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ABSTRACT

Scaling relations trace the formation and evolution of galaxy clusters. We exploited multi-
wavelength surveys — the XXL survey at XMM-Newton in the X-ray band, and the Hyper
Suprime-Cam Subaru Strategic Program for optical weak lensing — to study an X-ray selected,
complete sample of clusters and groups. The scalings of gas mass, temperature, and soft-
band X-ray luminosity with the weak lensing mass show imprints of radiative cooling and
active galactic nucleus feedback in groups. From the multi-variate analysis, we found some
evidence for steeper than self-similar slopes for gas mass (B, = 1.73 & 0.80) and luminosity
(Bym = 1.91 £ 0.94) and a nearly self-similar slope for the temperature (8, = 0.78 = 0.43).
Intrinsic scatters of X-ray properties appear to be positively correlated at a fixed mass (median
correlation factor px, x,;m ~ 0.34) due to dynamical state and merger history of the haloes.
Positive correlations with the weak lensing mass (median correlation factor oy, xm ~ 0.35)
can be connected to triaxiality and orientation. Comparison of weak lensing and hydrostatic
masses suggests a small role played by non-thermal pressure support (9 = 17 per cent).

Key words: gravitational lensing: weak — galaxies: clusters: general — galaxies: clusters: intr-
acluster medium.

1 INTRODUCTION

Scaling relations between integrated properties of galaxy clusters
open a window on the main mechanisms shaping the formation and
evolution of cosmic structure (Voit 2005). They are also a key and
often puzzling ingredient in cosmological studies of abundances
and growth evolution, see e.g. Planck Collaboration et al. (2016)
and Pacaud et al. (2018, hereafter XXL Paper XXV).

In the self-similar scenario, virialization is driven by gravity. The
expected relations in the virial region between total mass (M), gas
mass (Mg,), temperature (Tx), and soft-band X-ray luminosity (Lx)
are (Kaiser 1986; Giodini et al. 2013; Ettori 2015)

Mgy < M D
Tx < EZPM*?, 2)
Lx « EIM. 3)

* E-mail: mauro.sereno @inaf.it

Secondary infall and continuous mass accretion from the sur-
rounding matter can perturb virial equilibrium (Bertschinger 1985),
but scaling relations preserve the power-law structure (Fujita et al.
2018). Diversity of central structure and age of clusters contributes
to the scatter of the 7x — M and Lx — M relations (Fujita et al.
2018; Fujita & Aung 2019). The mass dependence of the halo
concentration and the Fundamental Plane relation of galaxy clusters
make the Ly — Tx and Lx — M relations shallower than the self-
similar predictions (Fujita & Aung 2019). However, less massive
objects formed earlier than more massive objects in the hierarchical
structure formation scenario, and the effects of secondarily infall
are weaker for less massive systems and at high redshifts, where
haloes can be nearer to conventional virial equilibrium.

Baryonic physics can more significantly alter scaling relations
(Maughan 2014; Barnes et al. 2017; Farahi et al. 2018; Truong
et al. 2018). Radiative cooling, when dense gas cools to produce
stars, causes a relatively stronger effect in low-mass systems.
Active galactic nucleus (AGN) feedback is an inside-out process
affecting primarily regions at small radii. This activity has more
impact on the lowest mass systems whereas the binding energy of
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massive systems is so large that only the inner core is affected, thus
leaving the integrated properties within the virial radius essentially
unaltered. AGN feedback can balance radiative cooling and prevent
the overcooling and the consequent removal of gas from the hot
phase. These processes depend on mass and modify the slope of the
scaling relations, making the M,,; — M and the Lx — M steeper and
the Tx — M relation shallower.

Non-thermal pressure and incomplete thermalization are more
significant at high redshift. Clusters increasingly violate the as-
sumption of HE and require a lower temperature at a given mass to
balance gravitational collapse, which leads to a lower normalization.
On the other hand, merger induced shocks can heat the gas with a
temperature increase which is larger than the total mass variation.

Different processes cause intrinsic scatter around the mean rela-
tions. The luminosity is sensitive to the entire merger history of the
clusters (Mantz et al. 2016a). The most significant deviations from
the Lx — M relation originate from recent massive mergers (Torri
et al. 2004). During minor mergers, the gas content of smaller and
colder substructures is efficiently stripped and mixed due to stellar
and AGN feedback (Truong et al. 2018). Radiative phenomena can
also perturb the cluster luminosity at fixed mass. In fact, the scatter
in luminosity and temperature due to processes in the intra cluster
medium (ICM) increases by 20—40 percent and 15-20 per cent,
respectively, when the core is considered (Truong et al. 2018).

Additional scatter in X-ray luminosity at fixed mass is caused
by radiative phenomena such as stellar or AGN feedback which di-
versify the cluster luminosity. The presence or absence of compact,
bright cores found at the cluster center strongly affect the luminosity
and, to a smaller extent, the temperature, but have a smaller role for
scatter in My, which is mostly sensitive to larger spatial scales.

Cluster properties form and evolve due to the same physi-
cal processes and some correlation between intrinsic scatters is
expected. Numerical simulations show that X-ray quantities are
positively correlated at any redshift under a large range of physical
assumptions (Stanek et al. 2010; Truong et al. 2018). Correlation is
due to baryonic processes and to the merger and accretion history.

It is challenging to measure scaling relations of galaxy clusters.
Mass estimates through proxies require complete calibration sam-
ples but most of the cluster samples at our disposal are incomplete,
heterogeneous, or small (Sereno 2015). Scaling relations can be
used to forecast the properties of the not-observed faint end of the
halo mass function (Sereno & Ettori 2017), which may require
extrapolation. Observed samples are usually affected by selection
effects, Malmquist/Eddington biases, or large measurement uncer-
tainties, which require a careful statistical treatment (Kelly 2007;
Maughan 2014; Sereno & Ettori 2015a; Mantz 2016).

In this paper, we study the scaling relations between the X-ray
properties of the ICM and the mass down to small groups. We
take advantage of multi-wavelength surveys, which uniformly scan
large areas of sky. The XXL Survey, one of the largest XMM-Newton
programmes to date ( Pierre et al. 2016, hereafter XXL Paper I),
covers an area of ~50 square degrees with an average effective
completeness limit of Fx comp ~ 1.3 x 107 *erg s~ em™2 in the
observer-frame [0.5-2.0] keV band within a 1" radius aperture for
extended sources ( Pacaud et al. 2016, hereafter XXL Paper II).
The survey has already uncovered nearly four hundreds galaxy
clusters and groups out to redshift ~2 ( Adami et al. 2018,hereafter
XXL Paper XX) over a wide range of nearly two decades in mass (
Lieu et al. 2016, hereafter XXL Paper IV).

Hyper Suprime-Cam is an optical wide-field imager with a
field-of-view of 1.77 deg? mounted on the prime focus of the
8.2 m Subaru telescope (Miyazaki et al. 2018; Komiyama et al.
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2018; Furusawa et al. 2018; Kawanomoto et al. 2018). The Hyper
Suprime-Cam Subaru Strategic Program (HSC-SSP, Miyazaki et al.
2018; Aihara et al. 2018a, b) has been carrying out a multi-band
imaging survey in five optical bands (grizy) with unprecedented
depth (i ~ 26 at the 5¢ limit within a 2" diameter aperture), aiming
at observing ~ 1400 deg” on the sky in its Wide layer (Aihara et al.
2018b). The survey is optimized for weak lensing (WL) studies
(Mandelbaum et al. 2018; Hikage et al. 2019; Miyatake et al. 2019;
Hamana et al. 2019) and overlaps with XXL in the XXL-North field.

WL masses are regarded as the most accurate mass estimates for
galaxy clusters (Applegate et al. 2014; Umetsu et al. 2014; Okabe &
Smith 2016; Melchior et al. 2017; Sereno et al. 2017). They are in
principle independent of the equilibrium state of the cluster but can
still be affected by their own systematics (Meneghetti et al. 2010;
Becker & Kravtsov 2011; Rasia et al. 2012; Svensmark, Wojtak &
Hansen 2015).

This is the second paper in a series exploiting the combined HSC-
SSP and XXL surveys. In our companion paper (Umetsu et al. 2019),
we present a systematic WL analysis of the XXL cluster sample
using HSC data. Here, we study the relations between WL mass
(MwL), Mgy, Tx, Lx, and X-ray masses based on the hydrostatic
equilibrium (HE) hypothesis (Myg), for the X-ray selected clusters.
Our joint multi-variate analysis uses the WL mass measurements
obtained by Umetsu et al. (2019).

Bayesian hierarchical models have been efficiently developed to
derive scaling relations (D’ Agostini 2005; Kelly 2007; Andreon &
Bergé 2012; Maughan 2014; Mantz 2016; Sereno 2016). Here,
we rely on the CoMaLit (COmparing MAsses in LITerature)
approach to scaling relations, wherein we have been applying
Bayesian hierarchical methods with latent variables to deal with
heteroscedastic and possibly correlated measurement errors and
intrinsic scatter, upper and lower limits, missing data, time evolu-
tion, and selection effects. For a detailed description, we refer to
Sereno & Ettori (2015b, hereafter CoMalLit-I), Sereno, Ettori &
Moscardini (2015, hereafter CoMaLit-II), Sereno (2015, hereafter
CoMalLit-III), Sereno & Ettori (2015a, hereafter CoMaLit-I1V), and
Sereno & Ettori (2017, hereafter CoMaLit-V). The method was
extended to multi-dimensional analyses in Sereno et al. (2019,
hereafter XXL Paper XXXVIII).

The paper is as follows. In Section 2, we detail the statistical
scheme used for regression. In Section 3, we introduce the sample
and the data-set. The selection function is discussed in Section 4.
Results are presented in Section 5. Section 6 is devoted to some final
considerations. In Appendix A, we validate our method with mock
data. Appendix B details how the probability distribution of latent
variables is affected by observational thresholds. In Appendix C,
we discuss systematic errors due to pre-determined scaling relations
to measure the overdensity radius. Priors on the scatter covariance
matrix are discussed in Appendix D.

1.1 Notation and conventions

As reference cosmological model, we assume a flat ACDM (A
and Cold Dark Matter) universe with density parameter Qy =
0.28, and Hubble constant Hy, = 70 km s~! Mpc‘l, as found
from the study of the nine-year cosmic microwave background
(CMB) observations of the Wilkinson Microwave Anisotropy Probe
satellite (WMAPY), combined with baryon acoustic oscillation
measurements and constraints on H, from Cepheids and type Ia
supernovae (Hinshaw et al. 2013).

Throughout the paper, O, denotes a global property of the
cluster measured within the radius r, which encloses a mean over-
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density of A times the critical density at the cluster redshift, p., =
3H(z)’ /(87 G), where H(z) is the redshift dependent Hubble param-
eter and G is the gravitational constant. We also define E, = H(z)/Hy.

The notation ‘log’ represents the logarithm to base 10 and ‘In’
is the natural logarithm. Scatters in natural logarithm can be quoted
as percents. Throughout the paper, unless otherwise noted, we
denote o as the intrinsic scatter in log (decimal) quantities and
use 4 to represent log (decimal) measurement uncertainty.

Unless stated otherwise, central values and dispersions of the
parameter distributions are computed using the bi-weighted statis-
tics (Beers, Flynn & Gebhardt 1990) of the marginalized posterior
distributions.

2 REGRESSION

In this section, we describe the statistical method employed to fit
the scaling relations. The regression scheme for two measurable
cluster properties was detailed in the CoMalLit series (CoMaLit-
I, CoMalLit-II, CoMaLit-IV) and in Sereno (2016). This scheme
allows for the consistent treatment of time-evolution, correlated in-
trinsic scatters, and selection effects (Malmquist/Eddington biases).
The method was extended to multi-observables with dimension D >
2 in XXL Paper XXXVIII. Here, we summarize the main features.

2.1 Scheme

We assume that the cluster properties scale as power laws of the
cluster mass,

On = 10°MLEY. )

Hereafter, we focus on the logarithms of the quantities, which are
thus linearly related. In a nutshell, we take the mass as the basic
cluster feature (denoted by Z as the reasoning would apply to choices
other than the mass as well). For any property, e.g. the temperature
or the WL mass, we distinguish three variables: (i) y, the result of
the real measurement process; (ii) Y, the quantity that would be
measured in a Gedanken experiment with infinite accuracy and pre-
cision (Feigelson & Babu 2012); (iii) Yz, the quantity that is exactly
linked to Z through a functional relation Yz(Z) (Maughan 2014).

The measured y is manifest whereas Y, Y7, and Z are latent. As
defined, Y is intrinsically scattered with respect to Y and does not
lie on the ideal linear relation with Z. The measured y differs from
Y because of the observational uncertainty. The variable Y, is a
rescaled version of the underlying Z. An analogous treatment of
multiple response variables can be found in Maughan (2014) and
Mantz (2016).

This scheme can be generalized to an arbitrary number of
clusters and cluster properties. Here, the index i runs through the
D cluster properties; the index n runs through the N clusters in the
sample. Then, y;, is the n-th measurement of the i-th observable,
Y, is the true value, and Y7 ;, is the latent unscattered quantity. If
the latent variables Y ; are linearly related to Z, they are linearly
related to each other.

2.2 Distributions
As a result of the observations of the n-th cluster, the {y;,}i=1, . p

and the related uncertainty covariance matrix Vs, are known.! On
the other hand, {Yz }, {Yi}, and the covariance matrix of the

IThe regression scheme can also deal with missing data (CoMaLit-V).
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intrinsic scatter V,; , are unknown variables to be determined under
the assumption of linearity.
The scaling relation of the i-th property is expressed as

Yzi =ay z+ By izZ + vy, zlog F, )

where o« denotes the normalization, the slope  accounts for the
dependence on Z, and the slope y accounts for the redshift evolution.
F, is the renormalized Hubble parameter, F, = E./E,(Zyer)-

The measured y and the latent values Y are related as

P(y14,na VYons -~~|Y1,m Y2,n7 ) (08

) N (Y10, Yoo oods Vi) < [ [ HOwin)» (6)

where NP is the multivariate Gaussian distribution, # is the
Heaviside function, V; , is the D x D uncertainty covariance matrix
of the n-th cluster whose diagonal elements are denoted as 87 ;. and
whose off-diagonal elements are denoted as pyin, yjnSy, inSy, jn-

The probability distribution is truncated for y;, < ym, i, Which
accounts for selection effects where only clusters above the obser-
vational thresholds (in the response variables) are included in the
sample. This corrects for the Malmquist bias (CoMaLit-1I).

The threshold ys, may not be exactly known, as when the
quantity which the selection procedure is based on differs from the
quantity used in the regression. This can be accounted for with the
additional relation

P(yth,inlyth,obs,in) = N (yth,obs,inv Sihvm) 5 (7)

Where i, obs,in 18 the estimated observational threshold and 6, ;. is
the related uncertainty.

The intrinsic scatters shape the distribution of the true quantities
{Y:,} around the model predictions {Yz ;,}. We assume that the
scatters are Gaussian, as well supported by numerical simulations
(Stanek et al. 2010; Fabjan et al. 2011; Angulo et al. 2012)
and observational studies of core-excised (Maughan 2007) or
core-included luminosities (Vikhlinin et al. 2009). For the n-th
cluster

P(Yl,)u YZ,ns ~~--|YZ.lns YZ,2)1v ) X

X NP (Y210, Yz, b Vou) < [ [ H i), ®)

where V, , is the D x D scatter covariance matrix whose diag-
onal elements are the intrinsic variances, afi‘z, and whose off-
diagonal elements can be expressed in terms of the correlations as
PY;Y;|z0Y;|ZO0Y;|Z-

The scatter can be mass- or time-dependent, hence the subscript
n in the scatter covariance matrix. However, the inference of the
scatter evolution requires larger data-sets than currently available
to us (Sereno 2016) and we neglect it, V,, = V,. The adopted
parameterization can be easily extended to time dependent scatter
and correlations (CoMaLit-1V).

Even if the selection procedure is based only on the value of the
measured y rather than the value of Y, any threshold in y affects
all the conditional probability distributions, see Appendix B. In
fact, we do not sample a generic distribution of clusters but we
select them and we have to model the distribution of the sampled
objects. Hence, the distribution of Y given Z for a generic cluster
from the full population differs from the distribution specific to a
selected sample, which follows equation (8) and it is truncated too,
see Appendix B. The threshold for the n-th measurement of the i-th
response variable is denoted as Yy, ,. This is related to the threshold
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for the measured value as

P inlynin) =N (Yiin: 85.1,) + ©)

where 8y, i, is the uncertainty associated to y;,. In the absence of
Malmquist biases (Y, i — —00), Y7 is the mean value of p(Y|2),
ie. (Y)) =Y,

The distribution of the reference Z variable is modeled as a
Gaussian function or a mixture (Kelly 2007, CoMaLit-1I, CoMaLit-
1V). We adopt the simplest but still effective case of one component
(Sereno 2016),

P(Z)=N (nz,03%). (10

Most of the parent populations of astronomical quantities can
be well approximated with this scheme, see Appendix A. Here,
we model only the shape of the distribution and we do not fit
the halo abundance and the observed number count of clusters,
see e.g. Murata et al. (2019) and Giles et al. (2016, hereafter
XXL Paper III).

The evolution of the (mean of the) Z-distribution can be modeled
as (CoMalLit-1V),

/’LZ(Z) = MZ,O"‘V;LZ,DlOgDzv (11)

where j17 ¢ is the mean at the reference redshift z..r and D, is the
luminosity distance. We renormalize the distances such that D is
equal to one at the reference redshift z..

The dispersion of the Z-distribution evolves as

02(2) = 070D.7 . (12)

The dependence on D, accounts for the redshift evolution. This
is justified by theoretical predictions based on the self-similar
model, by results of numerical simulations, and by observational
fits (CoMaLit-IV). The explicit dependence on the cosmological
distance for the evolution of the covariate distribution, see equa-
tion (11), accounts for the completeness of a sample selected
according to either flux or signal-to-noise (CoMaLit-IV). The
redshift dependence in equation (11) is general enough to address
even more complicated cases. More general parameterizations for
time-evolution can be found in CoMaLit-IV.

2.3 Priors

The final piece of the statistical treatment is the explicit declaration
of the priors, which have to be conveniently non-informative
(CoMalLit-I). If we do not know the value of Z, some slopes
and normalizations in equation (5) may be redundant (XXL Pa-
per XXXVIII). If Z is the mass, we can break the degeneracy thanks
to the WL mass which is a reliable, nearly unbiased proxy of the
true mass.

In our analysis, the statistical uncertainty on the WL masses
accounts for shape noise, cosmic noise due to uncorrelated large-
scale structures, intrinsic variations of the projected cluster lensing
signal at fixed mass due to variations in halo concentration, cluster
asphericity, and the presence of correlated haloes (Umetsu et al.
2019). Unaccounted sources of errors in cluster mass calibration can
be due to dilution of the WL signal by residual contamination from
foreground and cluster members, bias in the source photometric
redshifts, and systematic uncertainty in the mass modeling, which
sum up to a total systematic uncertainty of ~5 per cent in ensemble
mass calibration of the XXL sample (Umetsu et al. 2019). As WL
priors, we can then consider

AyywelZ = N (0’ Ssys,mWL) (13)

HSC-XXL scaling relations 4531

Bruwuiz =1, (14)
YYuwrlZ = 0, (15)

where 8y my,; = 0.05/1n(10). Fixing the parameters of the My -M
rather than the 7-M relation is just a matter of rescaling which does
not affect the analysis of the intrinsic scatters. Any residual bias
suffered by the WL mass (i.e. (cy,,,,z) 7 0) affects the estimated
overall normalization of the scaling relations. The data analysis
can only constrain the relative bias between the mass proxies Y;
(CoMaLit-T).

For the other X-ray observables, the priors on the intercepts ayz
and on the mean pz o are flat,

ay,z, mzo ~U—1/€, 1/e), (16)

where € is a small number. In our calculations, € = 107,

For the slopes and the time-evolutions of the relations including
observables other than the WL mass, as well as for the Z covariate
distribution, we consider uniformly distributed direction angles,
arctan 8 and arctan y, i.e. we model the prior probabilities as a
Student’s #, distribution with one degree of freedom,

Byizs ¥v1z> Yuz.D> Yoy ~ L1 a7

A non-informative prior on the variance has to show a very long
tail to large values. This can be obtained with the nearly scale-
invariant Gamma distribution for the precision, i.e. the inverse of
the variance,

1/05 4~ T, 1), (18)

where the rate r and the shape parameter A are fixed as r =X =e€.

For more than two observed properties, D > 2, we express the
prior on the (inverse of the) intrinsic scatter matrix in terms of the
scaled Wishart distribution (Huang & Wand 2013),

V'~ Tw(S, 1), 19)

where fis the number of degrees of freedom and S is the D x D scale
matrix. The scaled Wishart distribution implicitly defines a prior on
the variance-covariance: the standard deviation of the element i of
the multivariate normal, o; = Eil,-/ 2, has a half-t distribution with
scale S; and f degrees of freedom. The density is flat for 0; < S;
and has a long tail at large values. In our computations, we consider
the identity matrix as S. We take f = 2, so that all correlation
parameters have a marginal uniform prior distribution between —1
and 1. The prior in equation (19) differs from XXL Paper XXX VIII
(see their equations 26 and 27). Final results are stable with respect
to the choice of the priors, as far as they are non informative, see
Appendix D.

For just two observed properties, D = 2, correlations cannot be
constrained for small data-sets and we consider py,y» = 0 and a
Gamma distribution for each intrinsic scatter as in equation (18).

3 SAMPLE

The XXL-365-GC catalogue from the second XXL data release
(DR2) is described in XXL Paper XX. The XXL selection function
depends on the size, shape, and count rate of the emitting source, and
on the local XMM-Newton sensitivity (XXL Paper II). A validation
of the candidates by human confirmation is applied too. The C1
population is designed to be free of contamination by spurious
detections or blended point sources, while the C2 population is more
complete but less pure, with an initial selection of ~ 50 per cent of
spurious sources (XXL Paper I). A third C3 class contains known

MNRAS 492, 4528-4545 (2020)
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heterogeneous clusters not detected by the automatic pipeline.
Confirmed XXL clusters are cleaned up a posteriori by optical
spectroscopic observations or detailed comparison of X-ray and
optical observations.

We consider the subsample of 302 confirmed clusters of class
C1 and C2. The exclusion of C3 clusters improves the statistical
completeness of the sample. Of the sample under consideration,
265 clusters have measured gas mass, 235 clusters have spectro-
scopically derived luminosity and temperature, 227 clusters have
an estimated mass based on the HE assumption, and 136 clusters in
the North have a measured WL mass. A subsample of 97 clusters
has all four properties measured.

We consider the temperature within 300 kpc, T300kpc, and the rest
frame [0.5-2] keV luminosity L}, and gas mass M, so0 Within
rso0. In the following, we summarize the measurement process
for luminosity, temperature, and gas mass, which are detailed in
XXL Paper XX and references therein, and the HE masses. The
WL analysis is detailed in a companion paper (Umetsu et al. 2019).

3.1 Luminosity and temperature

Luminosity and temperature are measured with a spectral analysis
of the cluster single best pointing (XXL Paper XX). Spectra are
extracted for each of the XMM-Newton cameras from the region
within 300 kpc and fitted in the [0.4 — 11.0] keV band with
the absorbed APEC (Astrophysical Plasma Emission Code) model
(v2.0.2) in XSPEC (Dorman, Arnaud & Gordon 2003), with a fixed
metal abundance of Z = 0.3Z;. The background was modelled
following Eckert, Molendi & Paltani (2011).

Luminosities Lg(o)(()ﬁm within rspo, Mt 1in the [0.5-2.0] keV band
(cluster rest frame), where rsp0, vy Was calculated using the mass-
temperature relation of XXL Paper 1V, are extrapolated from
300 kpc assuming a S-profile with a core radius r. = 0.15r509, Mt
and a slope g = 2/3.

X-ray temperatures could not be measured for all clusters. Several
cluster observations were affected by flaring, had very low counts,
were contaminated by point sources, or were at very low redshift
with bad spatial coverage.

3.2 Gas mass

Gas masses for clusters with known redshift are computed following
the method outlined in Eckert et al. (2016, hereafter XXL Pa-
per XIII) and XXL Paper XX. Surface-brightness profiles are
extracted in the [0.5-2] keV band starting from the X-ray peak from
mosaic images of the XXL fields instead of individual pointings.
The surface-brightness profiles are decomposed on a basis of
multiscale parametric forms, deprojected, and then converted into
gas density profiles using X-ray cooling functions calculated using
the APEC plasma emission code.

The gas mass within an overdensity rsoy is computed with an
iterative procedure to compute rsp0 and the temperature from the
surface brightness profile exploiting the fg — M relation from
XXL Paper XIII.

3.3 Hydrostatic mass

For an ideal fluid where thermal conductivity and viscosity have
no significant roles, under the assumption that it has a spherically-
symmetric geometry and no internal motions, we can use the HE
equation of the ICM in a gravitational potential to recover the radial
profile of the total mass (Ettori et al. 2013):
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M= ry = — 1 AP (20)
(<) =— —=
o Gpgs dr
_ kpTous(r)r ((dlog Tyss — dlogngy @1
- um,G dlogr dlogr )~

where gas mass density and pressure are related through the perfect
gas law,

Pgas = Pgas kB Tgas/(ﬂvmu) = Ngas kB Tgasv (22)

where kg is the Boltzmann constant, m, = 1.66 x 1072* g is the
atomic mass unit, and g ~ 0.6 is the mean molecular weight in
a.m.u..

Gas density profiles are measured as described above, see
Section 3.2.

More critical is the gas temperature profile, considering that
we have estimated only a value from the counts collected within
300 kpc. Instead of adopting the assumption of an isothermal gas,
which can significantly bias the recovered mass profile (up to 30—
40 per cent; see e.g. Rasia et al. 2006), we use a ‘universal’ pressure
profile, appropriately rescaled for the object mass Msq, to specify
the radial profile of the temperature:

P(r) ( Msoo )2/3 - (23)
r)= s
105Mo / [(bx) (1 + (bx)1]T

where x = r/rsy, (a, b, ¢, d, e) = (5.68, 1.49, 0.43, 1.33, 4.40) (see
table 3 in Ghirardini et al. 2019);

The 3D temperature profile is then recovered through equa-
tion (22). For each object, 7(r) is rescaled by the factor T3poxpc /T(<
300 kpc), where T is the emission-weighted temperature. Because
of the dependence of these profiles on the radius and mass estimated
atthe overdensity A = 500, we iterate the procedure till convergence
at a level < 5 per cent is obtained on rsgp.

The errors on the spectroscopic measurement of T3gokpc are
propagated to the temperature profile according to the signal-to-
noise ratio estimated from the emission measure recovered from the
gas density profile. These errors are used for a Monte Carlo sampling
of the hydrostatic mass profile. The 16th and 84thpercentile of
100 Monte Carlo realizations define the uncertainty associated with
the mass estimates at each radius where the gas density has been
recovered.

3.4 Covariance uncertainty matrix

The knowledge of the covariance uncertainty matrix is crucial to
obtain unbiased estimates of intrinsic scatters and correlations.
Measurements of luminosity and temperature are based on the
analysis of a single spectrum of the core region within 300 kpc.
The luminosity estimate mostly depends on the normalization of the
spectrum, whereas the temperature is strictly related to the shape.
This makes their measurements rather independent, but being the
result of a single measurement process some correlation persists.

On the other hand, the gas mass measurement process exploits
the photometry and the surface brightness profile in annular regions
up to larger radii (on average, nearly double the limiting radius used
for the spectra) and is largely independent of the spectral output.
Furthermore, the gas mass measurement exploits mosaic images,
whereas the spectra are taken from individual pointings.

The HE mass measurements are based on temperature profiles
normalized to T3pokp. and on the shape of the gas density profiles.
This makes HE masses strongly correlated with temperatures and
gas masses and we prefer to exclude them from the multi-variate
analysis.
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The aperture radius, i.e. the radius within which properties are
measured, is estimated independently for each X-ray observable.
This is done on purpose to minimize the correlation between
measurements. X-ray properties measured within the same WL
determined 7509 would be strongly correlated with the mass. Our
procedure is standard in large surveys where WL masses are usually
available only for small subsamples and independent methods
are needed to approximate the virial radius. The downside is
that the intrinsic scatter of quantities determined in this way is
increased.

Finally, the WL measurement is independent of the X-ray
observations (apart from the cluster coordinates and redshift).

We then consider the luminosity and the temperature as the only
correlated measurements. To estimate the uncertainty correlation
we proceed in the following way. Luminosity and temperature
within 300 kpc are estimated in a single measurement process. Their
correlation is an output of the spectroscopic fit. We approximate the
probability distribution of the observed luminosity and temperature
as a bivariate Gaussian.

The luminosity is then extrapolated by assuming a distribution
of radial S-profiles. This is approximated as a bivariate Gaussian
N (r./rs00, B) with mean core radius r. = 0.15 r509 and mean B =
2/3 (XXL Paper III), and scatter in slope of og ~ 0.1, scatter
in core radius of o (r./rspp) ~ 0.1, and correlation pg,, ~ 0.66 as
representative of the sample of 45 bright nearby galaxy clusters in
Mohr, Mathiesen & Evrard (1999). The outer radius r5 is estimated
with the M — Tx from XXL Paper IV.

For each cluster, we extract 10* couples of correlated luminosity
and temperature within 300 kpc from the approximated bivariate
normal distribution. Based on the M — T relation, we then derive
the related values of rsp0. The gas profiles used to extrapolate
the luminosity are randomly sampled by extracting correlated
values r. and B from the distribution of radial profiles. The final
uncertainty correlation matrix is computed from 10* sampled pairs
of temperature, T3okpe, and luminosity, L%‘gfﬁm .

4 SELECTION FUNCTION

The full knowledge of the selection function is crucial in cosmo-
logical studies of number counts and abundance evolution, when
observed properties have to be related to the underlying mass
function. In XXL Paper XXV, the selection function was expressed
in terms of the true cluster parameters rather than in terms of their
measured counterparts affected by measurement errors and intrinsic
scatters.

Here, we are interested in scaling relations and our primary
need is a safe treatment of any selection bias. We can model
the population of observed clusters rather than starting from the
halo mass function, see Appendix A, and we just need to account
for clusters to be included or excluded from the sample based on
observed properties, see Appendix B.

The size and shape dependence of the XXL selection function
is mostly meant to distinguish between point sources and extended
emission from clusters. Here, we already deal with a nominally
pure, spectroscopically confirmed sample. The main remaining
dependence is on the X-ray flux. In fact, the isophotes of the XXL
completeness function and the sky coverage in the source parameter
space, i.e. cluster core radius versus total XMM count rate, follow
at first order the curves of equal rest-frame flux (XXL Paper II).

Based on the above considerations, we approximate the selection
function in terms of a complementary error function for the

luminosity L1, see Appendix B. The luminosity threshold as a
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Figure 1. Luminosities of the XXL clusters as a function of redshift. Black
and blue points are the luminosities derived by the spectral analysis or the
scaling relations, respectively. Red and orange points mark the luminosity
thresholds for the full and the spectroscopic sample with measured temper-
ature, respectively. The magenta points follow the effective completeness
limit.

function of redshift is computed as the lower smoothed envelope in
the LI — z plane, see Fig. 1.

Since spectroscopic luminosity and temperature are measured
only for a bright subsample, we consider the luminosities derived
from the count rate by adopting a convenient set of scaling
relations (XXL Paper XX, see section 4.3), which are available for
the full C1 + C2 sample. Derived thresholds are shown in Fig. 1.
Thresholds for the bright subsample are derived likewise consider-
ing the lower envelope of the clusters with measured temperature.

The scale-length of the approximated selection function accounts
for both statistical uncertainties in the flux measurements (weighted
by the number of clusters used to measure the envelope) and the
other aspects of the XXL selection function not accounted for by
the flux.

The flux limit of the DR2 catalogue is Fxcqr ~ 3.2 X
10~ erg s~! cm™2 in the observer-frame [0.5-2.0] keV band within
a 1’ radius aperture. The effective completeness limit averaged
across the entire survey area is Fx comp ~ 1.3 x 107*erg s™' cm™2.
These limits can be converted to a standard deviation assuming that
they delimit the 5o detection range.

5 RESULTS

In this section, we describe the results of our regression procedure
on the HSC-XXL clusters. We work in the log space, where scaling
relations are expected to be linear. The normalized WL mass, gas
mass, temperature, and luminosity in logarithmic units are written as

my = log(Mws00/10"* /M), (24)
mpe = log(My,s00/10" /M), (25)
mgy = 10g(Mgs 500/10*/Mo), (26)
t = log(T300kpc/keV), (27)
1 = log(LXr /10" Jerg/s™), (28)
respectively.

We either fit each X-ray property versus the WL mass (D = 2),
see Table 1, or we perform a multi-scaling analysis of the subsample
with complete information (D = 4), see Table 2. The M — Tx relation

MNRAS 492, 4528-4545 (2020)
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Table 1. Observed scaling relations for the HSC-XXL sample as derived from the bivariate (D = 2) analysis.
Conventions and units are as in Section 2. The weak lensing mass is the variable Y| = X. Col. 1: variable Y, = Y
of the regression procedure. Col. 2: number of fitted clusters. Cols. 3, 4, and 5: intercept, slope, and time evolution
of the scaling relation. Cols. 6, and 7: scatter of Y and X, respectively. Values in square brackets correspond to
parameters kept fixed in the regression.

Time-
Intercept Slope evolution Intrinsic scatters
Y n ayz Byiz Yyiz 0YZ,0 0X|Z.0
l 105 —0.10 £ 0.19 1.06 £0.35 2.10 £2.08 0.55+0.13 0.07 £ 0.08
[ 105 —0.09 £ 0.19 1.07 £ 0.37 [2] 0.55 +0.11 0.08 £ 0.09
l 105 —0.09 £ 0.15 [1] [2] 0.54 £+ 0.09 0.05 + 0.06
t 105 0.44 £ 0.09 0.85 +0.31 0.18 & 0.66 0.06 £ 0.05 0.31 +0.08
t 105 0.42 £ 0.07 0.75 £0.27 [2/3] 0.07 £0.05 0.29 £ 0.09
t 105 0.41 £ 0.05 [2/3] [2/3] 0.07 £+ 0.04 0.29 + 0.06
mg 118 —1.08 £ 0.11 1.35+0.36 1.76 £ 1.22 0.11 £0.10 0.25 £ 0.09
mg 118 —1.01 £ 0.12 1.55£0.30 [0] 0.06 £ 0.06 0.28 +0.07
mg 118 —1.11 £ 0.07 [1] [0] 0.24 £+ 0.06 0.19 +£0.11
MHE 100 —0.04 £ 0.08 [1] [0] 0.31 £0.05 0.37 £ 0.06
Table 2. Observed scaling relations from the multi-variate analysis (D = 4) T T 7]
of 97 HSC-XXL groups. Conventions and units are as in Section 2. Results 15
for the weak lensing mass reflect the priors and are not showed. Col. 1: 10 E 3
variable. Cols. 2, 3, and 4: intercept, slope, and time evolution of the scaling E T E
relation. EG’ u b
. . S 1014L i
Intercept Slope Time-evolution 8 10 E 3
Y ayz Byiz Yz 7 £ ]
= r ]
mg —1.10 £ 0.19 1.73 £0.80 0.16 £ 1.13 L 1 "T J
t 042 + 0.11 0.78 £0.43 0.11 £0.57 101k T bl @ xx-oR2 |
l 0.28 £ 0.23 1.91 £0.94 312+ 1.35 E // o - 3
A 1 III1’I(JI13 1 1 ||||1||(;)|4 1 1 Illl'il()l,ls 1 11

Table 3. Properties of the covariance matrix of the intrinsic scatters from
the multi-scaling analysis (D = 4) of the HSC-XXL clusters for the case of
free time evolution. Diagonal (bold face): posterior bi-weight estimators of
the intrinsic scatter of each property at fixed mass. Upper triangle: posterior
bi-weight estimators of property pair correlation coefficients at fixed mass.
Lower triangle: statistical significance (in per cents) of the positiveness of
the estimated correlation.

My myg t [
Myl 0.32 +£0.08 0.51 +£0.27 0.15 4+ 0.38 0.34 + 0.39
mg 93% 0.27 £0.12 0.20 + 0.46 0.55 + 0.42
t 63% 64% 0.12 + 0.04 0.35 + 0.44
! 77% 84% 75% 0.23 + 0.14

is discussed in the companion paper (Umetsu et al. 2019). The Lx
— Tx relation is discussed in XXL Paper XX. As reference redshift,
we consider z,.¢ = 0.3, close to the median redshift of the sample.

Results from the D = 2 and the D = 4 analyses can be compared
only with a caveat. The luminosity— and temperature—mass relations
are measured only for the clusters with known temperature, whereas
the gas mass—total mass relation also considers less bright clusters.
For the multi-variate (D = 4) analysis, we consider the subset where
all X-ray and WL properties are known.

5.1 Hydrostatic bias

To measure the hydrostatic bias, we assume that the hydrostatic
mass Myg is a scattered, biased proxy of the mass (CoMaLit-I),

log Myg = log[(1 — bug)M] % Oy - (29)

MNRAS 492, 4528-4545 (2020)
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Figure 2. The hydrostatic versus weak lensing masses of the HSC-XXL
clusters in the case of fixed slope, By, m = 1. The dashed black lines
show the bisector (full black line) plus or minus the intrinsic scatter at the
median redshift z = 0.30. The shaded grey region encloses the 68.3 per cent
confidence region around the median relation due to intrinsic scatter and
uncertainties on the not-fixed scaling parameters.

We do not find any strong statistical evidence for significant non
thermal pressure, see Fig. 2. The level of inferred bias strongly
depends on the calibration sample and on the applied methodology.
Observed values range from 2 0 to 40-50 per cent (CoMaLit-I).
Eckertetal. (2019) found a median non-thermal pressure fraction of
~ 6 per cent at r5( in a sample of 12 nearby Planck selected clusters
with high-quality XMM-Newton observations out to the virial radius.

Theoretical estimates from numerical simulations are strongly
dependent on the adopted scheme. After disentangling bulk from
small-scale turbulent motions in high-resolution simulations of
galaxy clusters, Vazza et al. (2018) constrained the gas kinetic
energy effectively providing pressure support in the cluster gravita-
tional potential and reported a bias of the order of ~10 per cent at
R0 in low mass clusters. The typical non-thermal pressure support
is ~5 per cent in the centre of clusters, and it is ~15 per cent in the
outskirts (Angelinelli et al. 2019).

Our result is compatible with a small contribution of non thermal
pressure in low mass groups, byg = 9 £ 17 per cent. We find that
bug < 33(44) per cent at the 95.45 (99.73) percent level. Strong
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Figure 3. The gas versus total mass relation of the HSC-XXL clusters in
the case of free time evolution. The dashed black lines show the median
scaling relation (full black line) plus or minus the intrinsic scatter at the
median redshift z = 0.30. The shaded grey region encloses the 68.3 per cent
confidence region around the median relation due to intrinsic scatter and
uncertainties on the scaling parameters. The red line is the fit for self-
similar parameters. The green and blue lines plot the relations from the
XXL Paper XIII, and Ettori (2015), respectively. The orange line follows
the expected universal gas fraction (Eckert et al. 2019) and it is plotted only
for the mass range where it holds (Msgp = 2 x 1014 Mg).

conclusions are hampered by the large statistical uncertainty. In
fact, results are consistent with no bias too.

5.2 Gas versus total mass

The My,s — M relation appears to be steeper than the self-similar
prediction (B, = 1), see Figs 3 and 4, due to the role played by
radiative cooling and AGN feedback in lesser systems. Conversion
of hot gas into stars is more efficient in low mass systems and
steepens the My,, — M relation.

For the D = 4 analysis, B, m = 1.73 = 0.80. We find a steeper
than self-similar relation with a probability of ~84 percent or
80 per cent for the D = 2 and D = 4 fit with free time evolution,
respectively. For the D = 2 fit, we assume that the correlation
between gas mass and luminosity scatters is not extreme and we do
not model the Malmquist bias for the gas mass (my 4 — 0).

There is no conclusive statistical evidence for time-evolution. The
probability for positive evolution (Y, > 0) is ~95 (56) per cent
for the D =2 (4) fit.

Results are stable if we consider no evolution, i.e. the strong prior
Yinglm = 0. In this case, the probability of a slope steeper than the
self-similar value is ~98 per cent for the D = 2 fit. In the following,
we quote the more conservative results with free evolution.

The gas fraction is consistent with predictions. Eckertetal. (2019)
estimated the expected gas fraction of galaxy clusters by considering
the universal baryon fraction from the CMB power spectrum, the
baryon depletion factor predicted by numerical simulations, and
the stellar fraction from a compilation of recent results. They found
faas, 500 = 0.131 £ 0.009 for Mspy = 2 x 10'* Mg, in agreement
with our result, fys, s00 = 0.11 & 0.05 for Msgy =2 x 10" M, at
z=03.

Our relation is in good agreement with previous observational
results. The measured slope agrees well with XXL Paper XIII, who
found B, = 12171} based on the first XXL data release. On the
other hand, the normalization and the related baryonic fraction that
we find are higher, see Fig. 3. In fact, even though the gas masses are
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consistent (XXL Paper XX), the WL masses here used are smaller
(Umetsu et al. 2019).

Ettori (2015) considered a self-similar framework where apparent
deviations are due to three physical mass-dependent quantities:
the gas clumpiness, the gas mass fraction, and the slope of the
thermal pressure. Normalization and mass dependence of the gas
mass fraction were constrained with samples with observed gas
masses, temperatures, luminosities, and Compton parameters in
local clusters. At z = 0.3 and for Msy = 3 x 10"* M, we find

Seas, 500 = 0.057 £ 0.019 in agreement with Ettori (2015), who

found fgas, s00 ~ 0.065. Lovisari, Reiprich & Schellenberger (2015)
analyzed XMM-Newton observations for a complete sample of local
(z < 0.034), flux-limited galaxy groups selected from the ROSAT
All-Sky. Exploiting hydrostatic masses to calibrate the relation, they
found fgq, 500 ~ 0.076 for Msgp =5 x 108 Mg, in agreement with
our result (fgu, 500 = 0.053 £ 0.015).

There is some evidence that these results are stable with respect
to mass and redshift range and selection methods (Chiu et al. 2016,
2018a). Chiu et al. (2018a) analyzed 91 massive galaxy clusters
(Mspo 2, 1.5 x 10'* My,) selected by the South Pole Telescope SPT-
SZ survey. Exploiting masses estimated from the SZE (Sunyaev-
Zel’dovich effect), they found a slope of ~1.3 and no significant
redshift evolution over a large redshift range (0.2 < z < 1.25).
This agreement may be related to the small hydrostatic bias, see
Section 5.1.

5.3 Luminosity versus mass

AGN activity heats the gas of the smallest systems and cooling
can be counterbalanced by intense feedback. Baryonic processes
reduce the amount of gas in the smallest systems, and thus their total
luminosity. Removal of dense gas in small groups due to efficient
radiative cooling steepens the Lx — Tx and the Lx — M relations. In
fact, slopes are steeper if the core is included. At very high redshift,
the main driver for gas removal is AGN feedback (Truong et al.
2018).

We find evidence for a luminosity—mass relation steeper (B, =
1.91 £ 0.94) than the self-similar expectation (B, = 1) with a
probability of ~81 percent for the D = 4 fit assuming free time
evolution, see Fig. 4. The results are in agreement but less significant
for the D = 2 fit, see Fig. 5, with a probability of ~57 (~57) per cent
for the fit with free (fixed) time evolution.

The mass dependence of the halo concentration and dark matter
processes can make the theoretical Lx — M relation shallower
(Bym < 1) according to the Fundamental Plane relation of galaxy
clusters (Fujita & Aung 2019). Our comparison to the self-similar
expectation (B, = 1) is then conservative in highlighting the effects
of baryonic processes, which go in the opposite direction.

The larger uncertainties with respect to the gas mass analysis
are due to the Malmquist bias and to the smaller sample. There is
inconclusive evidence for negative time-evolution, with y,, < 2 at
the ~50 per cent probability level.

As a comparison, we considered the MCXC (Meta-Catalogue
of X-ray detected Clusters of galaxies, Piffaretti et al. 2011),
which comprises 1743 unique X-ray clusters with measured X-
ray luminosities measured in the [0.1-2.4] keV band collected from
available ROSAT All Sky Survey-based and serendipitous cluster
catalogues. For our tests, we fixed the unquoted MCXC statistical
uncertainty to 10 per cent.

Masses were retrieved from the Literature Catalogs of weak
Lensing Clusters (LC2, CoMaLit-III), whose release v3.6 comprises
601 unique clusters with reported coordinates, redshift, and WL

MNRAS 492, 4528-4545 (2020)
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Figure 4. Probability distributions of the parameters of the scaling relations as obtained from the joint multi-variate regression (D = 4). The intercepts, slopes,
and time-evolutions are denoted as «, 8, and y, respectively. The thick and thin black contours include the 1-0 and 2-0 confidence regions in two dimensions,
here defined as the regions within which the probability is larger than exp (— 2.3/2) and exp (— 6.17/2) of the maximum, respectively. The bottom row shows
the marginalized 1D distributions, renormalized to the maximum probability. The thick and thin black levels denote the confidence limits in one dimension,
i.e. exp (— 1/2) or exp (— 4/2) and of the maximum. The blue symbols mark the biweight estimator. The red symbols mark the self-similar prediction.

masses.> MCXC and LC?-single were cross-matched by coordi-
nates, with a maximum allowed separation of 2', and redshift, with
a maximum separation of Az = 0.05, to find 216 clusters with
complete info, see Fig. 6. This heterogeneous sample contains more
massive clusters than XXL, with a median mass of ~ 5 x 10 Mo,
but the inferred scaling relation (o, = 0.50 &£ 0.21, By, =
1.55 £ 0.28, yym = —0.50 £ 0.61) agrees with the HSC-XXL
sample within the statistical uncertainties. It is noteworthy that we
retrieve negative evolution for the MCXC sample, in agreement
with CoMaLit-IV. However, we remark that we could not correct
for any Malmquist bias in the MCXC sample.

2The catalogues are available at http:/pico.oabo.inaf.it/~sereno/CoMaLit/
LCc2/

MNRAS 492, 4528-4545 (2020)

A more rigorous comparison is with Lovisari et al. (2015), who
studied a comparable mass range. Our results agree, see Fig. 5.

Kettula et al. (2015) presented a WL and X-ray analysis of 12 low
mass clusters from the Canada-France-Hawaii Telescope Lensing
Survey (CFHTLS) and the XMM-CFHTLS combined with high
mass systems from the Canadian Cluster Comparison Project and
low-mass systems from Cosmic Evolution Survey. After correcting
for Malmquist and Eddington bias, they found a slope of ~1.27
for the core excised Ly — My, relation, consistent with ours even
though they did not consider the scatter in the WL mass.

For temperatures below ~2keV, the contribution of line emission
to the luminosity becomes significant. As a consequence, if clusters
followed the self-similar predictions (i.e. there were no feedback
effects), then the observed Ly — Tx relation would flatten below
~2keV (Zou et al. 2016). To estimate the effect, we follow Zou et al.
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Figure 5. The luminosity—mass relation of the HSC-XXL clusters in the
case of free time evolution. The dashed black lines show the median
scaling relation (full black line) plus or minus the intrinsic scatter at the
median redshift z = 0.30. The shaded grey region encloses the 68.3 per cent
confidence region around the median relation due to intrinsic scatter and
uncertainties on the scaling parameters. The red line is the fit for self-similar
parameters. The blue and green lines plot the relations from the LC2-MCXC
sample and Lovisari et al. (2015), respectively.
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Figure 6. The luminosity—mass relation of the HSC-XXL clusters (black
points) versus the LC2-MCXC sample (blue points). Black symbols and
lines are as in Fig. 5.

(2016) and we measure the luminosity of APEC spectra first with a
metal abundance of Z = 0.3, and then setting Z = 0 without changing
any other parameters to approximate pure bremsstrahlung emission.
The declining contribution of bremsstrahlung to the soft-band
luminosity for 7 < 2 keV can be approximated with a power law
of the form Lyem/Lx o< T%?'. Considering a self-similar evolution
for the mass-temperature relation, we obtain Lyyem/Lx o M*'*. This
effect can partially mask processes that are removing gas from
the inner regions in low mass systems. Self-similar expectations
for the slope of the Lx — M relation should then be lowered by
~0.1 — 0.2 when comparing with our result, which makes the
steepening observed here more significant.

5.4 Temperature versus mass

The scaling relation between mass and temperature is presented
in Umetsu et al. (2019), who also showed the agreement of
the Bayesian analysis with alternative methods based on stacked
signals usually employed for low signal-to-noise detections. For
convenience, we report the results of the D = 2 analysis in Table 1
and we refer to Umetsu et al. (2019) for a detailed discussion.
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Constraints on possible deviations from self-similarity are less
significant than for other relations. Removal of low entropy gas
from the hot phase by radiative cooling leads to higher temperatures
in lower mass groups and flattens the 7x — M relation. For the D =
4 analysis with free time evolution, the slope of the temperature—
mass relation is f,, = 0.78 £ 0.43 and the relation is shallower
than the self-similar expectation (B, = 2/3) with a probability of
~45 per cent. The probability is ~22 (41) per cent for the D = 2 fit
with free (fixed) time evolution.

5.5 Multi-scaling analysis

We find coherent evidence for effects of radiative cooling and
AGN feedback from the multi-dimensional (D = 4) analysis, which
full accounts for the effects of correlated intrinsic scatters. The
probability that the m, — m, t — m, and [ — m relations are steeper,
shallower, and steeper than the self-similar prediction, respectively,
at the same time is ~26 per cent. The probability for two (one) met
criteria out of three is of ~80 (~99) per cent.

These probabilities significantly exceed those associated to ran-
dom fluctuations. The probability of three, or at least two, or at
least one successful coin tosses out of three attempts is of 1 out
of eight (12.5 percent), one half (50 percent), or 7 out of eight
(87.5 per cent), respectively.

The total level of statistical significance is dragged down by the
Tx — M relation, which is in agreement with self-similarity within
the uncertainty. If we consider only the Lx — M and the My,s — M
relations, where we expect more prominent effects of AGN feedback
and radiative cooling, the probability for the two slopes being more
steeper than self-similarity is ~78 percent well in excess of the
random probability of 25 per cent.

5.6 Intrinsic scatters and correlations

The intrinsic scatter of gas mass (amgpﬂ =0.105 %= 0.105, i.e.
0.24 4 0.24 percent from the D = 2 analysis) and temperature
(oqm = 0.064 £ 0.050, i.e. 0.15 £ 0.11 percent) at a given
mass are of the order of ten—twenty percent whereas scatter in
luminosity is larger (o, = 0.55 & 0.13). These results agree with
XXL Paper XXXVIII even though one major difference has to
be emphasized. Here, samples for the D = 2 analysis are not the
same for the different X-ray properties, since gas mass is measured
for next to all XXL groups whereas temperature and luminosity
are measured only for the brightest ones. XXL Paper XXXVIII
only considered the X-ray properties of the 100 brightest clusters
detected in the XXL Survey. Furthermore, WL masses were not
available for XXL Paper XXXVIII and properties were measured
within a fixed radius of 300 kpc.

Notwithstanding the statistical uncertainties (8py,y2 ~ 0.4, see
Table 2), we find evidence of positively correlated scatters at
fixed mass, see Fig. 7. The correlation factors between gas mass
and temperature, gas mass and luminosity, and temperature and
luminosity are positive at the ~64, 84, and 75 per cent confidence
level, respectively.

The probability that at least one, at least two, or all three correla-
tions are positive at the same time is of ~56, ~71, or ~96 per cent,
well in excess of random fluctuations. This is consistent with
expectations from the dynamical state and the assembly history.
The Lx — M relation is very dependent on the gas content (Truong
etal. 2018). ICM processes reduce the amount of gas in the smallest
systems, and at the same time their total luminosity. Simulations
show that clusters move coherently along the Lx — Tx relation
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Figure 7. Probability distributions of the parameters of the intrinsic scatter covariance matrix from the joint multi-variate analysis (D = 4). Symbols are as in

Fig. 4.

during mergers (Rowley, Thomas & Kay 2004; Hartley et al. 2008),
implying correlated scatter in the 7x — M and Lx — M relations.

Gas mass and temperature react to merger and accretion with
different time-scales. The two quantities increase at subsequent
time, which lessens the expected correlation. Dark matter and gas
increase in mass by the same fraction when the cluster growth
happens via slow accretion, due to the constant ratio between gas and
dark matter densities in the cluster outskirts, or via major mergers,
due to a relatively constant gas fraction in systems of comparable
mass. However, the kinetic energy of the hot gas takes more time to
convert to thermal energy. Apart from the possibility of a transient
shock that heats the gas with a temperature enhancement which is
greater than the variation of the total mass, post-merger clusters can
exhibit a lower value of temperature at fixed total mass.

The dynamical state of the cluster can cause a positive correlation
between the intrinsic scatter of luminosity and temperature at fixed
mass (Mantz et al. 2016b). Temperature traces mass most reliably

MNRAS 492, 4528-4545 (2020)

in regular clusters that are close to virial equilibrium, whereas it can
be depressed in merging clusters where energy in bulk motions has
not yet virialized. Similarly, the luminosity takes some time to reach
its equilibrium value, even though it is boosted by the addition of
the subcluster during the merger. On the other hand, dense, bright
cores occur preferentially in dynamically relaxed, hot clusters which
show higher than average luminosities and approximately average
temperatures. The positive correlation can be counterbalanced by
strong AGN bursts, common phenomena at very high redshifts,
which cause an increase of temperature along with a temporary
decrease of luminosity, due to the gas displaced as ejected material
(Truong et al. 2018).

According to our results, intrinsic scatters in X-ray properties
appear to be correlated with the intrinsic scatter in WL mass too.
In principle, WL estimates do not depend on the dynamical state
or radiative processes but they are related to the mass structure of
the halo and they are affected by the presence of substructures and
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triaxiality (Meneghetti et al. 2010; Becker & Kravtsov 2011; Rasia
et al. 2012). However, relaxed clusters are usually morphologically
regular, which links scatters of WL mass and X-ray properties. The
presence of substructures in the cluster surroundings may either
dilute or enhance the signal (Meneghetti et al. 2010; Giocoli et al.
2014). Scatter in the WL mass can come from either massive sub-
clumps (Meneghetti et al. 2010) or uncorrelated large-scale matter
projections along the line of sight (Becker & Kravtsov 2011), and
it can be inflated in morphologically complex haloes. Clumps in
the gas distribution can boost the X-ray luminosity whereas dark
matter substructures can dilute the weak lensing shear signal. On
the other hand, the WL signal is boosted in morphologically regular
and concentrated systems, which are typically dynamically relaxed
and with a hotter average temperature.

Triaxiality and other deviations from spherical symmetry are
major sources of WL scatter (Limousin et al. 2013; Sereno et al.
2013). Observed properties depend on the orientation of the cluster
with respect to the line of sight (Gavazzi 2005; Oguri et al. 2005;
Sereno 2007; Sereno & Umetsu 2011; Limousin et al. 2013; Sereno
et al. 2018; Umetsu et al. 2018; Chiu et al. 2018b). Systems whose
major axis points toward the observer are typically over-represented
in signal-limited samples. Their lensing masses and optical or X-
ray luminosities derived under the standard assumption of spherical
symmetry are over-estimated. On the other hand, the majority of
randomly oriented clusters are elongated in the plane of the sky and
measured properties are under-estimated.

We find positive correlation between weak lensing mass and gas
mass or temperature or luminosity, at the ~93, 63, and 77 per cent
confidence level, respectively. All three conditions are fulfilled at
the same time with a probability of ~56 per cent. This is most likely
due to mass structure and triaxiality.

5.6.1 Previous results

XXL Paper XXXVIII found positive correlation between scatters
in gas mass and temperature (pmg, = 0.35£0.52), gas mass and
luminosity (om, = 0.40 & 0.43), and temperature and luminosity
(py = 0.07 £ 0.70). Due to the lack of mass measurements,
correlations were measured at a fixed latent property, related to
the mass. Here, thanks to the WL masses, we can measure the
correlations at a given mass.

Other literature results mostly focus on more massive clusters,
ie. Tx 2 4 — 5 keV. Maughan (2014) applied the PICACS model
to two X-ray samples, i.e. a local sample and REXCESS, with
measured core-excised temperatures, gas masses, and either hydro-
static masses or luminosities within rso. He found weak statistical
evidence for moderate positive correlation between the scatter in 7
and M, (pmg,‘m = 0.31 £ 0.30), and between the scatter in 7 and
the core excluded bolometric luminosity (o, » = 0.37 £ 0.30),
and evidence for strong positive correlation in the scatter in M, and
Lx (Preemylm = 0.85 = 0.14).

Literature results on correlations between intrinsic scatters can
be somewhat inconsistent, even within the same group. Mantz et al.
(2015) and Mantz et al. (2016b) reported results conflicting to some
degree. Mantz et al. (2015) constrained the cosmological parameters
with a number count analysis of a sample of X-ray selected
clusters detected in the ROSAT All-Sky Survey. They used follow-
up measurements of soft band X-ray luminosity, temperature, and
gas mass within r5p0. WL measurements were available for a sub-
sample of massive clusters. Under the very strong assumption of
gas mass being uncorrelated with temperature (O, = 0) and
luminosity (pmg”m = 0), and WL mass being uncorrelated with the
X-ray properties, i.e. all the off-diagonal covariance terms but oy,
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fixed to zero, they found the correlation of intrinsic scatter in L
and T to be consistent with zero (py,, = 0.11 £ 0.19). This is
consistent with Mantz et al. (2010), who analyzed a sample of 238
clusters drawn from three samples based on the ROSAT All-Sky
Survey. However, using the same analysis method but incorporating
more follow-up measurements and an updated calibration for X-ray
observations than in Mantz et al. (2015), Mantz et al. (2016b) found
a stronger correlation between the intrinsic scatters of luminosity
and temperature at fixed mass (o, = 0.53 £ 0.10).

Based on the analysis of 40 clusters identified as being dy-
namically relaxed and hot with measured gas mass, core excised
temperature, core-excised or core-included soft-band [0.1-2.4] keV
intrinsic luminosity within rsp0, and hydrostatic masses as the
true, unbiased masses, Mantz et al. (2016a) found that py,, =
—0.06 = 0.24 and pyp,,m = —0.18 £ 0.28, consistent with zero,
and positive correlation between the core-included luminosity and
the gas mass, Plmglm = 0.43 £0.22. The correlation is stronger
considering core-excised luminosity, Pleemglm = 0.88 4 0.06. Since
this sample is relaxed, results are not easily compared with Mantz
et al. (2015) and Mantz et al. (2016b), where clusters were not
selected based on their equilibrium status.

Okabeetal. (2010) analyzed 12 LoCuSS (Local Cluster Substruc-
ture Survey) clusters and derived a 68.3 per cent confidence lower
limit of pyp,m 2 0.185, suggesting positive correlation between
the intrinsic scatters of temperature and gas mass. The analysis
was later extended to the full LoCuSS sample (Mulroy et al. 2019;
Farahi et al. 2019). Under the hypothesis that the scatter of the
weak lensing mass is uncorrelated from the X-ray properties, Farahi
etal. (2019) found positive correlation between the intrinsic scatters
of core—excised temperature and gas mass (,o,mg‘m =0.13+£0.03),
core—excised temperature and luminosity (o, = 0.491’8:}2), and
gas mass and core-excised luminosity (om,ijm = 0.767093). They
found also remarkable anti-correlation between the X-ray properties
tracing the hot gas and the galaxy luminosity or richness tracing the
cold stellar phase, which confirms that the highest-mass systems
retain the cosmic fraction of baryons.

6 CONCLUSIONS

We analyzed the mass-observable scaling relations at the low mass
end of the halo mass function down to groups with M > 10'3 M.
Our analysis favours gas mass— and the luminosity—total mass rela-
tions steeper than the self-similar model whereas the temperature—
mass relation is consistent within statistical uncertainty. This picture
is consistent with significant AGN feedback and radiative cooling in
low mass systems. The measured hydrostatic bias is consistent with
asmall role of non-thermal pressure, even though the large statistical
uncertainty does not exclude larger deviations from equilibrium.
Scatters of gas mass and temperature at a given mass are of
the same order even though gas mass can be measured in a
larger sample whereas temperature measurements are limited to the
more luminous clusters. Luminosity is much more affected by the
presence or the absence of a cool core. Each ranking of properties
based on scatter size only holds for the specific operative definition
of the quantities used in the analysis. A different measurement
process can imply different scatters. For the XXL survey, gas masses
are measured for the full sample whereas temperatures are available
only for a bright subsample of clusters with sufficient photon count.
The analysis of the correlation between intrinsic scatters can
unveil new features of the formation and evolution of galaxy
clusters. This investigation is still in its infancy, mostly due to
numerical problems in sampling the covariance matrix, which is
symmetric and positive definite. Previous analyses often resorted
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to simplifying assumptions (Mantz et al. 2015, 2016b; Farahi et al.
2019; Mulroy et al. 2019). Furthermore, the scatter of the weak
lensing mass is often assumed as uncorrelated to simplify the
treatment. Here, we found evidence for positive correlation between
intrinsic scatter of ICM properties and weak lensing mass.

The positive correlation between the intrinsic scatters of X-ray
quantities at fixed mass can be understood in terms of the dynamical
states and the merger history of the clusters. We found also marginal
evidence for a positive correlation between the X-ray quantities
and the WL mass, which points to the role played by triaxiality
and mass structure. Even though the sources of scatter are diverse
and most processes determining X-ray properties are related to
gas physics and temperature distribution that have a small impact
on weak lensing estimates, triaxiality and sub-structures in the
dark matter halo can correlate the scatters of WL estimates and
X-ray properties at fixed mass. Asphericity can coherently affect
luminosity, gas mass, and WL estimates, which are over-estimated
for clusters elongated along the line of sight.

The positive correlation between X-ray properties should be taken
into account to build unbiased selection functions for cosmological
studies. Due to correlation, masses estimated from Mg, or Tx in an
X-ray flux-limited sample would be biased high, with implications
in number count analyses (Maughan 2014).
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APPENDIX A: MASS DISTRIBUTION

The intrinsic distribution of most astronomical quantities, e.g.
the halo mass function or the luminosity function, are locally
exponential (in log-space), i.e. Ppyeni(Z) ~ exp (— aZ). However,
in most cases, we do not have to model the full distribution. We
have to model just the distribution of the clusters included in the
sample (Kelly 2007). Once the parent population is filtered by
the selection process, a Gaussian distribution provides a reliable
approximation (CoMaLit-1V).
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Table Al. Scaling relations and scatters of the simulated sample. Input and
recovered parameters are listed in col. 2 and 3, respectively.

Parameter Input Recovered
g |m —1.000 —1.100 £ 0.084
Al 0.320 0.290 £ 0.047
A 0.510 0.430 £ 0.160
Brng|m 1.200 1.100 £ 0.130
Biim 0.600 0.540 £ 0.071
Biim 2.100 1.900 £ 0.240
Yimglm 0.000 0.540 £ 0.330
Viim 0.670 0.910 £ 0.200
Yiim 2.300 3.100 £ 0.650
Pmgt 0.310 0.360 £ 0.370
Pmgl 0.850 0.064 £ 0.410
Pmgmy 0.000 0.210 = 0.400
pil 0.530 0.160 £ 0.370
Ptmy 0.000 —0.004 £ 0.400
Py, 0.000 0.020 £ 0.380
Oimg|m 0.078 0.090 £ 0.043
Otim 0.039 0.060 £ 0.019
Olim 0.180 0.190 £ 0.070
Oy lm 0.130 0.130 £ 0.068
W Parent
20 [l selected 1

pdf

1.5 -1.0 -0.5 0.0 0.5 1.0
msoo
Figure Al. Renormalized mass distribution of the simulated sample. The

halo mass function is in blue. The luminosity-selected subsample is in red.
msoo is the logarithm of the mass in units of 10 Mp.
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Figure A2. Masses versus redshift for the simulated sample. msg is the
logarithm of the mass in units of 10'* Mg,
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Figure A3. Probability distributions of the parameters of the scaling relations of the simulated sample from the joint multi-variate regression. The thick (thin)
lines include the 1-(2-)o confidence region in two dimensions, defined as the region within which the value of the probability is larger than a given fraction of
the maximum. Red and blue symbols denote the input or the recovered bi-weight estimators of the parameters, respectively.

Paradoxically, if the parent distribution (which is more populated
at very small masses) is used instead of the distribution of selected
clusters (which has a long tail at small values) but the completeness
is not properly accounted for, the Eddington bias is exacerbated.
In Bayesian statistics, if you use misplaced priors, you get worse
results.

Even though the mathematical aspects have already been shown
elsewhere (Kelly 2007), it is still instructive to verify this with a
numerical simulation.

We first simulate a population of clusters from the halo mass
function modelled as in Tinker et al. (2008). We then generate their
observable properties considering correlated intrinsic lognormal
scatters and observational uncertainties and, finally, we select the
sample in observed luminosity. Input values are mostly taken from
Maughan (2014) and are summarized in Table Al. We retain only

MNRAS 492, 4528-4545 (2020)

clusters above a cut in luminosity, / > —1.5, which corresponds to
a rest-frame flux larger than Fx ey ~ 3.2 x 107" erg s™!em™2.

The marginalized mass distribution of the parent and of the
selected sample are compared in Fig. Al. Due to the selection
process, the less massive groups at low redshift are excised, see
Fig. A2. Whereas the parent population follows approximately a
power-law, the selected clusters follow a peaked distribution, see
Fig. Al. It is this distribution that has to be used to eliminate
the Eddington bias. Even though the distribution is skewed, we
approximate it by a simple Gaussian function, which proves a good
approximation within the statistical uncertainties.

As measurement uncertainties, we adopted a 15 per cent accuracy
on gas temperature, luminosity and gas mass, and an uncertainty on
the WL mass varying linearly (in log-space) from 100 per cent at
My = 10" M, to 25 percent at My = 3 x 10" M.
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Figure A4. Same as Fig. A3 for the recovered intrinsic scatters and correlations of the simulated sample.

The simulation follows the scheme depicted in Section 2.
Now, the time evolving Gaussian distribution for the mass
distribution is just an approximation for the true filtered halo mass
function.

As sample size, we reproduce the same number of clusters as
XXL-365-GC with either known WL mass, or gas mass, temper-
ature and luminosity. The regression procedure recovers the input
parameters within the statistical uncertainties, see Table Al and
Figs A3 and A4.

APPENDIX B: THRESHOLDS FOR MANIFEST
AND LATENT VARIABLES

The treatment of truncated probability distributions in presence of
measurement errors can be insidious. To simplify the discussion, we
consider the problem in one dimension (D = 1) in the following.
We first think about the marginalized distributions where we
integrate out the unobserved quantity (Y). For example, we have

a quantity Y that depends on some model parameters 6 (e.g. Y
could be normally distributed with 6 comprising the mean and
standard deviation). In the absence of measurement errors, if we
were just truncating Y with a threshold Yy, then we can write (with
P’ indicating the truncated distribution)

PY10) H(Y — Yin)

P'(Y|0) =
1) f;j: P(Y|0)dY

(BI)

where the integral in the denominator normalises the probability.
If we have an observation y of Y with measurement error given
by P(y|Y) we can marginalise out the unknown Y to write

P(y10) =/P(y\Y)P(Y|9)dY- (B2)

Now if we apply the threshold yy, to the observed y, we have to
write the truncated distribution as
P(yIO) H(Y — ym)

P'(y10) = —=
J, PO1O)dy

(B3)
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The integral in the denominator of equation (B3) contains the
integral over Y from equation (B2). In other words, the truncation
is applied to the marginalised distribution of P(y|¢) and not to the
conditional distribution P(y|Y). This point can be lost when the
normalization terms are not explicitly written down .

The treatment can be more complicated if we want to treat the
unobserved Y as a parameter of the model without marginalising it,
as in the CoMaLit scheme. We cannot compute the normalization
term in the denominator without integrating out Y. The correct form
for the truncated distribution is

P(Y[Y)P(Y[0)H(y — yu)
[ [ POIY)P(Y0)dYdy

The CoMalL.it solution to this problem is to propagate the threshold
on y to also apply to Y (and Z). This may incorrectly seem at
first like wrongly accounting for the same selection effect several
times. However it is actually approximating the correct truncated
distribution.

The above considerations are general, but some formulae can
be worked in convenient cases. Let us consider truncated Gaussian
distributions. In the CoMaLit scheme, we introduce a latent variable
Z and its rescaled and shifted deterministic version Y7; the latent
variable Y, i.e. a scattered proxy of Yz; and the manifest variable y,
that is the measured realization of Y affected by noise. To account for
Malmquist bias, we can truncate the distribution of y. Accordingly,
the distribution of Y'is affected too. In the following, to simplify the
notation we identity Y, with Z.

Thanks to the chain rule, the full probability distribution can be
written as

P'(y|Y,0) = (B4)

Powent(y, Y, Z) = p(y|Y, Z)p(Y|Z) p(Z). (B5)
For lognormal scatters and uncertainties,
pparent(ya Y,Z)= N()’|Y, Sy)N(le» O'Y|Z)pparent(z)~ (B6)

The joint probability distribution for the selected sample, where we
only retain objects if y > yy,, is

P(y, Y, Z) = Cthpparent(yv Y, Z)H(y - yth)v (B7)

where Cy, is a normalization constant.

Relations of interest are simply derived from the definition of
marginal probability and the chain rule. We find

H(Y — ym)
Xsrf(y» Yth» 8\))
where (x|, o) is the Gaussian function with mean w and standard

deviation o and x . is the completeness for a Gaussian variable,
see e.g. Planck Collaboration et al. (2014),

Xcrf(X,M,G):l Lerf ()], (B9)
2 V2o

The conditional probability of Y given Z is a smoothly truncated
Gaussian distribution

Xerf(Ya Yihs 8))

Xerf(z, Yth, \/ 8% + U)%|Z)

The final distribution of Z is the filtered parent distribution,

P(Z) = Ctherf (Z» Yth» \/ 5}2 + G%\z) pparent(z)- (Bll)

The normalization Cy, depend on the shape of the parent population
and assures that p(Z) is properly normalized.

pOIY) = NOIY. 8y) (B8)

r(Y|2) =

N(Y|Z, oy2). (B10)
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APPENDIX C: IMPACT OF PRE-DETERMINED
SCALING RELATION

The measurement of the over-density radius is elusive and proxies
can be used to approximate it. Some circularity can be then in place
when we measure a proxy within rsgg, Y(< rs500). The only unbiased
way to measure rsq is to know the mass Msq,

1’5000(M51(§3. (Cl)

However, M5y, can be unknown and we would like to approximate
it with our proxy Y(< rsoo). Some external scaling relations are
often used. The effect of such approximations can be evaluated if
the radial profile of the quantity under scrutiny is known,

Y ocrh. (€2)
If M is approximated with an external calibration then,

Msop o X5y, (C3)
We find that

Ys00 o< X502, (CH

This is the case of the luminosity estimates used in this paper, which
are based on an external mass-temperature relation. The effects,
which are anyway small since B, — 7~ 3/2 and n ~ 0.15, have been
considered for the luminosity error budget of the luminosity and
for the estimated measurement correlation between luminosity and
temperature, see Section 3.4.

Alternatively, we can use a previously determined relation for the
very same quantity we want to measure,

(1+8p)
Yso0.5, ~ Mgy ™, (C5)

where B is the underlying true slope and &4 is the fractional error on
the slope of the scaling relation we use to iteratively measure 7sgo
and Y5 at the same time. Assuming that the error is small, §g <
1, we found that

-
Ys00.55 ~ Yso0 " (C6)

p(1- =t
N Msog W ﬂ))' )
For our gas mass measurements, we assume the relation from
XXL Paper XIII, Mg, oc M2 This is fully consistent with our
estimate of B = 1.4 £ 0.4 (D = 2) and we expect a negligible
systematic error. For the gas profile n ~ 1. Assuming a self-similar
slope of B = 1, the assumption of B = 1.21, would bias low the
measured slope by A ~ —0.3, which makes our detection of a
steeper than self-similar relation even more significant.

APPENDIX D: PRIORS ON THE SCATTER
COVARIANCE MATRIX

One of the main issue in multi-scaling analyses is the proper
treatment of the scatter covariance matrix. Pros and cons on priors on
scatter matrices can be found in Alvarez, Niemi & Simpson (2014),
Lieu et al. (2017) and references therein. In order to simplify the
problem, Mantz et al. (2015) and Mantz et al. (2016b) considered
most properties as uncorrelated and reduced the problem to the
treatment of a matrix of dimension 2 x 2. Farahi et al. (2019) and
Mulroy et al. (2019) adopted priors for the correlation factors which
speed up the computation but can break the requirement of positive
definiteness.
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Table D1. Observed scaling relations from the multi-variate analysis (D =
4) of 97 HSC-XXL groups. Same as Table 2 for alternative priors on the
covariance matrix, see equation (D1).

Intercept Slope Time-evolution
Y ayz Briz Yz
Free time evolution
mg —1.09 + 0.15 1.77 £ 0.48 —0.01 +£0.95
t 0.41 + 0.07 0.73 +0.27 0.14 + 0.53
[ 0.28 + 0.17 1.92 £ 0.59 296 + 1.18

Table D2. Properties of the covariance matrix of the intrinsic scatters from
the multi-scaling analysis (D = 4) of the HSC-XXL clusters. Same as Table 2
for alternative priors on the covariance matrix, see equation (D1).

My mg t )
Myl 0.29 + 0.08 0.44 + 0.29 0.00 £ 0.36 0.18 + 0.43
mg 89% 0.22 £0.10 0.01 +0.42 0.31 + 0.49
t 49% 51% 0.11 + 0.03 0.16 + 0.46
l 65% 70% 63% 0.15 £ 0.12

As reference prior, we consider the scaled Wishart distribu-
tion, see equation (19). As an alternative, we follow XXL Pa-
per XXX VIIL, where the prior on the (inverse of the) intrinsic scatter
matrix is expressed in terms of the Wishart distribution,

VI~ WS, d), (D1)

where d is the number of degrees of freedom and S in the D X
D scale matrix. Here, d = D + 1, and the marginalized prior
distribution of the correlation factors is uniform between —1 and 1.
The diagonal elements of S are modelled as

Sia ~ (e, €). (D2)

Even though this prior is non-informative, it can favour high
variance in case of high correlation. Final results are stable with
respect to the two different priors, see Tables D1 and D2. Here,
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we favour the scaled Wishart distribution since it facilitates chain
convergence and speeds up computation time.

VINAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via
Piero Gobetti 93/3, I-40129 Bologna, Italia

2INFN, Sezione di Bologna, viale Berti Pichat 6/2, 1-40127 Bologna, Italy
3Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), No. 1,
Section 4, Roosevelt Road, Taipei 10617, Taiwan

*Department of Astronomy, University of Geneva, ch. d’Ecogia 16, CH-1290
Versoix, Switzerland

SINAF - IASF Milano, via A. Corti 12, I-20133 Milano, Ttaly

6 Astronomy Centre, University of Sussex, Falmer, Brighton BN1 90H, UK
7Eur0pean Space Astronomy Centre, ESA, Villanueva de la Canada, E-
28691 Madrid, Spain

8H. H. Wills Physics Laboratory, University of Bristol, Tyndall Ave, Bristol
BSS ITL, UK

"Department of Physical ~Science, Hiroshima University, 1-3-1
Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan

Y Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1
Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan

Wore Research for Energetic Universe, Hiroshima University, 1-3-1,
Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
2Department of Earth and Space Science, Graduate School of Science,
Osaka University, Toyonaka, Osaka 560-0043, Japan

B National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka,
Tokyo 181-8588, Japan

4SOKENDAI (The Graduate University for Advanced Studies), 2-21-1
Osawa, Mitaka, Tokyo 181-8588, Japan

15 Center for Astrophysics and Space Astronomy, Department of Astrophys-
ical and Planetary Science, University of Colorado, Boulder CO 80309,
USA

S NASA Ames Research Center, Moffett Field, CA 94035, USA

17 Universities Space Research Association, Mountain View, CA 94043, USA
8AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot,
Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France

19 Institute for Astronomy & Astrophysics, Space Applications & Remote
Sensing, National Observatory of Athens, GR-15236 Palaia Penteli, Greece

This paper has been typeset from a TEX/IATEX file prepared by the author.

MNRAS 492, 4528-4545 (2020)

220z aunr Lz uo Jasn O LS| - SUND Ad G0¥189G/8257/€/261/9101HE/Selul/wod dno-dlwapese//:sd)y woly papeojumoq



