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ABSTRACT: We propose a new vertex formalism, called anti-refined topological vertex (anti-
vertex for short), to compute the generalized topological string amplitude, which gives
rise to the supergroup gauge theory partition function. We show the one-to-many corre-
spondence between the gauge theory and the Calabi-Yau geometry, which is peculiar to
the supergroup theory, and the relation between the ordinary vertex formalism and the
vertex/anti-vertex formalism through the analytic continuation.
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1 Introduction

Supersymmetric gauge theory plays a key role to understand a lot of aspects of string/M-
theory. For example, the 4d/5d/6d supersymmetric gauge theories can be realized as
Calabi-Yau compactification of the string/M-theory, so that we can study the string/M-
theory duality by the supersymmetric gauge theories. Especially, for the 5d N/ =1 SU(N)
supersymmetric gauge theories which can be also embedded into the string/M-theory, we
can solve the low energy dynamics according to the Seiberg-Witten theory [1].

Certain classes of 5d N/ = 1 SU(N) supersymmetric gauge theories have realization
using the (p,q) 5-brane web diagram in type IIB superstring theory. Once we find the
brane construction of the theory, its extension is possible by introducing additional stringy
objects. For example, incorporating O5-planes, O7-planes, and (p, q) 7-branes to the web
diagram, one can construct the supersymmetric gauge theories with various types of the
gauge group, such as Sp(IV), SO(N), and exceptional groups. The partition function of



these theories can be calculated by the localization method in particular for the classical
gauge groups [2—4]. However, as a more efficient way, we can use the topological vertex
techniques developed to calculate the partition function of the topological string theory on
non-compact toric Calabi-Yau manifold [5-7]. Originally, the equivalence of the partition
function of 5d A" = 1 SU(N) supersymmetric gauge theory compactified on a circle S' and
the toplogical string theory on non-compact toric Calabi-Yau manifold has been proposed
in [8-11] which is now known as geometric engineering. After several efforts, we can
calculate the partition function of the 5d NV = 1 supersymmetric gauge theories with several
gauge groups we mentioned above. Moreover, quite interestingly, we can even express the 6d
theory compactified on a torus by the (p, ¢) 5-brane web with or without orientifold-plane in
a sense that we can obtain the elliptic genus of the instanton moduli space engineered in M-
theory from the web diagram by the topological vertex techniques [12-15]. Therefore, the
web diagram of supersymmetric gauge theories and the topological vertex computation are
compatible, and we can discuss several dualities pictorially and quantatively. For example,
through the Hanany-Witten effect by moving (p,q) 7-brane, we find a duality which can
be checked by calculating the partition functions from the topological vertex.

Another interesting extension in the gauge theory is the supergroup gauge theories.
In the type ITA construction, this gauge theory can be realized by adding negative (ghost)
branes [16-18]. For example, the U(m|n) gauge theory can be realized by the m D4-
branes and the n negative D4-branes suspended between two paralell NS5-branes (see also
figure (5.9)). Although the partition function of the supergroup gauge theory has been
provided in [19] based on ADHM construction, neither the web diagram description nor
topological vertex realization are given.

In this paper, we propose the web diagram description of supergroup gauge theories by
introducing anti-trivalent graph, and define anti-topological vertex as an extension of the
topological vertex formalism giving the instanton partition functions of supergroup gauge
theories. After giving the prescription how to use the new vertex, as a consistency check,
we calculate the building blocks of the web diagram, and reproduce the instanton contri-
butions for the vector multiplets, bifundamental multiplets, and fundamental multiplets
given in [19].

Then, as an application, we check the expected ambiguity of the web diagram descrip-
tion of supergroup gauge theories. For example, when we consider U(2|1) gauge theory,
there are more than two web diagram descriptions. We show that the partition functions
calculated from these web diagrams are equivalent under suitable parameter correspon-
dence. As another application, we consider the relation of the gauge theory with the
supergroup and ordinary group which is also discussed in [18, 19]. For simplicity, in this
application we consider the unrefined (anti-)topological vertex. Then, we find the ex-
plicit relation between anti-topological vertex and usual topological vertex. We also find
the relation between the building block of the supergroup gauge theory and the ordinary
gauge theory.

The organization of this paper is as follows. In section 2, we briefly review the super-
group gauge theories and their partition functions. In section 3, we propose the anti-refined
topological vertex and corresponding anti-trivalent graph in the same way as the ordinary



topological vertex and its trivalent graph description. Then, in section 4, we calculate the
building blocks of the web diagram, and discuss the ambiguity of the web diagram descrip-
tion of U(2|1) supergroup gauge theories. After that, in section 5, we consider the web
diagram describing the pure supergroup gauge theories, and discuss the relation between
the gauge theory with the supergroup and usual group in the unrefined case. Finally we
summarize our results and discuss some future works in section 6. In appendix A, we
summarize some notations and useful formulae.

2 Supergroup gauge theory

In this section, we briefly review the supergroup gauge theory and the associated super-
symmetric localization to derive the partition function.

2.1 Lagrangian and instantons

Let G be a Lie supergroup, e.g., G = U(n4|n_). The dynamical degrees of freedom of the
supergroup gauge theory is the gauge field, which transforms under the supergroup action,
Ay — gA“g_l + gaug_1 with ¢ € G. Then the G-gauge invariant Yang-Mills action is
given by

Sym = / d*x Str F,,, F* (2.1)

205\
where “Str” is the supertrace operation, which provides the Killing form for the correspond-
ing Lie superalgebra: for example, the supertrace over the graded vector space Cr+ln- —
C"+ @ C"- is given by Stren, o = Treny — Tren-. In particular, for G = U(ny|n_), the
Yang-Mills action consists of positive and negative parts,

1 1
Sym = = d'z Treny (Fu FM)" — — d*x Treno (F, F*)~ (2.2)
2 2
IyMm Y

where (£, F m)E schematically denotes the positive/negative contribution of the La-
grangian. We immediately notice that this action is unbounded since the kinetic term
of the negative part has a wrong sign. In other words, the U(ny|n_) gauge theory is
interpreted as a quiver gauge theory with two gauge nodes, (G4+,G_-) = (U(n4), U(n-)),
where the off-diagonal components of the gauge field play a role of the bifundamental mat-
ters [18, 20-23]. The supergroup gauge invariance imposes a constraint on their coupling

constatnts (74,7_) = (7, —7), where 7 is the complexified coupling constant 7 = % + 9427”
YM
associated with the G-invariant 6-term,
4 -
Sy = T2 d*z Str F,, F* . (2.3)

The imaginary part of the physical coupling should be positive, Im7 = 47/ g%M > 0.
Once assuming Im 7 > 0, the other must be Im7— < 0, which is unphysical, due to the
supergroup condition.

As well as the ordinary gauge theory, the #-term and the associated topological con-
figuration, namely the instanton, play an important role in the non-perturbative aspects



of the supergroup gauge theory. The ADHM analysis for the supergroup gauge theory
shows that we need two non-negative integers to parametrize the topological charge of the
instanton [19],

1
1672

/ d'x Str F,, F" = ky —k_, (2.4)
where ki is interpreted as the positive/negative instanton number.

2.2 Supersymmetric localization

In the presence of the spacetime supersymmetry, we can further study the non-perturbative
aspects of gauge theory. In particular, 4d ' = 2 (5d N' = 1) gauge theory partition function
is obtained through the instanton counting with the -background [2] together with the
supersymmetric localization. In the case of the supergroup gauge theory, it turns out to
be a double sum over the positive and negative instantons [19],

oo
Z=) a" " Z (2.5)
k=0

where the instanton fugacity q is given by the complexified coupling q = exp (27it). The
(k+|k_)-instanton contribution for U(n4|n_) gauge theory is given by

Ze = >, e (2.6)

|XE|=k+

Here we define two sets of partitions

—

X+:(A1+,...,Ag+), X =050, (2.7)

where each A is a partition obeying the non-increasing condition

Ao = o = Aip 2> 0) €2 (2.8)
and
. n4 oo R n— oo
M= a0 IVI=200 A (2.9)
a=1 i=1 a=1 i=1

The contribution Z;. consists of the vector, fundamental and antifundamental hyper mul-
tiplet factors, evaluated with the super instanton configuration (A, A7),!

AR A AV A (2.10)

For quiver gauge theory, involving plural gauge nodes, there also exists the bifundamen-
tal matter contribution, connecting different gauge nodes. The explicit forms of these
contributions are shown in the following.

1One can also impose the Chern-Simons term in particular for 5d gauge theory, which we do not consider
in this paper for simplicity.



Vector multiplet. We first consider the vector multiplet contribution. In order to write
down the formula, we define a set of the dynamical z-variables,? which characterizes the
instanton configuration instead of the partition,

+ + -
X+ = {:vjt = efta ey Fal D}a:l,...,ni,i:l,...,oo- (2.11)

This implies that the Q2-background parameters are flipped for the negative node similarly
to the coupling constant [19]. Then the Chern supercharacter of the corresponding universal
sheaf on the instanton moduli space is written in terms of the x-variables,

schY =chYt —chY"™ (2.12)
where
chYf=(1-e") Y a (2.13)
zeXE

The supercharacter of the virtual class for the vector multiplet is defined

schYVschY ,
(1o —ow) ~ 2 77 B Vor (2.14)
o,0'=+%

schV =

with the dual denoted by YV, and each contribution has an explicit form in terms of the
x-variables

1—e € / 1—e €t /
chV i, = e Z x—, chV,_ = eer 0 Z %, (2.15a)

1—e x 1—e
(z,2")extxx+ (z,2")eX T XX~
x#x’
1—e< x’ 1—e™@ !
Ch V7+ = 1 —ce2 Z E y Ch V__ = 1_7662 Z — (215b)
(z,2")eX—xX+ (z,2")eX ™ XX~
Az’
Then the full partition function contribution for the vector multiplet is given by
7t =1v]= ] Z5 (2.16)

o,0'=+%

where we apply the index defined, for a given character ch X =" z,3

IX]=J] (1-=27"). (2.19)

zeX

2In the following, the Q-background parameter (€1, €2) will be identified with the refined string coupling
constatns, (g,t) = (e, e ?). We also use the notation €4 := €1 + €2 = log(¢/t), which becomes zero in the
unrefined situation.

35The 6d N = (1,0) gauge theory partition function compactified on a torus with the modulus 7 is
similarly obtained with the elliptic analog of the index,

LX) = [] 6=""p) (2.17)

reEX

with the elliptic nome p = exp (27i7) and the theta function defined
0(2;p) = (2;P)oo (P21 D)oo - (2.18)

See, for example, [24] for details.



Each contribution in terms of the xz-variables has an explicit form of

vec (e€+m/$l;652)00
= 1] s (2.20a)

€2 /. n€2
(z,x)extxx+ (e :L‘/l"e )oo

rAx’
€ +e1 /. €2
Z_T_eft _ H (e - (L'//.’L' ’Ee )oo (220b)
(z,2)EX+ XX~ (e /' €)oo
7= I (%2 /a’;e%)oo (2.20¢)

(z,x)EX— x Xt (emr¥ea/alse2)o

gvect _ H (eEfo/J,‘/; 662)00 (2 20d)
- €2 /. A€2 :
(z,2")EX™ XX~ (e $/$,€ )oo
x#x’
with the g-shifted factorial (¢-Pochhammer) symbol
n—1
(zi)n = [J (1= 2¢"). (2.21)
k=0
Bifundamental hypermultiplet. The bifundamental hypermultiplet contribution is
similarly formulated for quiver gauge theory. Let I' be a quiver I' = (I'g,I'1) with sets
of the gauge nodes I'y and the edges I'y. We define the Chern supercharacter for the

virtual class for the bifundamental hypermultiplet,
sch st(e) sch Yy

hH, = —e"
> T —ea) (1 — ee2)

(2.22)

where e € T'; is the edge connecting the source node s(e) and the target node t(e); m. is
the corresponding bifundamental mass parameter; (Yj)rer, is a collection of the universal
sheaves assigned to each node k € I'yg. Define sets of x-variables A} for the node k € I'y.
Then the full partition function contribution is given by

zptmd —MH) = ] zbimd (2.23)
o,0' =%
where
bifund (e7met 2 /a";e?) o
Ze,l-i-u-z[-1 = H —Me+teyp /7- €2 ’ (2.243)
(za')ext  xxt (e x/a: ¢ )oo
’ s(e) t(e)
Az’
bifund __ (eime+6+x/x/; 662)00
Z€7+_ - HJr (e—me+€++€1x/x/; 662)00 ? (2'24b)
(w’zl)ek‘s(e) XXJ(E)
Z(};iiuj}d _ H (e_me_€1+€2x/x/; 662)00 , (2'24(:)

—Me+e€2 /. A€2
(o) (e T/3'5e%? )0

Zbifund — H (e_me+€2x/$/; 662)00 (224(1)

e,—— (efme+e+x/xl; 662)00 .

(m,x’)GXs_(e) XX, (0
x#x’



Fundamental hypermultiplet. For the fundamental and antifundamental hypermulti-
plets, we define

¢ schYYschM
schH' = — (1= e)(1 — ) (2.25a)
h M sch Y
schH = - 222 (2.25b)

(1 —e1)(1 —e2)
where the Chern roots for the matter sheaves are given by the fundamental and the an-

tifundamental mass parameters, namely the equivariant parameters associated with the
flavor symmetry,

nt, nt.

schM = Zem} - Z s (2.26a)
f=1 /=1
nat nat

schM = Z:em}L - Z e (2.26Db)
f=1 f=1

Then the full partition function contribution is given by the index
Z@f — @1 (2.27)

We remark that these are also obtained from the bifundamental contribution by freezing
either the source or the target gauge node. See [19] for the explicit forms of the full partition
function contribution in this case.

3 Anti-refined topological vertex

3.1 The vertex

Before introducing the new vertex, we briefly review the ordinary refined topological vertex

Chuw(t, q) defined in [5-7],

Couw(t, @) =t~ 3IHTIP F AP+ 21 o)
1
g\ S+ =1aD) o T (3.1)
3 (O e s,
n

where s, /,(z) is the skew-Schur function, and A, 1 and v denote the partitions (Young dia-
grams), characterizing the boundary condition of the vertex. We summarize the notations,
definitions, and useful formulae in appendix A. The refined topological vertex is depicted
as a trivalent vertex ordered in a clockwise way:

I

C/\uu(t>Q) = (1,0) (3'2)



where the partitions A, 4 and v, are assigned to the legs, and two of them have the argument,
t or q. We also assign the charge vectors for them. The leg without argument is called
the preferred direction. By gluing vertices, we can calculate the refined topological string
amplitude on the non-compact toric, and some of non-toric Calabi-Yau geometries. The
gluing rule for two vertices is to sum up all the possible partitions (namely, the boundary

conditions) with the weight (—Q)W‘fl;1 or (—Q)'“'fl‘},
Z Crivip(t, q)C)\QVWT (q, t)(—Q)ll‘lf;(q, t) for preferred direction, (3.3a)
I

Z Oy (6 Q) Cogpr oy (45 t)(—Q)l“lf;(q, t) for other directions, (3.3b)
n

where f,(t,q) and fu(t,q) are the framing factors,

) [e]
[T el

Fultiq) = (MR Iy = (—ay (;>2t'“32q—'“2'2, (3.4)

whose choice depends on which two legs are used to glue together: we use f,(t,q) to
glue along the preferred directions, otherwise we use f#(t, q). The weight @ is the Kéhler
parameter assigned to the edge. The integer n is given by the wedge product of two charge
vectors, n = vg A v1, as follows:

v2,q
ve = (p2,qe)

A1, q 1,t
K q

V2 =
=(p,q) Pt A2, t 1=(p1,qn) 1 A2, q

3.2 The anti-vertex

Now we define a new vertex, that we call anti-refined topological vertex (anti-vertex for
short), denoted by C_‘)\W(t, q),
T||2

O (£, q) =t~ 3IHT 1P g U=l 2, (4=1 g1y

1
e 34N w) y T (3.6)
- (5)2 ST (1°47) 81 (4787,
n

This anti-vertex is essentially the same as the ordinary vertex, but with the replacement
(q,t) <> (g7, t71), which corresponds to the flip of the coupling constant gs +> —gs where
q = e 9. This is the reason why we call this the anti-vertex since it has the negative
coupling [17]. This is consistent with the gauge theory perspective since these parame-
ters are interpreted as the Q-background parameter (q,t) = (e',e™?), and a similar flip,
(€1,€2) <> (—e€1, —€2), is necessary for the supergroup gauge theory as seen in section 2.2.



Similarly to the usual refined topological vertex, we introduce the graphical description
for the anti-vertex as follows:

éAuu(ta Q> =

The gluing rule between the anti-vertex and the usual vertex, and two anti-vertices are the
same as usual since the framing part of the anti-vertex except for the one along preferred
T‘|2q%H”H, and the prefactor in the summation, (%) %(|n|+|/\\—\u|), are the same
as the ordinary refined topological vertex. From these rules, we will calculate the topological

string amplitudes, which gives rise to the supergroup gauge theory partition functions.

o _1
direction, ¢3!~

4 Geometric engineering of supergroup gauge theories with matters

4.1 The building block

To begin with, here we consider following chain geometry:

zbuild _ QmN )T (4'1)
{vitAvi} — :_C_Q- Vom
Um41--A ™
Qm+is T
r-- Vlm+1

I
i
Vm+n-=-<

Qm-H\l‘)_ __ T

. m—+n
1

This gives the superconformal theories by gluing N chain geometries along the horizontal
lines. The corresponding amplitude is computed by combining the (anti-)vertices,

m+n
Zn = T TTCi-apH

{wi} {pi} =1

m
X HCH'}L1MV@' (¢, q)CM/iM;[‘V/;[‘ (q,t) (4.2)
ol

x ' H OM’IT 1MV 1(t Q)éu’iu?v’?(t’@’



with the condition ptg = ftmin = ¢ to the top and bottom external legs.* After some
computations,” we have

m
i 1, 2 2 12 _L1y,,T2
Z]{Dllflg(,i{v{} :Hq2lll’zll 1|0 H q sl =311/ 3l
=1 1=m+1
m m+n
X HZVZ(t7Q) ,/T Q7 H Zl/ t_l B )Zy’iT(q_lat_l)
=1 i=m-+1
[e%e} m - L L m+n ) T ) L
< 11|11 (1 - Qatl’”ﬂ’j’iqj_”/“‘iﬁ) 11 (1 - Qat’””ad‘*?q_#yl“’iﬁ)
1,j=1 La=1 a=m+1

m

<1 - QTa+l.bQ:1ti7]l/aT’]7%(1].7”1)'17%) (1 - Qr, b+1Qlljltiiurfjiéqjiy/b’ré>
X H )
i T 1T 1 i
1<a<b (1 _QTa,htZ Vol 1) (1 = Qrp1 5 @@y el Vb”)

m+n T N R EaV i—L—itvl 43 iy i+

—itvT 41 iy, PRI S
m+1<a<b (I*Qn,bt et ]M") (1 = Qra1a Q@ 1t g “H)

m  m4n —i—/T 41 L 1 _1
(1 QT(H»Lbezt TVagta gl e 2) ( - Q, b1 Q/ T Vaits q]+,, b )
X H H

—i—vT 41 o —1,—i— )
a=1b=m+1 (1 - Qm,bt rag qﬁﬂjb’l 1) (1 - Qm+1,b+1Q&Q’b 1t ‘ Ua’“]‘hw b’l)

)

(4.3)
where we parametrize the Kahler parameters as follows:
QTa,b = Qr, ;bl (a <), (4.4a)
m+n
Q- = [] Q5 (4.4D)

build

Normalizing with the empty configuration Z{V 6} (v =0} this amplitude gives rise to (a
half of ) the vector and bifundamental hypermultiplet contributions to the suprgroup gauge
theory partition function shown in section 2.2. The explicit form of the normalized ampli-

tude is
20 i
G U0 35 U7) S LIl 51 T 112 Ll 2=l T 112
Zbuild H 2 X H q 2
{vz—(é} {v|=0} i=1 i=m+1

« H Zb1fund {Q}’{Q/};{y},{yl};m b;t,Q)
1<a<b Vect({Q} {Q} {y} {y} a, b t, Q)
m-+n
y H Zblfund({Q}’{Q/};{y},{yl};a, b t, q)
m-+1Sasb x 2 ({ QY AQ Y {vh {v'}a, bt q)

4Similarly we can consider the partition function of 6d A = (1,0) gauge theory on R* x T2 by gluing

the top and bottom legs [11]. In that case, we impose the periodic boundary condition, po = fim-n.
5Tt might be easier to utilize the operator formalism discussed in [25] than using the formulae about
Schur function.

~10 -



<1 i [Zb‘f‘md {QIAQY: v, V)0 bit0)
e x 2P {QAQY: vk {1V ha it )
x 27 ({Q),{Q'}: (v} a,bst,q)
x 22 { QY AQY: {V ha bt q) |, (45)
where we define the diagonal parts of the building blocks,
2P {QIAQ Y v} AV Y a bitg)
_ H (1 B QTMHQ/;lt_z‘w’zﬁ%q—j+ua,i+%)

(iaj)EVa
X H (1 o Q‘fa,bﬂQ,Z;Iti_y;r’j_%qj_ylb,i_%)
(i,j)EZ/l/)
3 4 1- éab
< I (1—QTG+MQ;#—V 3 gi— i 2)
(’i7j)EVb
; o 1-6,,
x T (1= Qragr Qo bRt h ) (4.6a)
(i.4)evy
2P0 QY Q'Y: (v}, ('} a,bit, q)
= 2 {QLAQ Y vy v B a bt g, (4.6b)

ZE QY AQ Y {vh v} a, bt q)
_ 1 1
= H _ QTa.bt—i+ug_7+lq—j+ua,1 H 1 Q‘ra . 1Q;Q/;lt—iﬁ—u’z]q_]'+,,/a’z+1
) (17 ( +1,b+ >
€

A 1 .
(1,§)€Eva J)ev,
| | ! 1
g H 4.6¢
_ i—vl v -1 1=dap 1_ s =Ly 1 i, 1—6g.p 7 ( )
(,9)€Ewp Qr, t' Yadgi ™, hev, Qo @u@Qy e g )

!
a
(4,

2 ({Q} QY {v} {v'}; 4, b5t, q)
gy 11 N (a6

_ QTa,bﬂ Vb,]q./ Vuﬂfl) (1 _ QT(H»I,!H»IQ:LQ,I) 1tz v b.;*lqj V/a,z)

(h)eva (i-d)€v,
! 1
" H v, 1=0a H —da?
(i.5) € ( _QT”‘btiH»Vw+1q7j+wm) ' (i,5)€y,, ( = Qrop1p Qu@'y it g itV b +1>1 Y
with
1 for a = b,
S0 = (4.7)
0 for a # b,

and off-diagonal parts of the building blocks,
Z2 (I AQ Y vy v asbit, )

g < = Qry i Q/b_lt’i"’szr%quru'b’i_%)
1;[ 1;[ (1= Qr,, @yt 2¢072)

« 11 e preedll L

T 1 1 T —
(1:4)€va (1 _QTa,b-Hle Ve ng] 2) (i,5)€v; (I_QTa,bJrlle t Z+2q]+y 173)

(4.8a)

- 11 -



ZPImA QY QY {v} {V ) a3t q)

T . /T 1 1
/ v i L L2
Via,1 b1 <1 — Q‘Fa+1 bQ;t i—v a’3+2q]+l/b,z 2)

= 1111

T
j=1 i=1 (1= Qrppy , Qut ™" 2¢772)

H . 1T !
T ;41 . 1 —0
(1,5)€v, ( Q’Fa+1 bQ/ Ve Z+2qj 2) (4,9)€w ( QTa+1 bQ/ z+2 JHV'a 2)

(4.8b)

fot({Q} {1 {V} 0,58, 9)

b 1 ~r—1
(1-— t—tgd
H H Qaly Q‘Faﬂ b1 q ) (4,8(3)
=i (1—@@' Q™ i)
- —iJ -1 i iy
H Q‘fa+1,b+1t Ub’l Zq]) H (1_Q; /b Q‘Fa+1,b+1t lqj+y a’l),
7Y ({QY, {Q’}; {v}:a,b;t,q)
HH (1= @yt )
— b
j=li= 1< QTab —i- V +1q.7+’/b1*1)
X H (1_Q7'a,bt_yb’1_l+1qj71) H (1—Q7a7bt*i+1qj+l/a,1fl)' (48d)

(1,4)€va (i.)€ws
We remark that the contribution shown here is the instanton part, which is a finite con-
tribution obtained from the full partition function by subtracting the one-loop part. To
show the agreement with the expressions given in section 2.2, we use following symmetric
property under two partitions,

2300 ({QYAQ (v (Vb a5t q) = ZYM (QFAQY: v} {vhabitg). (49)

In this expression, the numerator Z?m]l,d{ 2 is identified with the full partition function,

while the denominator ZPu o —gzj} (v/=0} is the one-loop part, so that their ratio gives rise to
the instanton partition function by gluing the building blocks. In addition, the fundamental
and antifundamental matter contributions are reproduced by either v; = ¢ or v, = ¢ for
t=1,...,m+n. We can then construct the linear quiver supergroup gauge theory with
this building blocks. For example, Ay quiver gauge theory, U(m|n)®*¥, is realized with k41
chains (NS5 branes):

m{E —

{ ____.: :— -------- -: :' """" ': (410)
n
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The corresponding quiver diagram is given by

—O0——0———0——01
\ , (4.11)
k

where we denote the gauge node by () and the flavor node by [ ], and all the nodes are
associated with U(m|n) group. In addition to the A-type quiver, one can also consider
more generic quivers [26].

4.2 One-to-many correspondence: gauge theory and geometry

The open string on stack of D-branes gives rise to the non-Abelian gauge field degrees of
freedom. In order to obtain the supergroup gauge field, on the other hand, we need the
positive and negative branes [16]. Hence, if considering stack of them, we have to take care
of the ordering of the branes.

Firstly let us consider the superconformal theories since we need not take into account
the framing factor. More concretely, here we consider the Hanany-Witten type config-
uration for U(2|1) gauge theory with six flavors, which consists of two positive and one
negative D4 branes suspended between NS5 branes, and four positive and two negative
semi-infinite D4 branes. In this case, there are three possibilities for changing the position
of positive and negative gauge branes as follows:

(a)

|
N
®0

(4.12)

T— 3

This one-to-many correspondence between the gauge theory and the brane configurations is

a peculiar property to the supergroup theory, which is essentially related to the ambiguity
of the simple root decomposition of the supergroup. Besides the brane configurations, we
show the corresponding Dynkin diagrams of U(2[|1): (a) O-®, (b) ®-, and (¢) RO,
where the node denoted by ) is the fermionic node [27]. The correspondence is as follows:
we assign the ordinary node to the neighboring pair of D4T-D4" or D4~-D4~ branes, and
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the fermionic node is assigned to the neighboring pair of D47-D4~ branes. This argument
is also applicable to the external flavor branes.

We check the equivalence among these descriptions (4.12) at the level of the partition
function.

(4.13)

We take the preferred direction along the horizontal lines, so that the partition functions
can be decomposed into left and right building blocks. The equivalence between the gauge
theories corresponding to the web diagrams (a) and (c) is trivial because of those shapes,
so that here we consider the web diagrams (a) and (b). From the results in section 4,
we obtain

20 = 37 (- Quy ) (- Q) (- Qi )

#1,2,3
s¢ $3 UL 1P+ g 1P =lkg 112) %(HmH2+Huzll2—llu3\l2)

« T[22 000 ) @) fob b it

= % 2 ((QW), {Q’(”}- {0}, {n}ijit,0)
x 250 ((QPy (@' Py {u}. {0}, jit,q)
x 235 QP AQ Y {ud {o}si, Gty 0)
x Z20m({Qf}, {Q'“)}-{@} {uh:3,3:,0)
x 2 ({QM} Q'S } {0}, {n}:3,3:t,q)
x ZPmd((QP), {@ DY {u}. {0}:3.3:1,0)
x 2 {QPAQ' Y {u}. {0}:3.3:1.q)

x H[Zblf““d QWY AQYY: (o) (s, 3:1.0)

x Zbifmd (1)} (@' (o}, {114, 3:L, q)
x Z0md (@ (@ 2)}‘{u} {0}:1,3;t,q)
x ZPmd (@Y (@Y () {0}:4,3:t, q)
< 2 QMY AQ Y ks 3t g)
TP i) (41
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z®) — Z(_QHU))\MI(_QH )qul(_QH )Ius\

©1,2,3
o 3 UL P+ 1P =103 11%) %(HmH2+HM2II2—||M3H2)

3

< I [P A b ok {nkigita)
ST e QL AQS Y o Ak, s a)
x 29 (QIPY QP Y (b {0}, it q)
x 25 QY AQ D Y {ud Ao}, gt )
x 2P QY {Q VY {o} {uhi 2, 2:t.9)
x 22 {QHAQ Y (o} ki 2.2, 0)
x 2P QI {QP Y {u} {0} 2,251, 9)
x 2 ({QPYAQY Y {ud {o}: 2,21, )
x (2R AQ F foh {uki 1,2 t0)
x 29 (VY (@Y (o}, {u}i 1,2, ,9)
x 2P (MY (@'Y} {o} {nyi 2,347 g7 h)
x 2P0 (VY {Q VY {0}, {u:2,3,67 g 7Y
x ZPRmd((QPN QY () {0} 1,258, q)
x 29 ((QPY {Q Y {u} {0} 1,2, 9)
x 28 QPY QD {u) {o}:2,3:7 g7
x 2P0 ((QPY {Q' Y {u) {0} 2,347 g Y
(O3 Q" Y {1y 1,258, 9)
{QYAQ Y Yy 2.3t 7Y
{QVAQ Y {nhi L 2:t.9)
(@I AR} {u);2,3;t7 7|,

vect
A
% Zvect

+
% Zvect

—~~ o~~~

Zvect

where vaft,, . is the shifted contribution by (¢/q)*!

Z¥({Q}, {Q’}'{V}'a bit, q)

131}< 0 T
H

1—V . .
Q’Ta b @I qj—Hjb’Z)

— Q) T (- Qg e,

=7
7 ({Q},{Q'}: {u’}-a, b;t, q)
ﬁl H — QLQ'y  Qro it P TY)

bt (1_Q/Q/ 1Q7—a+1b+lt i— Vaj+1qj+ubi—1)
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-1 T .
< I 0-@Qu@Qy ' Qrupypit™ 071
(i,9)€v
_1 s . / _
< J] (0= Qs Qrapypyt g er ™), (4.15b)
(ivj)eyb

We find the agreement between these partition functions under the following parameter

correspondence,
I I I I I I I I I
0= all. ot = et o=l @i = (efethell) . il - of).
(4.16a)
where I = 1,2. To reach the results, we flip the Kahler parameters, e.g.,
“3 1 H2,1 S
111 QI T (- Quetti) T (- Qutg )
7=11i=1 1- Q 13 »iq ITHL (4,7)€p3 (i,9)€Ep2
Hs 1 42,1 1,4 4
1—-Q, t ¢ 4.17
— QU f ) o () [T T 2 L (4.17)

j=11i= 11_Q t —i- “&jqj-i'uz,i
X H < 1t_’u2T’1_zq]> H (1 — Q2t*iqj+/$3,1) )
()ns (i) Eps

In addition to above ambiguities, we also can change the position of flavor brane,
which leads to additional ambiguity. For example, we consider following brane set up and
corresponding (p, q) 5-brane web diagram as following:

(4.18)

We do not repeat the same computation here, but one can show that by setting the Kahler
parameters to

Qgt)z’:QSw
-1
Q) =ielet. ol = (%) )
71 .
Qo= (Q52) W= Qe

1) (1
Qo = @50 @'50Qm
the partition function of (4.18) agrees with (4.14a).
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Therefore, we conclude that there are non-unique web diagram descriptions for a su-
pergroup gauge theory, however, all of the descriptions are equivalent in the sense that
they provide the the partition functions under the suitable parameter correspondence.

5 Towards geometric engineering for pure gauge theories

5.1 Building block

To consider more general supergroup gauge theories, especially the pure supergroup gauge
theories, we calculate another kinds of chain geometry, constructed by both the ordinary
vertex and the anti-vertex given by the following web diagrams with non-trivial boundary
conditions along the external lines:

Ql Vi vy Q1

zb ., = V2 zZR . = vy ) (5.1)
i} i} el .
Q== e ]

_-—===-= Vm+1 V1 S—a

L= Vm+4n

Vm+4n™ =

By gluing them along the horizontal lines, we can construct the pure U(m|n) supergroup
gauge theories, which is a natural generalization of the U(n) gauge theory [28, 29]. The
chain geometry amplitude is written using the vertices,

m+n m—+m
Z{Vz} = Z H |/‘Lz‘ X H f
{mi}{n;} =1
m mtn (5.2)
X H C:u'iA;'I‘_ll’i (t7 q) X H CMj)\?_IVi (t7 q)?
i=1 i=m+1

where we impose A\g = fym+n = ¢ corresponding to the most top and bottom external lines.
Applying the formulae for the skew-Schur function, we find

m+n
Hq2|| ZH X H q QHV’HQXHZ tq H Zl/i(t_17q_1)
i=m-+1 i=m-+1
m-+n

1
<L I i < 1
izt l1cacy (1= Qapt' Pigivaa=ly 92, (1

m  m+n
1

XH H ti+ygjq_j_Va,i) ’

a=1b=m+1 1_Qab

Q t Z<i>1jl7 ]+1q7~7+7/a,i)

(5.3)
where
b—1
Qa =[] Qs (5.4)
j=a
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Similarly, we find the expression for the other case, Zﬁi},

m+n
Z{V Ht2HuTH2 « H = Llvf? « HZ (g, t H Z,,;r(q_lat_l)
i=m-+1 =m-+1
1 gl 1

I 1 S at | |

=1 Lizacy (1= Qapt' ™2™ gimvai) 520 (1= Qupt™ " rigItveitl)

m  m+n

1
<11 11
7'+Vb]+1 —Jj= Va,i_l)

a=1b= m+1 1 - Qa q
(5.5)
The product of these building block with a normalization factor,
2l f )
vect Vi 13
2wy = Z1 (56)

{vi=0} {Vz—(D}
agrees with the instanton partition function of 5d N' = 1 U(m/|n) pure gauge theory ob-
tained in section 2.2. The extra factor coming from the framing is identified with the
Chern-Simons term in 5d gauge theory.

Here we provide each normalized building blocks, which can be given by Z}ﬁﬁf o

Z{LV} m 1 12 mAn 1 112
7211 ° :Hq§||’/2|| X H qfi‘ll/"H
{vi=08} =1 i=m+1
<| II 2@y o) " habig )|
1<a<b P
m-+n
< I =@k ioh{r haba.)|
m+1<a<b ¢
m m+n
<IT II Ze=dQ¥doh (v habat)| ] (5.7a)
a=1b=m+1
m-+n
{uz Hm““THQx I e
{Vz @} =1 i=m+1
< | 1] Zf’it({Q};{VT}v{Vﬁ};a,b,q,t)R
1<a<b P
m-+n
< JI z=dek i) okaban|
m+1<a<b
m m+n
<I1 TI 25 d@k 7"} fokabat)| ] (5.7b)
a=1b=m+1

where “Rep” denotes the following replacement,

Qro s = Qubr Qo' Qo vir = Qub. (5.8)
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We remark the relation between the web diagram discussed above and the brane
setup [18, 19]. It is known that the web diagram is interpreted as the web of (p,q) five
branes, and the current setup, associated with 5d A/ = 1 U(m|n) gauge theory, is T-dual
to the Hanany-Witten type configuration for 4d A/ = 2 theory:

NS5 NS5

T dual } m D4+ (59)

—-7 T~ > n D4~

Under this duality, D5 branes are converted to D4 branes in Type IIA theory. The hori-
zontal solid line stands for the positive D4 branes and the dashed line is the negative D4
branes, denoted by D4" and D4, respectively.

5.2 Vertex vs. anti-vertex

We discuss a possible relation between the ordinary vertex and the anti-vertex. Here we
consider the unrefined case t = ¢ for simplicity,

_ — 1
O (@) = O (@:0) = 2" 5,0(0°) > 5311y (0°F) 3,000 0). (5.10)
n

One can show that the anti-vertex is equivalent to the ordinary vertex up to the framing
factor,

C)\MV(Q) = fAf;lfuéu)\V(Q)a (511)

where f, = f,.(¢,q). Graphically this relation can be expressed as follows:

7

(5.12)

‘4

A A
As mentioned before, the anti-vertex is obtained by flipping the coupling constant, g <> ¢~ 1.
The Schur function formula (A.5b) implies that such a flip leads to transposition of the
partition A <> AT, which is similar to the relation between the vertices with clockwise and

anticlockwise orientations,

C)\;W(Q) = (_1)|)\H_IMI+|V|f)\_lfu_lfy_lcuT)\TyT (Q) (513)

The relation (5.11) (or graphically figure (5.12)) leads to the equivalence of the web
diagrams with and without the anti-vertex. For example, we consider the following dia-
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grams:

(a) ¢ (b) @
1% 1%
Q1 ! Q1 ! (5.14)
Q2 2 Qo 2
A s vy
0 ¢

The left diagram is the chain geometry (5.1), which is the building block for U(2|1) gauge
theory. Applying the relation (5.12), we obtain the right diagram which does not contain
the anti-vertices. This is not just a coincidence because the Calabi-Yau geometry corre-
sponding to the right diagram is known to be related to the superalgebra gly; [30-32].
More concretely, we can see the equivalence at the level of the building block. It is
already given for the configuration (a) in (5.7a),
L
z@ = ZZL{”} (5.15)
{vi=0} la=2,b=1,t=¢

and, for the configuration (b), it is given by

20 = 5,5 (05,70 )50 (a7")

11 (1 — Q1Q2q" "1+ 51 1 (1= Qog 725y
T T 5.16
(i jen (1 _ quH-J V1,i=Vs 1) ( (1 —Qig i ]+U2,Z+V1J+1) ( )

X H (]' - QlQQq_i_j+V3’i+VEj+1)(1 _ Q2q—i—j+V3’i+l/;:j+1)'
(ivj)GVS

i,j)Eve

By using the analytic continuation formula (A.7), we find the agreement between these
expressions.

6 Summary and discussion

In this paper, we have proposed a new topological vertex formalism including the anti-
vertex, which is motivated by the supergroup gauge theory. We have computed several
topological string amplitudes, and shown their agreement with the supergroup gauge theory
partition function. We have then pointed out the one-to-many correspondence between the
gauge theory and the Calabi-Yau geometry, which is a specific property of the supergroup
theory. We have also discussed the relation between the ordinary vertex and the anti-
vertex through the analytic continuation. This is consistent with the known argument on
the supergroup theory.

Although we have introduced the anti-vertex and the associated web diagrams, its
geometric interpretation is not yet obvious. In order to engineer the SU(n) gauge sym-
metry, the A, _; singularity involved in the Calabi-Yau geometry is utilized to reproduce
the gauge theory result. This implies that we should consider an exotic singularity, i.e.,
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Ap—1jn—1 singularity, to realize the SU(m|n) gauge theory. Actually the Taub-NUT geom-
etry with the negative charge discussed in [18] would be interpreted as an example with
such a super-type singularity, which also suggests a super analog of the McKay-Nakajima
correspondence [33-35]. Another issue in the anti-vertex formalism is the framing factor.
In this paper, we have mainly considered the situation in which the framing factor does not
play a crucial role. In order to apply our formalism to more generic Calabi-Yau geometries,
it would be important to provide a precise prescription to fix the framing factor.

We also remark a possible application of the formalism presented in this paper to
the quiver gauge theory having the fermionic node, which should be interpreted as the
base/fibre dual; S-dual; spectral dual to the situation studied in this paper. It would be
interesting to apply the topological vertex/anti-vertex formalism to explore such a new
configuration in gauge theory [36-38].

In addition to the partition function itself, it is also interesting to study the situation
in the presence of the defect operators. For example, the gg-character [39—41] introduced in
gauge theory has a realization using a codimension-4 defect, whose topological string setup
has been proposed in [42]. Another important class of the defect, which is a codimension-2
surface defect, can be also discussed in the context of topological string [43-45] through
the geometric transition [46]. It would be a natural generalization to apply this formalism
to the present case involving the anti-vertex, and its justification from the gauge theory
point of view would be also an interesting issue.
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A Notation, definition, and formulae

A.1 Notation and definition

Here we summarize the definitions and notations used in this paper. For a given partition
A, we denote the transposed partition by AT. The refined topological vertex is given by

et [l Pvl? g A L,y T _
Couw(t,q) =t~ 2 2 ZAM)Z(;) L s (P ) s (T ),
n
Zu(t,q) = ] (=g —ien =, (A1)
(3,9)€v
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where

W) () 1
_ , 2 _ 2 N B
=Y =Y =] ”2}‘1 , (A2)
=1 =1 1=450000
and s, /,(7) is the so-called skew-Schur function. The third component of the refined
topological vertex is called as the preferred direction. The refined topological vertex is

simplified in the unrefined limit ¢ = ¢,

fara — —v— —p—u7T

CA;LV(%Q) =q2s,7(¢"") ZSAT/n(q p)s,u/n(q P )- (Ag)
n
To glue two vertices, we need to insert the framing factors,
1)l U™ ull? o
fult,q) = (1)t 2 ¢~ 2 for the preferred direction,

Ll A4
= ul (¢ 5T o (A-4)

fult,q) = (=1)"{ = t 2z ¢ 2 for other directions,

q

which are the same under the unrefined limit.

A.2 Schur function formulae

The (refined) topological vertex is given using the Schur function. Here we summarize
some formulae for the Schur function that we use for the caluculation:

sy/plax) = a'A‘_|“|sA/H(X), (A.5a)

sa(@”7) = (=1)sr (), (A.5D)

ZSU//\ Sn/u(Y) = H 1 —ziy;)” Zsu/n X)s)/n(¥), (A.5¢)
1,j=1

ZST/A souly) = T (1 + 2ayy) Zs% X) st/ (¥)- (A.5d)
t,j=1

To relate the topological string partition functlon to the Nekrasov partition function,
we sometimes use following normalization formulae:

ﬁ 1 Qqufjtu}iﬂ
— —Jj+—i+1
o 1T QRat
_ H (I_QqVi—th?*i+1 H q uz-‘rj—ltfl/JTJri)’ (AGa)
(i.9)€v (4,5)Ep
[ L@
o LTetd

M1 V1 1—Qt+MJq j—v

_HH 1*Qth3

Jj=1li=1

1 1
(igu 1— Qi tig=i (igley 1 —Qtig=i—m~ (4.6b)
The first formula is frequently used to compare the topological string amplitude with the
gauge theory partition function, whereas the second one is particularly used for the anti-
vertex formalism.
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A.3 Analytic continuation formula
To show the equivalence of the partition functions of supergroup gauge theories and usual
gauge theories, we use following formula,

o0 o0

10— Qo= =] 1

—i B =
5o 1= Qq TP

(A.7)
ij=1

To show the agreement of the partition functions for more than two web diagrams giving
U(2|1) gauge theory, we use following formula,

00 o0
[Ta-@ g2 = [[a-Qr ot (A8)
i,j=1 i,j=1
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