
sets for controlling the wrapping effect [21], which refers to
the additional growth of the constructed sets resulting from
the propagations of overestimations at each step. The set-
membership estimation method based on zonotopes has been
extensively studied [1], [3], [11], [22]–[24]. Some criteria such
as P -radius [23] and F -radius [3] to measure the size of
zonotopes have been used to improve estimation accuracy.

Different from the method based on set prediction-
s/intersections, the interval observer based on the monotone
system theory consists of two sub-observers that provide the
upper and lower bounds of the real state. Interval observer was
first proposed in [4] and has received considerable attention
recently [25]–[30]. The basic idea of this method is to design
two sub-observers such that their estimation error dynamics
are both cooperative and stable. The advantage of interval
observer lies in its high computational efficiency. However,
it is not a trivial work to construct a cooperative and sta-
ble error system, and even impossible for some dynamical
systems. To overcome this limitation, the methods based
on coordinate transformation have been proposed to relax
the design condition of interval observer. The transformation
matrix can be alternatively chosen to be time-varying [31] or
constant by solving a Sylvester equation [32]. Note that most
of the existing results on interval observer design focus on
continuous-time systems and only a few results are available
in the discrete-time domain [33]–[36].

The zonotope-based method and interval observer are both
effective in interval estimation. However, these two methods
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still have conservatisms to some extent. The implementation
of a zonotope-based method relies on the use of the reduction
operator that encloses the admissible values of state in a
zonotope with a fixed dimension. The reduction operator may
cause conservatism due to the wrapping effect. More accurate
estimation can be obtained by using higher dimensional zono-
topes, but it will increase the computational burden at the same
time. For interval observer design, the cooperative constraint
may limit the estimation accuracy. Although this constraint
can be relaxed by coordinate transformations, it may cause
additional conservatism.

The interval estimations obtained by the above two methods
both can be converted into the sum of the conventional state
estimation and the approximated bounds of the estimation
error. Inspired by this, we propose a novel interval estima-
tion method to overcome the aforementioned drawbacks of
the zonotope-based method and interval observers. The main
contributions of this paper lie in the following aspects:

1) We propose a novel interval estimation method by
combining conventional observer design with reachabil-
ity analysis. This method is intuitive and effective in
controlling the wrapping effect.

2) We use the H∞ technique to attenuate the effects of
disturbances and noises, which provides a systematic
and effective way to improve the accuracy of interval
estimation. The design condition can be converted into
solving a linear matrix inequality (LMI).

3) The relationships among the zonotope-based method, in-
terval observers and the proposed method are discussed
explicitly in theory. Moreover, we show that the interval
estimation obtained by the proposed method is more
accurate than those by the zonotope-based method and
interval observers under the same initial conditions.

Finally, two simulation results are presented to demonstrate
the effectiveness of the proposed method and to verify the
relationships of the three methods.

II. PRELIMINARIES AND PROBLEM FORMULATION

The following standard notations are used throughout this
paper. Rn and Rm×n denote the n and m × n dimensional
Euclidean space, respectively. In denotes identity matrix with
dimensions of n×n. For simplicity, 0 represents zero number,
vector or matrix of appropriate dimensions in this paper.
The comparison operators ≥, >, ≤, < and the absolute
value operator | · | on vectors and matrices are understood
elementwise. For a matrix A ∈ Rm×n, A+ = max{0, A} and
A− = A+ − A, where the operator, max, is also understood
elementwise. AT denotes the transpose of A. Rn

+ = {x ∈
Rn : x ≥ 0} and Rm×n

+ = {x ∈ Rm×n : x ≥ 0}. For a real
symmetric matrix P ∈ Rn×n, P ≻ 0 (P ≺ 0) indicates that P
is positive (negative) definite. For a vector x ∈ Rn, we use ∥x∥
to denote its Euclidean norm, i.e. ∥x∥ =

√
xTx. For a discrete

transfer function G(z), ∥G(z)∥∞ denotes its H∞ norm, i.e.
the maximum singular value of G(z). In a symmetric block
matrix, we use ∗ to represent a term that can be induced by
symmetry.

We use ⊕ to denote the Minkowski sum of two sets X and
Y, i.e.

X⊕Y = {x+ y : x ∈ X, y ∈ Y},

and use
⊕

to denote the Minkowski sum of a series of sets,
i.e.

m⊕
i=1

Si = S1 ⊕ · · · ⊕ Sm.

For a set X ⊆ Rn, its linear image associated with a matrix
L ∈ Rm×n is denoted as

LX = {Lx : x ∈ X}.

The following definitions and properties are essential in this
paper.

Definition 1. An interval vector I ⊂ Rn, which is also
referred to as a box, is defined as

I = {x : x ∈ Rn, ai ≤ xi ≤ bi, i = 1, . . . , n}. (1)

For simplicity, we also denote I in (1) as

I = [a, b]

where a = [a1, . . . , an]
T and b = [b1, . . . , bn]

T . And we
denote the interval vector I ⊂ Rm with all its components
equal to [−1, 1] as Bm = [−1, 1]m, which is also called a
hypercube.

Property 1. For two interval vectors [a, b] ⊂ Rn and [c, d] ⊂
Rn, we have

[a, b]⊕ [c, d] = [a+ c, b+ d]. (2)

Definition 2. For a set S ⊂ Rn, its interval hull is defined
as the smallest interval vector containing it, which is denoted
as

S ⊆ Box(S) = [a, b],

where a = [a1, . . . , an]
T and b = [b1, . . . , bn]

T . The smallest
interval vector means that for any vector s ∈ S, ai ≤ si ≤
bi, i = 1, . . . , n and [ai, bi] is the smallest interval containing
si.

Property 2. For a series of sets Si ⊂ Rn, i = 1, . . . ,m, the
following equation holds

Box
( m⊕

i=1

Si

)
=

m⊕
i=1

Box(Si). (3)

Definition 3. An m-order zonotope Z ⊂ Rn is an affine
transformation of a hypercube Bm, which is defined as

Z = ⟨p,H⟩ = {p+Hz : z ∈ Bm},

where p ∈ Rn is the center of Z and H ∈ Rn×m is called
the generator matrix of Z , which determines the shape and
volume of Z .

Property 3. For zonotopes, the following equations hold:

⟨p1,H1⟩ ⊕ ⟨p2,H2⟩ = ⟨p1 + p2, [H1 H2]⟩, (4a)
L⟨p,H⟩ = ⟨Lp,LH⟩, (4b)
⟨p,H⟩ ⊆ ⟨p, H̄⟩, (4c)
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where p, p1, p2 ∈ Rn, H, H1, H2 ∈ Rn×m and L ∈ Rl×n.
H̄ is a diagonal matrix with

H̄i,i =

m∑
j=1

|Hi,j |, i = 1, . . . , n.

Property 4. For an m-order zonotope Z = ⟨p,H⟩ ⊂ Rn,
the components of Box(Z) = [a, b] can be obtained by{

ai = pi −
∑m

j=0 |Hi,j |, i = 1, . . . , n

bi = pi +
∑m

j=0 |Hi,j |, i = 1, . . . , n
(5)

The following lemma is also useful in the sequel develop-
ment.

Lemma 1 ( [37]): Given a scalar γ > 0, the discrete-time
system described by{

xk+1 = Axk + Buk

yk = Cxk +Duk
(6)

is stable and its transfer function G(z) = C(zI −A)−1B+D
satisfies ∥G(z)∥∞ < γ, if and only if there exists a matrix
P ≻ 0 such that[

ATPA+ CT C − P ∗
BTPA+DT C BTPB +DTD − γ2I

]
≺ 0. (7)

In this paper, we consider the following system:{
xk+1 = Axk +Buk + Ewk

yk = Cxk + Fvk
(8)

where xk ∈ Rnx , uk ∈ Rnu and yk ∈ Rny denote the
vectors of state, input and measurement output, respectively.
A ∈ Rnx×nx , B ∈ Rnx×nu , E ∈ Rnx×nw , C ∈ Rny×nx and
F ∈ Rny×nv are known matrices. wk ∈ Rnw and vk ∈ Rnv

denote the vectors of unknown disturbance and measurement
noise. Without loss of generality, x0, wk and vk are assumed
to be unknown but bounded as follows

|x0 − p0| ≤ x, |wk| ≤ w, |vk| ≤ v, (9)

where p0 ∈ Rnx , x ∈ Rnx , w ∈ Rnw and v ∈ Rnv are known
vectors. According to Definition 3, (9) can be reformulated as

x0 ∈ ⟨p0, H0⟩, wk ∈ ⟨0, Dw⟩, vk ∈ ⟨0, Dv⟩,

where H0, Dw and Dv are diagonal matrices with their
diagonal elements equal to x, w and v, respectively. For
simplicity, we denote W = ⟨0, Dw⟩ and V = ⟨0, Dv⟩. In
the sequel, we will also use w = −w and v = −v.

The objective of the interval estimation method is to obtain
an interval vector [xk, xk], which contains the real state xk,
i.e.

xk ≤ xk ≤ xk, k ≥ 0.

In this paper, we study three kinds of interval estimation
methods for the system (8): (i) the method based on reach-
ability analysis; (ii) the zonotope-based method; (iii) interval
observers. Additionally, the comparisons and relationships
among these three methods are discussed in detail.

III. INTERVAL ESTIMATION BASED ON REACHABILITY
ANALYSIS

In this section, we propose a novel interval estimation
method by integrating the robust observer design with the
reachability analysis technique [6]. First, a Luenberger observ-
er for system (8) is designed based on the H∞ technique such
that its estimation error is robust against model uncertainties.
Based on the designed observer, we obtain the interval esti-
mation of state via reachability analysis.

Consider the following observer for the system (8):

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k), (10)

where x̂k is the estimation of xk and L ∈ Rnx×ny is the
observer gain to be designed.

Define the estimation error as

ek = xk − x̂k, (11)

it follows that
xk = x̂k + ek. (12)

If we can obtain an interval vector [ek, ek] satisfying ek ≤
ek ≤ ek. Then, from (12), we have

x̂k + ek ≤ xk ≤ x̂k + ek.

Therefore, the interval estimation of xk can be obtained as{
xk = x̂k + ek
xk = x̂k + ek

(13)

In order to obtain accurate estimation, H∞ technique is
used to attenuate the effects of disturbance and noise on the
estimation error.

To this end, we first analyze the error dynamics of the
observer (10). By subtracting (10) from (8), the error dynamic
system can be obtained as

ek+1 = (A− LC)ek + Ewk − LFvk. (14)

It can be rewritten as

ek+1 = Aeek +Bedk (15)

where Ae = A − LC, Be =
[
E −LF

]
and dk =[

wT
k vTk

]T
.

For the error system (15), we proposed the following
theorem to design L such that the estimation error is robust
against disturbance and noise.

Theorem 1: Given a scalar γ > 0, if there exist a positive
definite matrix P ∈ Rnx×nx and a matrix Y ∈ Rnx×ny such
that 

Inx − P ∗ ∗ ∗
0 −γ2Inw ∗ ∗
0 0 −γ2Inv ∗

PA− Y C PE −Y F −P

 ≺ 0 (16)

and let L = P−1Y , then system (15) is stable and the transfer
function from dk to ek, Ged(z) = (zInx −Ae)

−1Be, satisfies
∥Ged(z)∥∞ < γ.

Proof: Set Ce = Inx and De = 0, then according
to Lemma 1, given a scalar γ > 0, system (15) is stable
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and satisfies ∥Ged(z)∥∞ < γ if and only if there exists a
symmetric matrix P ≻ 0 such that[

AT
e PAe + Inx − P ∗

BT
e PAe BT

e PBe − γ2Inw+nv

]
≺ 0, (17)

which can be reformulated as[
Inx − P ∗

0 −γ2Inw+nv

]
+

[
AT

e

BT
e

]
P
[
Ae Be

]
≺ 0. (18)

By using the Schur complement lemma [38], (18) is equivalent
to Inx − P ∗ ∗

0 −γ2Inw+nv ∗
PAe PBe −P

 ≺ 0. (19)

Substituting Ae and Be into (19) gets
Inx − P ∗ ∗ ∗

0 −γ2Inw ∗ ∗
0 0 −γ2Inv ∗

PA− PLC PE −PLF −P

 ≺ 0.

By setting Y = PL, we obtain (16).
The minimal γ can be obtained by solving the following

optimization problem:

min γ2, (20a)
s.t. (16) (20b)

and the feasible solution gives the observer gain by L =
P−1Y .

After the observer gain L being determined, the interval
estimation of xk can be obtained using the following theorem,
which is based on reachability analysis of estimation error.

Theorem 2: For the system (8) and the observer (10), given
x̂0 = p0, then xk is bounded by the interval estimation,
[xk, xk] obtained from (13), where ek and ek are determined
by

[ek, ek] = Box
(
(A− LC)k⟨0, H0⟩

)
⊕

k−1⊕
i=0

Box
(
(A− LC)iEW

)
(21)

⊕
k−1⊕
i=0

Box
(
(A− LC)i(−LFV)

)
,

with

[e0, e0] = Box(⟨0,H0⟩). (22)

Proof: From the error system (14), ek can be obtained
by

ek = (A− LC)ke0 +

k−1∑
i=0

(A− LC)iEwk−1−i

+
k−1∑
i=0

(A− LC)i(−LFvk−1−i), (23)

Define the reachable set of ek as Ωk. From (23), we can
obtain Ωk as follows

Ωk = (A− LC)kΩ0 ⊕
k−1⊕
i=0

(A− LC)iEW

⊕
k−1⊕
i=0

(A− LC)i(−LFV). (24)

From (24) and (3), the interval hull of Ωk can be obtained
by

Box(Ωk) = Box
(
(A− LC)kΩ0

)
⊕

k−1⊕
i=0

Box
(
(A− LC)iEW

)
(25)

⊕
k−1⊕
i=0

Box
(
(A− LC)i(−LFV)

)
.

In addition, Since x0 ∈ ⟨0,H0⟩, we have e0 ∈ ⟨0,H0⟩ when
x̂0 = p0, which implies

Ω0 = ⟨0,H0⟩

Then, from (21) and (22), we have

[ek, ek] = Box(Ωk), k ≥ 0. (26)

Since ek ∈ Ωk ⊆ Box(Ωk), it follows ek ∈ [ek, ek], i.e.
ek ≤ ek ≤ ek. Finally, from (13), we have xk ≤ xk ≤ xk.

By using the structure of (21), we can implement Theorem
2 via an iterative algorithm as follows.

Algorithm 1 Interval estimation based on reachability analysis
Input: uk, yk
Output: xk, xk

1: Initialization:
2: x̂0 = p0, Dw0 = EW, Dv0 = −LFV
3: Sx0 = ⟨0,H0⟩, Sw0 = ∅, Sv0 = ∅
4: for k ≥ 0 do
5: [ek, ek] = Box(Sxk

)⊕ Swk
⊕ Svk

6: xk = x̂k + ek
7: xk = x̂k + ek
8: x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k)
9: Sxk+1

= (A− LC)Sxk

10: Swk+1
= Swk

⊕ Box(Dwk
)

11: Svk+1
= Svk ⊕ Box(Dvk)

12: Dwk+1
= (A− LC)Dwk

13: Dvk+1
= (A− LC)Dvk

Remark 1. In Algorithm 1, over-approximations only exist
in the Box(·) operations. Note that the sets Sxk

, Dwk
and Dvk

are both zonotopes and their interval hulls can be computed
exactly by using Property 4. So Algorithm 1 is effective in
controlling the wrapping effect. Besides, since the Minkowski
sum of interval hulls can be converted into the sum of
vectors according to (3), Algorithm 1 has high computational
efficiency.
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A. Boundedness of interval estimation
When the real state xk is bounded, the boundedness of

the interval estimation obtained from (13) is equivalent to
the boundedness of the estimation error. Although Theorem
1 is proposed to attenuate the effects of disturbance and noise
in the sense of H∞ norm, the observer gain obtained from
Theorem 1 can guarantee the boundedness of the estimation
error.

Theorem 3: Given a scalar γ > 0, if there exist a positive
definite matrix P ∈ Rnx×nx and a matrix Y ∈ Rnx×ny such
that (16) holds and let L = P−1Y , then there exist scalars
0 < α < 1 and 0 < β < 1 such that

∥ek∥ <

√
β(αkV0 +

1

1− α
γ2∥d∥2∞), k ≥ 1 (27)

holds, where V0 = eT0 Pe0 and ∥d∥2∞ = supk≥0 d
T
k dk.

Proof: According to the proof of Theorem 1, if (16) holds
and let L = P−1Y , then (17) holds, which follows that

ηTk

[
AT

e PAe + Inx − P ∗
BT

e PAe BT
e PBe − γ2Inw+nv

]
ηk < 0,

where ηk =
[
eTk dTk

]T
. Then, we have

eTkA
T
e PAeek + eTk ek − eTk Pek + dTkB

T
e PAedk

+ eTkA
T
e PBedk + dTkB

T
e PBedk − γ2dTk dk < 0 (28)

For system (15), define the following Lyapunov function

Vk = eTk Pek, k ≥ 0,

then (28) can be reformulated as

Vk+1 < Vk − eTk ek + γ2dTk dk (29)

In addition, (16) implies Inx − P ≺ 0, then there exist
scalars 1 < α1 < α2 such that

α1Inx
≺ P ≺ α2Inx

. (30)

It follows that Inx ≻ 1/α2P . Then from (29), we have

Vk+1 < Vk − eTk ek + γ2∥d∥2∞

< eTk (P − 1

α2
P )ek + γ2∥d∥2∞

< (1− 1

α2
)Vk + γ2∥d∥2∞.

(31)

Define α = 1 − 1/α2, it follows that 0 < α < 1. Then from
(31), we have

Vk < αkV0 +
k−1∑
i=0

αiγ2∥d∥2∞

= αkV0 +
1− αk

1− α
γ2∥d∥2∞

< αkV0 +
1

1− α
γ2∥d∥2∞

(32)

In addition, (30) also implies that α1e
T
k ek < eTk Pek = Vk.

Then from (32), we have

∥ek∥ <

√
1

α1
Vk

<

√
1

α1
(αkV0 +

1

1− α
γ2∥d∥2∞).

Finally, by setting β = 1/α1, we gets (27).

IV. INTERVAL ESTIMATION BASED ON ZONOTOPES

From (8), we have yk − Cxk − Fvk = 0. Then, the state
vector xk+1 can be obtained by

xk+1 = Axk +Buk + Ewk + L(yk − Cxk − Fvk), (33)

where L ∈ Rnx×ny . Based on (33), [3] gives a set-membership
estimation method based on zonotopes, which can be described
by the following proposition.

Proposition 1 ( [3]): For the system (8), if xk ∈ ⟨pk,Hk⟩,
then the unknown state xk+1 can be bounded in the zonotope
⟨pk+1, Hk+1⟩ with

pk+1 = (A− LC)pk +Buk + Lyk, (34a)

Hk+1 =
[
(A− LC)H̄k, E, −LF

]
, (34b)

where H̄k =↓q,W Hk is the reduction operation and q ≥ nx.
Denote Box(⟨pk,Hk⟩) = [xz

k, x
z
k]. From (5), it can be

obtained by{
xz
k(i) = pk(i)−

∑s
i=0 |Hk(i, j)|, i = 1, . . . , nx

xz
k(i) = pk(i) +

∑s
i=0 |Hk(i, j)|, i = 1, . . . , nx

(35)

where xz
k(i), x

z
k(i) and pk(i) denote the i-th components of

xz
k, xz

k and pk, respectively. s is the column number of Hk.
Hk(i, j) denotes the element of Hk in the i-th row and the
j-th column. The interval estimation based on zonotopes are
obtained as xz

k and xz
k, and we have xz

k ≤ xk ≤ xz
k.

Remark 2. The column number of Hk will increase linearly
without the reduction operator. ↓q,W Hk obtains a new zono-
tope, ⟨0, H̄k⟩ with fixed order q, such that ⟨0,Hk⟩ ⊆ ⟨0, H̄k⟩.
W ∈ Rnx×nx is a positive definite matrix. ↓q,W Hk first
reorders the columns of Hk in decreasing weighted norm,
∥hi∥W = hT

i Whi, i = 1, . . . , s, where hi is a column of Hk

and the obtained new matrix is denoted as H̃ . Then, it replaces
the last s−q+nx smallest columns of H̃ by a diagonal matrix
H− ∈ Rnx×nx since the zonotope generated by these columns
can be enclosed by a box. The whole process of ↓q,W Hk can
be formulated as follows

H̃ = [h1, . . . , hs], ∥hj∥W ≥ ∥hj+1∥W
if s ≤ q

↓q,W Hk = Hk,
else

↓q,W Hk =
[
H+, H−] ,

where H+ = [h1, . . . , hq−nx ], H−
i,i =

∑s
j=q−nx+1 H̃i,j .

V. INTERVAL OBSERVER BASED ON MONOTONE SYSTEM
THEORY

A. Interval observer without coordinate transformation

The interval observer without coordinate transformation for
the system (8) can be formulated as{

xi
k+1 = Axi

k +Buk + L(yk − Cxi
k) + d

xi
k+1 = Axi

k +Buk + L(yk − Cxi
k) + d

(36)
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where xi
k and xi

k are the estimated upper and lower bounds
of xk, respectively. d and d are given as{

d = E+w − E−w + (−LF )+v − (−LF )−v
d = E+w − E−w + (−LF )+v − (−LF )−v

(37)

where L ∈ Rnx×ny is the observer gain to be designed.
The interval observer (36) aims to estimate the upper and

lower bounds of xk, such that xi
k ≤ xk ≤ xi

k. The following
lemmas will be used in designing an interval observer based
on the monotone system theory.

Lemma 2 ( [26]): For a vector x ∈ Rn and a matrix A ∈
Rm×n, if there exist x, x ∈ Rn such that x ≤ x ≤ x, then

A+x−A−x ≤ Ax ≤ A+x−A−x.

Lemma 3 ( [39]): Any solution of the system

xk+1 = Axk + wk

with wk ∈ Rn
+ and A ∈ Rn×n

+ , is elementwise nonnegative
for all k ≥ 0 provided x0 ≥ 0.

Based on Lemma 2 and Lemma 3, the conditions of
designing the interval observer (36) can be described by the
following theorem.

Theorem 4: For system (8), xi
k and xi

k in (36) satisfy xi
k ≤

xk ≤ xi
k, ∀k ≥ 0, if A−LC is nonnegative and xi

0 ≤ x0 ≤ xi
0.

Proof: Define the interval estimation error as{
eik = xi

k − xk

eik = xi
k − xk

(38)

and it follows that {
xi
k = xk + eik

xi
k = xk + eik

(39)

From (38), xi
0 ≤ x0 ≤ xi

0 implies ei0 ≥ 0 and ei0 ≤ 0.
By subtracting (8) from (36), the interval estimation error
dynamics can be formulated as{

eik+1 = (A− LC)eik − Ewk + LFvk + d
eik+1 = (A− LC)eik − Ewk + LFvk + d

In addition, by using Lemma 2, (37) implies{
−Ewk + LFvk + d = d− (Ewk − LFvk) ≥ 0
−Ewk + LFvk + d = d− (Ewk − LFvk) ≤ 0

(40)

Then according to Lemma 3, eik ≤ 0 and eik ≥ 0 hold for all
k ≥ 0 when A−LC is nonnegative. Then from (39), we have
xi
k ≤ xk ≤ xi

k.
To guarantee the boundedness of eik and eik, the observer

gain L should be designed such that A−LC is both nonneg-
ative and Schur.

In [39], the observer gain L is obtained by solving the
following LMIs:[

P PA− Y C,
ATP − CTY T P

]
≻ 0, (41a)

P ≻ 0 (41b)
PA− Y C ≥ 0, (41c)

where P ∈ Rnx×nx is a diagonal matrix, Y ∈ Rnx×ny and
the feasible solution gives L = P−1Y .

B. Interval observer based on coordinate transformation

It is not a trivial work to design an observer with cooperative
and stable error system. To overcome this difficulty, the
interval observer based on coordinate transformation has been
proposed to obtain more relaxed design conditions, which has
no requirement for the cooperativity of the error system.

An interval observer based on coordinate transformation can
be described by the following theorem, which is modified from
Theorem 2 in [33].

Theorem 5: If there exist a matrix L ∈ Rnx×ny and a
invertible matrix S ∈ Rnx×nx such that A − LC is Schur
and R = S(A− LC)S−1 is nonnegative, then

xt
k ≤ xk ≤ xt

k, ∀k ≥ 0

provided xt
0 ≤ x0 ≤ xt

0, where xt
k and xt

k, k ≥ 1, are obtained
by the following process:

z0 = S+xt
0 − S−xt

0, (42a)

z0 = S+xt
0 − S−xt

0, (42b)
zk+1 = Rzk + SBuk + SLyk + g, (42c)
zk+1 = Rzk + SBuk + SLyk + g, (42d)

xt
k+1 = (S−1)+zk+1 − (S−1)−zk+1, (42e)

xt
k+1 = (S−1)+zk+1 − (S−1)−zk+1, (42f)

with{
g = (SE)+w − (SE)−w + (−SLF )+v − (−SLF )−v
g = (SE)+w − (SE)−w + (−SLF )+v − (−SLF )−v

(43)
Proof: For the system (8), consider the coordinate trans-

formation zk = Sxk, then a new system can be obtained as
follows {

zk+1 = SAS−1zk + SBuk + SEwk

yk = CS−1zk + Fvk
(44)

Define {
ezk = zk − zk
ezk = zk − zk

(45)

and it follows that {
zk = zk + ezk
zk = zk + ezk

(46)

By combining (42c), (42d) and (44), the error dynamics of
ezk and ezk can be obtained as follows{

ezk+1 = Rezk − SEwk + SLFvk + g
ezk+1 = Rezk − SEwk + SLFvk + g

(47)

Since z0 = Sx0, then according to Lemma 2, (42a) and (42b)
imply z0 ≤ z0 ≤ z0. And it follows that ez0 = z0 − z0 ≥ 0
and ez0 = z0 − z0 ≤ 0. In addition, by using Lemma 2, (43)
implies{

−SEwk + SLFvk + g = g − (SEwk − SLFvk) ≥ 0
−SEwk + SLFvk + g = g − (SEwk − SLFvk) ≤ 0

Then, according to Lemma 3, ezk ≥ 0 and ezk ≤ 0 when R is
nonnegative. Consequently, from (46), we have zk ≤ zk ≤ zk.

Since zk = Sxk, we have xk = S−1zk. Then according to
Lemma 2, (42e) and (42f) imply xt

k ≤ xk ≤ xt
k.
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To find the coordinate transformation matrix S such that
R = S(A− LC)S−1 is nonnegative, the following lemma is
first introduced.

Lemma 4 ( [33]): Given matrices A ∈ Rn×n, L ∈ Rn×m,
C ∈ Rm×n and R ∈ Rn×n that has the same eigenvalues
with A − LC, if there exist two vectors e1 ∈ Rn and e2 ∈
Rn such that the pairs (A − LC, e1) and (R, e2) are both
observable, then there exists a matrix S ∈ Rn×n such that
R = S(A− LC)S−1.

In [32], R is chosen as a nonnegative matrix whose diagonal
elements equal the eigenvalues of A−LC and the coordinate
transformation matrix is obtained by

S = O−1
R OA−LC , (48)

where OR and OA−LC are the observable matrices of the pairs
(R, e2) and (A− LC, e1).

VI. COMPARISONS AND RELATIONSHIPS AMONG THREE
INTERVAL ESTIMATION METHODS

The interval estimations obtained by the zonotope-based
method and interval observers both can be converted into the
sum of the state estimation of a conventional observer and the
approximated bounds of its estimation error. Since Algorithm
1 is effective in controlling the wrapping effect, the interval
estimation obtained by Algorithm 1 can be more accurate than
those obtained by the zonotope-based method and interval
observers.

A. Comparison between the proposed method and the
zonotope-based method

Theorem 6: For system (8), with the same observer gain L
and the initial conditions that x̂0 = p0 and Ω0 = ⟨0,H0⟩, the
following inequalities {

xz
k ≥ xk

xz
k ≤ xk

(49)

hold for the interval estimation obtained by Algorithm 1 and
that by (34).

Proof: From (10) and (34a), we have x̂k = pk provided
x̂0 = p0. Define Ωh

k = ⟨0,Hk⟩ and Ω̄h
k = ⟨0, H̄k⟩. From

(34b) and the properties of zonotopes (4), we have

Ωh
k+1 = ⟨0,Hk+1⟩

= ⟨0, (A− LC)H̄k⟩ ⊕ ⟨0, E⟩ ⊕ ⟨0,−LF ⟩
= (A− LC)⟨0, H̄k⟩ ⊕ E⟨0, Inw⟩ ⊕ (−LF )⟨0, Inv ⟩
= (A− LC)Ω̄h

k ⊕ EW ⊕ (−LFV).
(50)

Since Ω̄h
k ⊇ Ωh

k , then from (50), we have

Ωh
k+1 ⊇ (A− LC)Ωh

k ⊕ EW ⊕ (−LFV) (51)

Based on Ωh
0 = Ω0, (24) and (51) imply

Ωh
k ⊇ Ωk (52)

Denote Box(Ωh
k) = [ωh

k , ω
h
k ]. According to (5), we have{

ωh
k =

∑s
i=0 |Hk(i, j)|, i = 1, . . . , nx

ωh
k = −

∑s
i=0 |Hk(i, j)|, i = 1, . . . , nx

and consider (35), it follows that{
xz
k = pk + ωh

k

xz
k = pk + ωh

k

(53)

In addition, (52) implies{
ωh
k ≥ ek

ωh
k ≤ ek

(54)

Then, from (13), (53) and (54), it follows that (49) holds.

B. Comparison between the proposed method and the interval
observer without coordinate transformation

The following lemma will be used to analyze the relation-
ship between the proposed method and the interval observer
without coordinate transformation.

Lemma 5: For an interval vector I = [a, b] ⊂ Rn and a
nonnegative matrix A ∈ Rm×n, the following equation holds

Box(AI) = AI = [Aa,Ab].

Proof: Lemma 5 is a straight corollary of Lemma 2 since
A+ = A and A− = 0 when A is a nonnegative matrix.

Theorem 7: For system (8),with the same observer gain L
and the initial conditions that xi

0 = x0 and xi
0 = x0, the

following inequalities {
xi
k ≥ xk

xi
k ≤ xk

hold for the interval estimation obtained by Algorithm 1 and
that by (36).

Proof: Define {
ẽk = xi

k − x̂k

e˜k = xi
k − x̂k

(55)

and it follows that {
xi
k = x̂k + ẽk

xi
k = x̂k + e˜k (56)

Subtracting (10) from (36) gets{
ẽk+1 = (A− LC)ẽk + d
e˜k+1 = (A− LC)e˜k + d

then {
ẽk = (A− LC)kẽ0 +

∑k−1
i=0 (A− LC)id

e˜k = (A− LC)ke˜0 +∑k−1
i=0 (A− LC)id

(57)

Define Ω̃k as

Ω̃k = Box
(
(A− LC)kBox(Ω0)

)
⊕

k−1⊕
i=0

Box
(
(A− LC)iBox(EW)

)
(58)

⊕
k−1⊕
i=0

Box
(
(A− LC)iBox(−LFV)

)
.

Since
Box(Ω0) ⊇ Ω0,
Box(EW) ⊇ EW,
Box(−LFV) ⊇ −LFV,
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it follows that

Box
(
(A− LC)kBox(Ω0)

)
⊇ Box((A− LC)kΩ0),⊕k−1

i=0 Box
(
(A− LC)iBox(EW)

)
⊇

⊕k−1
i=0 Box

(
(A− LC)iEW

)
,⊕k−1

i=0 Box
(
(A− LC)iBox(−LFV)

)
⊇

⊕k−1
i=0 Box

(
(A− LC)i(−LFV)

)
,

then by comparing (58) with (25), we have Ω̃k ⊇ Box(Ωk).
For the interval observer (36), A−LC is nonnegative. Then

according to Lemma 5, the following equations hold.

Box
(
(A− LC)kBox(Ω0)

)
= (A− LC)kBox(Ω0),⊕k−1

i=0 Box
(
(A− LC)iBox(−EW)

)
=

⊕k−1
i=0 (A− LC)iBox(EW),⊕k−1

i=0 Box
(
(A− LC)iBox(−LFV)

)
=

⊕k−1
i=0 (A− LC)iBox(−LFV).

(59)

In addition, by using Lemma 2, (37) implies that

d ≤ Ewk − LFvk ≤ d,

then we have

Box
(
EW ⊕ (−LFV)

)
= [d, d]. (60)

Combining (58), (59) and (60), Ω̃k can be reformulated as

Ω̃k = (A− LC)kBox(Ω0)⊕
k−1⊕
i=0

(A− LC)iBox(EW)

⊕
k−1⊕
i=0

(A− LC)iBox(−LFV)

= (A− LC)kBox(Ω0)

⊕
k−1⊕
i=0

(A− LC)i
(
Box(EW)⊕ Box(−LFV)

)
= (A− LC)kBox(Ω0)

⊕
k−1⊕
i=0

(A− LC)iBox
(
EW ⊕ (−LFV)

)
= (A− LC)kBox(Ω0)⊕

k−1⊕
i=0

(A− LC)i[d, d]. (61)

Since Box(Ω0) = [e0, e0] and [d, d] are both interval
vectors, then according to Lemma 5 and (61), Ω̃k is also an
interval vector. Denote Ω̃k = [ωk, ωk], then by using Lemma
5, we can obtain from (61) that{

ωk = (A− LC)ke0 +
∑k−1

i=0 (A− LC)id

ωk = (A− LC)ke0 +
∑k−1

i=0 (A− LC)id
(62)

Since xi
0 = x0 and xi

0 = x0, from (13) and (55), we have
ẽ0 = e0 and e˜0 = e0. Then from (57) and (62), it follows that
ωk = ẽk and ωk = e˜k. Since Ω̃k ⊇ Box(Ωk), we have{

ek ≤ ωk = ẽk
ek ≥ ωk = e˜k (63)

then in addition with (13) and (56), we have{
xi
k = x̂k + ẽk ≥ x̂k + ek = xk

xi
k = x̂k + e˜k ≤ x̂k + ek = xk

Remark 3. From the proof of Theorem 7, it can be inferred
that the interval observer (36) can be converted into calculating
the sum of the state estimation of the Luenberger observer (10)
and the approximated bounds of the estimation error. Note
that the interval observer (36) uses Box

(
EW ⊕ (−LFV)

)
,

which is an outer-approximation of EW⊕ (−LFV). Due to
the wrapping effect, the interval estimation obtained by the
interval observer (36) is also an outer-approximation of that
obtained by Algorithm 1.

C. Comparison between the proposed method and the interval
observer based on coordinate transformation

Although a stable but not cooperative system can be con-
verted into a cooperative system via a change of coordinate,
the coordinate transformation may cause large additional con-
servatism.

Theorem 8: For the system (8), with the same observer gain
L and the initial conditions that xt

0 = x0 and xt
0 = x0, the

following inequalities {
xt
k ≥ xk

xt
k ≤ xk

hold for the interval estimation obtained by Algorithm 1 and
that by (42).

Proof: For the system (44), consider the following ob-
server:

ẑk+1 = SAS−1ẑk + SBuk + SL(yk − CS−1ẑk). (64)

Pre-multiplying both sides of (64) by S−1, we get

S−1ẑk+1 = AS−1ẑk +Buk + L(yk − CS−1ẑk). (65)

Let ẑ0 = Sx̂0, it follows that x̂0 = S−1ẑ0. Then, by
comparing (65) with (10), it can be concluded that

x̂k = S−1ẑk (66)

and it follows that
ẑk = Sx̂k (67)

Define ezk = zk − ẑk. Since zk = Sxk, then from (11) and
(67), we have

ezk = Sek (68)

Denote the reachable set of ezk as Ωz
k, then Ωz

k = SΩk

according to (68). Denote Box(Ωz
k) = [ωz

k, ω
z
k], then

ωz
k ≤ ezk ≤ ωz

k (69)

Note that [zk, zk] is just the interval estimation obtained by
the interval observer (36) for system (44) with replacing xk

by zk, A by SAS−1, B by SB, E by SE, C by CS−1 and
L by SL. Define {

ẽzk = zk − ẑk
e˜zk = zk − ẑk

(70)
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and correspond [ωz
k, ω

z
k] and [e˜zk, ẽzk] to [ek, ek] and [e˜k, ẽk],respectively, then the following inequalities hold according to

(63) {
ẽzk ≥ ωz

k

e˜zk ≤ ωz
k

(71)

and from (68) and (69), it follows that

e˜zk ≤ Sek ≤ ẽzk (72)

Note that the set of ek described by (72) is a parallelotope
and we denote it as P̃.

Define a new parallelotope P described by

ωz
k ≤ Sek ≤ ωz

k, (73)

then from (71), we have P ⊆ P̃. Since Ωk is the reachable
set of ek which only contains the admissible values of ek, we
have

Ωk ⊆ P ⊆ P̃. (74)

Let us recall that for k ≥ 1,{
xt
k = (S−1)+zk − (S−1)−zk

xt
k = (S−1)+zk − (S−1)−zk

(75)

Define etk = xt
k − x̂k and etk = xt

k − x̂k, it follows that{
xt
k = x̂k + etk

xt
k = x̂k + etk

(76)

From (66) and S−1 = (S−1)+ − (S−1)−, we obtain

x̂k = S−1ẑk = (S−1)+ẑk − (S−1)−ẑk (77)

Subtract (77) from (75) and consider (70), we have{
etk = (S−1)+ẽzk − (S−1)−e˜zketk = (S−1)+e˜zk − (S−1)−ẽzk

Then, according to Lemma 2 and consider ek = S−1(Sek),
when ek ∈ P̃ (i.e. (72) holds), it comes

etk ≤ ek ≤ etk. (78)

then we have
[etk, e

t
k] = Box(P̃), (79)

In addition, from (74), we have

Box(Ωk) ⊆ Box(P̃), (80)

then from (26), (79) and (80), it follows that

[ek, ek] ⊆ [etk, e
t
k].

It is equivalent to {
etk ≥ ek
etk ≤ ek

(81)

Finally, from (13), (76) and (81), we have{
xt
k = x̂k + etk ≥ x̂k + ek = xk

xt
k = x̂k + etk ≤ x̂k + ek = xk

Remark 4. From the proof of Theorem 8, we note that there
are two places introducing conservatism. The first one refers
to (74) since P̃ is bigger than P. The second one lies in (80).
And the conservatism caused by (80) may be very large since
the shape of Ωk could be far more complex than that of P̃.

VII. SIMULATIONS

In this section, two examples are presented to demonstrate
the effectiveness of the proposed method and to verify the
relationships among the three interval estimation methods.
Example 1. We consider a DC servo-motor with a tacho
generator and an incremental encoder described in [40]. The
dynamics of this plant can be described by:

J
d2θ

dt2
+ µ

dθ

dt
= Kti

L
di

dt
+Ri = u−Ke

dθ

dt

where θ is the motor position, i and u are the armature current
and voltage, respectively. The parameters J , µ, Kt, L, R and
Ke are the motor inertia moment, frictional constant, torque
constant, inductance, resistance and back EMF constant, re-
spectively. After parameter identification, these parameters are
obtained as J = 0.0985Nms2, µ = 0.1482Nms, Kt = Ke =
0.4901Vs, L = 1.3726H and R = 0.0062Ω.

By defining the state x = [θ, n, i]T , where n is the motor
speed, the dynamics of this plant can be described by the
following state-space model

ẋ = Acx+Bcu,

where

Ac =

0 1 0
0 −µ

J
Kt

J

0 −Ke

L −R
L

 , Bc =

0
0
1
L


and the subscript c stands for continuous-time.

We use the Euler method to discretize the above continuous-
time model with the sampling time Ts = 0.1s and consider
the measurements of the tacho generator and the incremental
encoder. As a result, we obtain a discrete-time model in the
form of (8) with

A =

1 0.1 0
0 0.8495 0.4977
0 −0.0357 0.9995

 , B =

 0
0

0.0729

 ,

C =

[
1 0 0
0 1 0

]
, E = I3, F = I2,

The process disturbance wk encloses the fluctuation of input
voltage, the errors caused by the parameter identification and
the discretization. The process disturbance and the measure-
ment noise are bounded as follows

|wk| ≤

0.02250.0225
0.0404

 , |vk| ≤
[
0.0564
0.0564

]
.

In the simulation study, the initial state x0 =
[0.0015rad, 0.0148rad/s, 0A]T and the input u = 2V.
The initial reachable set of x0 are set as p0 = [0, 0, 0]T

and H0 = 0.2I3. Denote L1 and L2 as the observer gains
obtained by solving the optimization problem (20) and the
LMIs (41), respectively. They are as follows

L1 =

0.9998 0.1000
0.0157 1.5371
0.0315 1.3453

 , L2 =

 0.7582 0.0784
−2.5012 0.6764
−0.0040 −0.0360


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The simulation results are shown in Fig.1−3. The asterisks
are the values of θ, n and i. The solid lines represent the
interval estimation obtained by Algorithm 1 and the dash-
dotted ones represent that by the zonotope-based method
(34) with their observer gains both equal to L1. The dashed
lines and the dotted ones represent the interval estimations
obtained by Algorithm 1 and the interval observer (36) with
L2. Fig.1−3 all illustrate that the interval estimation obtained
by Algorithm 1 is more accurate that those obtained by the
zonotope-based method (34) and the interval observer (36)
under the same conditions. Moreover, we note that the interval
estimations of n and i obtained with L1 are much more
accurate than those with L2, which well demonstrates the
effectiveness of the proposed method.
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Fig. 1. Motor position θ and its interval estimations.
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Fig. 2. Motor speed n and its interval estimations.

Example 2. In order to illustrate the effect of coordinate
transformation, consider the following numerical example in
the form of (8) with

A =

[
1 0.5

−0.5 1

]
, B =

[
0
1

]
, C =

[
0 1

]
,

E = I2, F = I2.
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Fig. 3. Armature current i and its interval estimations.

The disturbance and noise are bounded as follows

|wk| ≤
[
0.1
0.1

]
, |vk| ≤

[
0.1
0.1

]
.

There is no matrix L ∈ R2×1 such that A − LC is
nonnegative. So the interval observer (36) does not exist.
Solving the optimization problem in (20) yields

L =

[
−0.8479
1.6739

]
The eigenvalues of A− LC is 0.3258 and 0.0003. To design
the interval observer based on coordinate transformation, R is
set as

R =

[
0.3258 0.2000

0 0.0003

]
Using (48) with e1 =

[
1 0

]T and e2 =
[
0.5 −1

]T gets

S =

[
5.1686 6.3352
1.5843 3.1676

]
In the simulation study, x0 = [1.2, 0.9]T . The initial param-

eters of Algorithm 1 are set as p0 = [1, 1]T and H0 = 0.5I2.
For the interval observer based on coordinate transformation,
the initial interval estimations are set as xt

0 = x0 = [1.5, 1.5]T

and xt = x0 = [0.5, 0.5]T .
The simulation results are depicted in Fig.4. Therein, the

solid lines are the components of xk, the dashed and dash-
dotted ones represent the interval estimations obtained by
Algorithm 1 and those by (42), respectively. Fig.4 shows that
the interval estimations obtained by Algorithm 1 are much
more accurate than those by the interval observer based on
coordinate transformation.

To better verify Theorem 8, Figure 5 is plotted with k = 40,
where the polytope with solid lines is a zonotope that repre-
sents Ωk, the dash-dotted parallelogram is P̃ described by
(72), the dashed rectangular is the interval vector [ek, ek], the
dotted rectangular is [e˜k, ẽk] and the dots are ek of 1000
independent experiments. It shows that all the dots of ek
are enclosed in Ωk and [ek, ek] is just Box(Ωk). The shape
of P̃ differs greatly from that of Ωk, which causes large
conservatism in the interval estimation obtained by (42).
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Fig. 4. xk and its interval estimations by Algorithm 1 and (42)
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Fig. 5. Reachabililty analysis of the estimation error ek .

VIII. CONCLUSION

This paper reviews several interval estimation methods for
discrete-time linear time-invariant systems mainly including
the zonotope-based method and interval observers. In view of
that the interval estimation obtained by the two kinds of meth-
ods both can be converted into the sum of the state estimation
and the approximated error bounds of a conventional observer,
we propose a novel interval estimation method that combines
the H∞ robust observer design with reachability analysis. The
proposed method has high computational efficiency and can
obtain more accurate interval estimation than the zonotope-
based method and interval observers under the same condi-
tions. Compared with interval observers, the proposed method
overcomes the cooperative constraint and avoids the additional
conservatism caused by coordinate transformation. The simu-
lation results have demonstrated effectiveness of the proposed
method and verified the relationships among the zonotope-
based method, interval observers and the proposed method.
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