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Abstract
In this paper an interval observer is synthesized for fractional linear systems with additive
noise and disturbances. The contribution of system whole past to future output is taken
into account as an initialization function. Provided the initialization function is upper and
lower bounded, it is shown in this paper that the fractional interval observer (FIO) allows
to bound pseudo-state free responses by an upper and a lower trajectory. In case interval
observers cannot be synthesized straightforwardly, so as to obtain a stable and non-negative
estimation error, it is shown that a change of coordinates allows to overcome this problem.
The proposed methodology allows to bound fractional systems trajectories when the whole
past is unknown but can be bounded. Finally, a numerical example is given to show the
effectiveness of the proposed methods on the initialization of fractional linear systems.

Keywords: Fractional systems, Initialization, Interval observers; Stability of fractional
linear systems.

1. Introduction

Fractional calculus has attracted increasing interests during the last decades [1, 2, 3] and
the number of applications in widespread fields of science where fractional calculus is used
is in rapid growth. This is due to the fact that real processes could be elegantly modeled by
fractional differential equations. Diffusion processes [4, 5], biological systems [6], medicine5

[7], financial markets [8] and many other physical systems can be expressed in terms of
fractional-order differential equations.

The state estimation of fractional systems is a widely explored field of investigation.
Many theories and results regarding observer design of fractional linear and nonlinear sys-
tems exist. This field of research is motivated by the fact that, in many real cases, the10

problem of immeasurable pseudo-states can be solved by designing an observer that es-
timates the system behaviour. There exists many approaches dealing with pseudo-state
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estimation of fractional systems like fractional Kalman filters [9, 10] and Luenberger-based
fractional observers [11]. Due to the presence of uncertainties and noises in some situations,
many ordinary approaches for designing classical observers become obsolete. A technique15

based on the notion of interval observers allows to cope with uncertainties and noises affect-
ing the system. By interval estimation we understand an observer that, using input-output
measurements, evaluates the set of admissible values for the pseudo-states. There are several
approaches to the construction of interval observers for rational systems [12, 13, 14].

Most of the results in observer design for fractional systems are based on Caputo’s20

definition of fractional derivative. The considered initial conditions are fixed at initial time
t0 and the effect of past history, which has a profound impact on fractional system behavior,
is neglected. However in [15, 16, 17], it was demonstrated that neither Caputo nor Rieman-
Liouville definitions allow taking into account correctly initial conditions. In [18], the authors
propose to use an initialization function which takes into account the whole past. In [17],25

a solution based on an equivalence principle between a fractional differential equations and
an infinite dimensional ordinary differential equation is proposed.

The main contribution of this work is to construct fractional interval observers for frac-
tional linear systems subject to bounded noises and disturbances. The whole past of the
fractional system is used to estimate the pseudo-states. This technique allows to properly30

initialize a fractional system. In fact, an initialization function is used to encode the total
information of system past. Bounding this initialization function in an interval allows to
bound system response.

The paper is organized as follows. Section II recalls some preliminary definitions re-
lated to continuous-time fractional systems and their discretized version. A technique for35

constructing FIO in the discrete-time is presented in section III. In section IV, it is shown
that an FIO could be constructed for fractional linear systems through change of coordi-
nates. The effectiveness of the new results are illustrated numerically in section V. Finally,
concluding remarks are given in section VI.

2. Preliminaries40

2.1. Definitions related to fractional systems
The concept of differentiation to an arbitrary order (non-integer), was defined in the

19th century. One of the main contributions to the establishment of the definition is due to
Grünwald and Letnikov. They extend differentiation by using not only integer but also non-
integer (real or complex) orders on the basis of the backward difference method, generalized45

to fractional orders. The ν ∈ R fractional order derivative of a continuous time function
x(t) ∈ R, when ν ∈ R+ is defined as [19]:

Dνx(t) = lim
h→0+

(
x(t)− x(t− h)

h

)ν

= lim
h→0+

1

hν

∞∑
j=0

(−1)j
(
ν

j

)
x(t− jh)

(1)
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where the Newton binomial
(
ν
j

)
is defined either by

(
ν
j

)
=

{
1 for j = 0

ν(ν−1)...(ν−j+1)
j!

for j > 0
(2a)

(
ν
j

)
=

{
1 for j = 0

Γ(ν+1)
Γ(j)Γ(ν−j+1)

for j > 0
(2b)

where Γ(j + 1) = j! is the gamma function.

As shown in (1), a fractional derivative of a function depends on its whole past when ν50

is non integer.
A more concise algebraic tool can be used to represent such fractional systems: the

Laplace transform. The Laplace transform of a νth order derivative (ν ∈ R+) of x(t) relaxed
at t = 0 (i.e. x(t) equals zero for all t < 0) is given by (see e.g. [20]):

L {Dνx(t)} = sνL {x(t)} (3)

where s ∈ C is the Laplace variable. The multivalued function s → sν becomes holomorphic
in the complement of its branch cut line of the complex plane, chosen to be along the negative
real axis R−, including the branching point 0 and ∞.

2.2. Continuous-time fractional models55

A continuous-time fractional linear system can be described by the pseudo-state space
representation 

Dνx(t) = Ax(t) +Bu(t) +Gw(t)
y(t) = Cx(t) + v(t)
x(t) = f(t) t ≤ 0

(4)

with 0 < ν < 2. The results of this paper are restricted to differentiation orders 0 < ν < 1,
for reasons presented later. x(t) ∈ Rn is the state vector and y(t) ∈ Rm is the output vector.
A, B, C and G are constant matrices with A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n. The input
u(t) is known, w(t) and v(t) are bounded disturbance and noise respectively. f(t) corre-
sponds to the initialization function which takes into account the whole past as pointed out60

in [15, 17, 21, 22, 16]. The pseudo-state space fractional system (4) has been utilized in
(reference 1) (reference 2).

Stability of fractional systems was treated in different contexts (linear, non linear, com-
mensurate, non commensurate, time-variant, time invariant, delayed, non delayed, analyti-65

cal, numerical). A complete state of the art, with more than 20 references on the subject is
proposed in [15] .

The bounded-input-bounded-output (BIBO) stability is defined as the L∞ stability [23].
In [24], authors proved that the fractional system in the form of (4) is BIBO-stable if and
only if the A-matrix has no eigenvalue outside the stability domain. The most well-known70
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BIBO-stability condition is [25, theorem 2.21], extended to take into account variations of
ν ∈ (0,∞) in [26].

Theorem 1 [25]: The system described by (4) is BIBO stable if and only if

0 < ν < 2 (5)

and
| arg(spec(A))| > ν

π

2
(6)

�
75

For the sake of observer design, the observability check of pseudo-state is necessary. The
concept of observability of fractional linear systems is widely discussed in the literature [27,
28, 29]. The problem of observer design remains an open problem because the representation
(4) does not correspond to a state-space representation as the knowledge of x(0) is not
sufficient to initialize fractional systems [30, 18]. That’s why the representation (4) is named80

pseudo-state space.
Moreover, most of the results on the observability of fractional systems are based on

Caputo’s definition, and this definition does not allow to properly initialize a fractional
system. A further discussion on the observability of such a class of systems is presented in
[30].85

2.3. Discrete-time fractional models
Consider the continuous-time linear system described in (4). This model can be expressed

in the discrete time using forward difference approximation of the derivative of order ν of
x(t) [31]. Consider a sampling period h, then for kh ≤ t ≤ (k + 1)h, the fractional order
Dνx(t) can be approximated by dropping of the limit in (1) which yields the Grünwald
Letnikov approximation

Dνx(t) ≈ ∆νx((k + 1))h =

(
x((k + 1)h)− x(kh)

h

)ν

(7)

Dνx((k + 1)h) ≈ ∆νxk+1 =
1

hν

∞∑
j=0

(−1)j
(
ν
j

)
xk+1−j (8)

In doing so, the error term is proportional to the sampling period [19]:

Dνx(t) = ∆νx((k + 1)h) +O(h) (9)

which consequently should be small enough for the approximation error to be negligible.
One can then write

∆νx((k + 1)h) ≈ Ax(kh) +Bu(kh) +Gw(kh) (10)
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which yields the linear discrete-time fractional model

∆νxk+1 = Axk +Buk +Gwk (11)

Substituting (8) into (11) and isolating the term xk+1 yields

xk+1 +
∞∑
j=1

(−1)j
(
ν
j

)
xk+1−j = hν(Axk +Buk +Gwk) (12)

Then, by taking the term xk, corresponding to j = 1, out of the sum:

xk+1 = Ãxk + B̃uk + G̃wk +
∞∑
j=2

(−1)j+1

(
ν
j

)
xk+1−j (13)

where 
Ã = hνA+ νIn

B̃ = hνB

G̃ = hνG

Finally, the discretized pseudo-state system is reformulated as: xk+1 = Ãxk + B̃uk + G̃wk +R+ +R−

yk = Cxk + vk
xk = fk for k ≤ 0

(14)

where 
R+ =

k∑
j=2

(−1)j+1

(
ν
j

)
xk+1−j

R− =
∞∑

j=k+1

(−1)j+1

(
ν
j

)
fk+1−j

(15)

correspond respectively to the influence of positive time samples and non-positive time sam-
ples (the latter are due to the initialization function).90

Definition 1 (Stability): A critical point is said to be stable if every solution which is
initially close to it remains close to it for all times. It is said to be asymptotically stable, if
it is stable and every solution which is initially close to it converges to it as t → ∞. �

95

In the case of autonomous linear systems, the only critical point is the origin.

Definition 2 (Asymptotic stability of linear systems): An autonomous initialized
linear system (rational or fractional) is asymptotically stable if and only if the origin is an
asymptotic stable point for that system (i.e. system free response converges asymptotically100

to zero). �

Next, condition for asymptotic stability of the system (13) is formulated in terms of
eigenvalues of the Ã matrix [32].

105
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Theorem 2 [32]: The fractional system (13) is asymptotically stable if and only if all
eigenvalues of the matrix Ã = hνA + νI are located inside the stability region S(ν) which
boundary is defined by the parametric representation

S(ν) = ν + (ejw − 1)ν(ejw)1−ν , ω ∈ [0, 2π] (16)

�
Such a boundary is plotted in Fig.2 for ν = 0.5.

Definition 3 (Observability): A system with an initial state xk0 , where k0 is the initial
iteration, is observable if and only if the value of the initial state can be determined from110

the system output y(k) that has been observed through the interval k0 < k < kf . If the
initial state cannot be so determined, the system is unobservable. �

Definition 4 (Full state observability) : A system is said to be completely observable
if all the possible initial states of the system can be observed. If this criterion is not satisfied,115

the system is said to be unobservable. �

A useful criterion is now presented to check the observability of fractional discrete-time
systems described by (13).

120

Theorem 3 [33]: The discretized fractional pseudo-state-space vector is observable if and
only if there exists a finite time N such that rank(ON) = n, where n is the dimension of the
pseudo-state vector and

ON =


C
CΦ0
...
CΦN−1

 (17)

where

Φk =


In for k = 0
k−1∑
j=0

(−1)j
(
ν
j

)
cjΦk−1−j

for k ≥ 1

(18)

and  cj = (−1)j+1

(
ν
j

)
c0 = (A− In) + c1I

(19)

�

3. Problem formulation

Aoun and Raïssi [34] attempted to synthesize fractional observers on the basis of Caputo
derivative. They derived two trajectories x(t) and x(t) which allow bounding the pseudo-
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states, starting from an unknown initial condition x(t0):

x(t) ≤ x(t) ≤ x(t), ∀ t > t0 (20)

Nonetheless, it is well known [17, 21, 22, 16] that the initialization of fractional systems does
not obey to Caputo definition but must account on the whole past. On the other hand, the
use of Grünwald Letnikov approximation provides the entire past of the system.125

The main contribution of this paper is to implement fractional observers by considering
properly the initial conditions. Discrete time approximation is employed in this paper to
grant the use of the whole past of the system.

Starting from an initialization function f
k
≤ fk ≤ fk ∀ k ≤ 0, the goal is to bound the

free response of FDE by an upper and a lower trajectory xk and xk (Fig.1) such that:

xk ≤ xk ≤ xk, ∀ k > 0 (21)
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Figure 1: Initialization of fractional system with lower and upper trajectories

4. Synthesis of Fractional Interval Observers

Some useful lemmas are introduced before presenting the main result of the paper.130

Lemma 2 : If 0 < ν < 1, then

(−1)j+1

(
ν
j

)
> 0, j = 1, 2, . . . (22)

Proof by induction: The hypothesis is true for j = 1, since

(−1)1+1

(
ν
1

)
= ν > 0
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Assuming that (−1)j+1

(
ν
j

)
> 0 for j > 1, the hypothesis must remain valid for j+1. From

(2), we have

(−1)j+2
(
ν
j

)
= (−1)j+2 ν(ν − 1) . . . (ν − j + 1)(ν − j)

(j + 1)!

= (−1)j+1
(
ν
j

)j − ν

j + 1
> 0

�
Remark 1 : Lemma 2 is not valid when 1 < ν < 2. That’s why the results of the135

paper are limited to the case when 0 < ν < 1. However, when 1 < ν < 2, differentiation
similarity transformation can be applied [35] and an equivalent system of dimension 2n can
be obtained with a commensurate order equal to ν

2
.

Lemma 3 [13]: Consider a vector x ∈ Rn such that x ≤ x ≤ x for x, x ∈ Rn. If
M ∈ Rm×n is a constant matrix, then:

M+x−M−x ≤ Mx ≤ M+x−M−x (23)

with
M+ = max(0,M) (24)

M− = M+ −M (25)

|M | = M+ +M− (26)

�140

The main result is now presented.

Theorem 4 : Consider the discretized fractional system (14), with a differentiation order
0 < ν < 1 and a bounded initialization function

f
k
≤ fk ≤ fk ∀ k ≤ 0 (27)

Suppose that noises and disturbances are bounded, i.e |vk| ≤ V and |wk| ≤ W . If there
exists a gain L such that145

(i) A = (hν(A− LC) + νIn) is non-negative and

(ii) all eigenvalues of A are located in the stability region S(ν)

then a fractional interval observer for the fractional system (14) is

xk+1 = Axk + B̃uk + Φk (28a)
8



xk+1 = Axk + B̃uk + Φk (28b)

where {
Φk = |G|W + Lyk + |L|V +R+

+R−

Φk = −|G|W + Lyk − |L|V +R+ +R− ,



R+
=

k∑
j=2

(−1)j+1

(
ν
j

)
xk+1−j

R−
=

∞∑
j=k+1

(−1)j+1

(
ν
j

)
fk+1−j

R+ =
k∑

j=2

(−1)j+1

(
ν
j

)
xk+1−j

R− =
∞∑

j=k+1

(−1)j+1

(
ν
j

)
f
k+1−j

and 
B̃ = hνB
L = hνL
|G| = hν |G|
|L| = hν |L|

h ∈ R∗+ is the sampling period ; 0 < ν < 1. �

Proof : Consider the observer error ε = x − x. Starting with an initialization function
f
k
≤ fk ≤ fk ∀ k ≤ 0 and based on (28a) and (14), the dynamics of ε is described by

εk+1 = Axk + B̃uk + |G|W + Lyk + |L|V +R+

+ R− − (Ãxk + B̃uk + G̃wk +R+ +R−)
(29)

Finally, the observer error is expressed by

εk+1 = Aεk +Mk +Υ
+
+Υ

− (30)

where
εk = xk − xk

Mk = (|L|V + Lvk) + (|G|W − G̃wk) (31)


Υ

+
=

k∑
j=2

(−1)j+1

(
ν
j

)
(fk+1−j − fk+1−j)

Υ
−

=
∞∑

j=k+1

(−1)j+1

(
ν
j

)
(fk+1−j − fk+1−j)

(32)

The error dynamics (30) needs be non negative and stable.150
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Proof of the non-negativity of (30):
Since initial conditions are assumed to verify f

k
≤ fk ≤ fk ∀ k ≤ 0, and according to

Lemma 2, the following inequality holds:

Υ
−

> 0 (33)

As the gain L is designed such that A = hν(A − LC) + νIn ∈ Rn×n
+ and by construction

|L|V + Lvk ≥ 0, |G|W − G̃wk ≥ 0 and Υ
+

> 0, then the dynamics of ε̄ is positive, i.e.
ε = xk − xk ≥ 0.

Proof of the asymptotic stability of (30):155

The asymptotic stability follows straightforwardly from Condition (ii).

Similarly, the same methodology can be applied to prove that ek = x− x ≥ 0, and that
ε is stable. �

160

5. Synthesis of FIO with a change of coordinates

It is sometimes impossible to find a matrix L satisfying both conditions (i) and (ii) of
Theorem 4. In such a case, a change of coordinates z = Px is performed, where P ∈ Rn×n

is a nonsingular transformation matrix which allows satisfying both conditions (i) and (ii)
of Theorem 4. In the new coordinates, L should be chosen such that all eigenvalues of165

hν(A−LC)+νIn are located in the stability region S(ν) and A∗ = P ((hνA+νIn)−LhνC)P
−1

is nonnegative. The existence condition of such a real transformation matrix P is given in
the following Lemma:

Lemma 4 [12]: Given the matrices A ∈ Rn×n, R ∈ Rn×n and C ∈ Rp×n, if there exists170

a matrix L ∈ Rn×p such that eig(A − LC) = eig(R) and there exit vectors e1 ∈ Rn and
e2 ∈ Rn such that the pairs (A − LC, e1) and (R, e2) are observable, then there exists a
matrix P ∈ Rn×n such that R = P (A− LC)P−1. �

This Lemma is applied in [12, 13] to construct interval observers for continuous-time LTI175

systems, where R is a Metzler matrix. In [13], a discussion is proposed on the existence of
a real and nonsingular matrix P and many techniques are recalled therein. In case where
A− LC has only real positive eigenvalues, then R is chosen as a diagonal or a Jordan rep-
resentation of A−LC and P is a constant matrix. In [36], a unified time-varying change of
variable is proposed based on the Jordan decomposition of the matrix A in C.180

Next, given a gain L such that all eigenvalues of hν(A − LC) + νIn are located in the
stability region S(ν) and given the change of coordinates z = Px such that P ((hνA+νIn)−
LhνC)P

−1 is nonnegative, an interval observer for (14) in the z-coordinates is given in the
following theorem.185
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Theorem 5 : Consider the discretized fractional system (14) initialized by fk verifying
(27). Suppose that noises and disturbances are bounded, i.e |v(t)| ≤ V and |w| ≤ W . If
there exist a matrix P ∈ Rn×n and a gain L such that

(i) A∗ = P (hν(A− LC) + νIn)P
−1 is non-negative190

(ii) all eigenvalues of A∗ are located in the stability region S(ν)

then a fractional interval observer for the fractional system (14), in the z = Px coordinates,
is

zk+1 = A∗zk + PB̃uk +Ψk (34a)

zk+1 = A∗zk + PB̃uk +Ψk (34b)

where {
Ψk = |PG|W + PLyk + |PL|V +R+

+R−

Ψk = −|PG|W + PLyk − |PL|V +R+ +R−

R+
=

k∑
j=2

(−1)j+1

(
ν
j

)
zk+1−j

R−
=

∞∑
j=k+1

(−1)j+1

(
ν
j

)
zk+1−j

R+ =
k∑

j=2

(−1)j+1

(
ν
j

)
zk+1−j

R− =
∞∑

j=k+1

(−1)j+1

(
ν
j

)
zk+1−j

with {
zk = P+fk − P−f

k
, ∀ k ≤ 0

zk = P+f
k
− P−fk , ∀ k ≤ 0

(35)

and 
B̃ = hνB
L = hνL
|G| = hν |G|
|L| = hν |L|

h ∈ R∗+ is the sampling period ; 0 < ν < 1. P+ and P− are obtained by applying (24) and
(13).195

Back in the x-coordinates, the interval observer of (14) is given by:{
xk = Q+zk −Q−zk
xk = Q+zk −Q−zk

(36)

11



where Q = P
−1 and Q+ and Q− are obtained by applying (24) and (13) �

Proof: The system (14) can be written as zk+1 = PÃQzk + PB̃uk + PG̃wk +R+ +R−

yk = CQzk + vk
zk = Qfk for k ≤ 0

(37)

Consider the observer error εz = z− z. Based on (37) and (34a), the dynamics of εz is given
by

εzk+1 = A∗zk + PB̃uk + |PG|W + PLyk + |PL|V +R+
+R−

−(PÃQzk + PB̃uk + PG̃wk +R+ +R−)

= A∗zk + |PG|W − PG̃wk + |PL|V + PLvk +R+ −R+

+R− −R−

(38)

The matrix A∗ = P (hν(A − LC) + νIn)Q is nonnegative and by construction |PL|V +
PLvk ≥ 0, |PG|W − PG̃wk ≥ 0, therefore the dynamics of εz is positive, i.e εzk = zk − zk ≥200

0 ∀ k.
Also, the gain L is constructed such that all eigenvalues of A∗ = P (hν(A−LC)+ νIn)Q

are located in the stability region S(ν), so that the upper error εz is stable.
The same methodology is applied to prove the non negativity and the stability of the

lower error bound εz.205

Based on Lemma 3, it can be shown that

x︷ ︸︸ ︷
M+z −M−z ≤

x︷︸︸︷
Mz ≤

x︷ ︸︸ ︷
M+z −M−z (39)

The stability of the upper error ε = x−x and the lower error ε = x−x is simply deduced
from that of εz and εz which is preserved under the change of coordinates. �

6. Simulation results

6.1. Example 1210

Consider the fractional continuous-time linear system described by the equations{
Dνx(t) = Ax(t) +Bu(t) +Gw(t)
y(t) = Cx(t) +Du(t) + v(t)

(40)

with α = 0.5, and

A =

[
−5 1.5
0.7 −4

]
; B =

[
1
1

]
C =

[
1 1

]
; D = 0

12



G =

[
1
0

]
; | w(t) | ≤ 0.1 ; | v(t) | ≤ 0.1

Consider an unknown initialization function bounded as follows

f(t) =

[
3

4

]
if −30 ≤ t ≤ 0

f(t) =

[
0

0

]
if t ≤ −30

f(t) =

[
0

0

]
if t ≤ 0

(41)

By choosing h = 5× 10−3s, the discretized system corresponding to (40) is:

xk+1 = Ãx(k) + B̃u(k) + G̃w(k) +R+ +R− (42)

with215

Ã =

[
0.1464 0.1061
0.0495 0.2172

]
; B̃ =

[
0.0707
0.0707

]
G̃ =

[
0.0707 0

]T
and R+and R− are defined in (15).

The gain L =
[
0.8056 0.1944

]T is chosen so that it satisfies both conditions of Theorem
4. Indeed220

(i) h0.5(A− LC) + 0.5I is a non-negative matrix:

h0.5(A− LC) + 0.5I =

[
0.0895 0.0491
0.0357 0.2034

]
(ii) all eigenvalues of h0.5(A − LC) + 0.5I are in the stability region S(0.5) as shown in

Fig.2.

Case 1: Free response
Using (28) and supposing that the true initialization function is inside the set bound by
(41):

f(t) =


[
3
4

]
if −30 ≤ t ≤ 0[

0
0

]
if t ≤ −30

(43)

then the interval estimation of the free response of x1 and x2 (with u = 0) are shown in225

Fig.3.
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Figure 2: Stability region S(0.5). Eigenvalues(•) of h0.5(A− LC) + 0.5I in the simulation example 1.

Figure 3: States x1, x2 and their interval observers with u = 0 and fk constant ∀k < 0.

Case 2: Forced response
The initialization function f(t) is now chosen to be non constant but bounded by constant
functions f(t) and f(t) defined in (41). The input signal is uk = sin(k), k > 0. Interval
estimation for x1 and x2 are plotted in Fig.4. The pseudo-states are always inside the230

estimated bounds. This technique may be regarded as a new alternative for the initialization
of fractional systems.

6.2. Example 2
Consider the fractional electrical circuit given in Fig.5. R is the resistance, C and L are

fractors. C is a fractional order supercapacitor and L is a fractional order inductance [37].
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Figure 4: States x1, x2 and their lower and upper bounds with u > 0

Using Kirchhoff’s laws, the obtained fractional differential equations are the following:

i(t) = C
dαuc(t)

dt
(44)

u(t) = Ri(t) + uc(t) + L
dβi(t)

dt
(45)

Assuming ν = α = β and by measuring only uc(t), the resulted fractional state-space

Figure 5: Fractional electrical circuit

representation is: 
uc(t)

i(t)

ν

=


0

1

C

−1

L
−R

L


uc(t)

i(t)

+

0

1

L

u(t) +

1
0

ω(t)

y(t) = uc(t) + υ(t)

(46)
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w(t) and v(t) are unknown additive disturbance and noise. The unknown upper and lower
initialization functions are chosen to be constant and equal to:

f(t) =

[
4
5

]
if −10−4 ≤ t ≤ 0

f(t) =

[
0
0

]
if t ≤ −10−4


f(t) =

[
1
2

]
if −10−4 ≤ t ≤ 0

f(t) =

[
0
0

]
if t ≤ −10−4

(47)

The following values of components are used in this simulation:

R = 20Ω C = 600µF
L = 30mH ν = 0.5

The following gain L is used.

L =
[
0.2866 0.8196

]T
Note that h0.5(A− LC) + 0.5In is a negative matrix. The fractional interval observer of

Theorem 5 cannot be applied. A change of coordinates z = Px permits to design fractional
interval observer in the z-coordinates and then to properly initialize the fractional system
by applying Theorem 5. By choosing the following P ,

P =

[
0.2526 0.7861
0.5812 0.6027

]
, (48)

both conditions of Theorem 5 are satisfied:

(i) P (h0.5(A− LC) + 0.5I)P−1 =

[
0.4679 0.0036
0.2510 0.3829

]
235

is a non-negative matrix;

(ii) The eigenvalues of (P (h0.5(A − LC) + 0.5I)P−1) are in the stability region S(0.5) as
shown in Fig.6.

Noises w(t) and v(t) are supposed to be bounded:

|W | = |V | = 0.1
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Figure 6: Stability region S(0.5). Eigenvalues(•) of P (h0.5(A−LC)+0.5I)P−1 in the simulation example 2

By choosing an initialization function constant and equal to
f(t) =

[
2
3

]
if −10−4 ≤ t ≤ 0

f(t) =

[
0
0

]
if t ≤ −10−4

(49)

, interval estimation of the free response of z1 and z2 (with u = 0) in z coordinates are

displayed in Fig.7. The bounds of x1 and x2 are exposed in Fig.8. It is shown that the240

measurements evolve inside the estimated bounds in both bases.

7. Conclusion

This paper is devoted to the design of fractional interval observers and initialization
of fractional linear systems. The proposed technique is based on the construction of two
reliable bounds of the pseudo-state free responses considering the contribution of system245

whole past as an initialization function. When the observer matrix cannot be found, a
change of coordinates is proposed to transform the observation errors into a cooperative
form. The proposed methodology allows to initialize fractional systems when the past is
unknown but can be bounded. Simulation results show the effectiveness of the proposed
methodology.250

References

[1] K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Inte-
gration to Arbitrary Order, Mathematics in Science and Engineering, Elsevier Science, 1974.

[2] A. Oustaloup, Systèmes asservis linéaires d’ordre fractionnaire, Masson - Paris, 1983.
[3] A. Oustaloup, La commande CRONE, Hermès - Paris, 1991.255

17



-10-4 0 10-4 2.10-4 3.10-4 4.10-4 5.10-4

Time(s)

0

1

2

3

4

z
1

Real state z1

Lower bound FIO
Upper bound FIO

-10-4 0 10-4 2.10-4 3.10-4 4.10-4 5.10-4

Time(s)

0

2

4

6

8

z
2

Real state z2

Lower bound FIO
Upper bound FIO

Figure 7: Bounds of the states z1 and z2 in z coordinates.

-10-4 0 10-4 2.10-4 3.10-4 4.10-4 5.10-4

Time(s)

-10

-5

0

5

10

15

20

x
1

Real state x1

Lower bound FIO
Upper bound FIO

-10-4 0 10-4 2.10-4 3.10-4 4.10-4 5.10-4

Time(s)

0

2

4

6

8

x
2

Real state x2

Lower bound FIO
Upper bound FIO

Figure 8: Bounds of the states x1 and x2 in x coordinates.

[4] M. Sasso, G. Palmieri, D. Amodio, Application of fractional derivative models in linear viscoelastic
problems, Mechanics of Time-Dependent Materials 15 (4) (2011) 367–387.

[5] A. Maachou, R. Malti, P. Melchior, J. Battaglia, A. Oustaloup, B. Hay, Thermal system identifica-
tion using fractional models for high temperature levels around different operating points, Nonlinear
Dynamics 70 (2) (2012) 941–950. doi:10.1007/s11071-012-0507-y.260

[6] V. Tzoumas, Y. Xue, S. Pequito, P. Bogdan, G. J. Pappas, Selecting sensors in biological fractional-
order systems, IEEE Transactions on Control of Network Systems 5 (2) (2018) 709–721.

[7] Y. Ferdi, Some applications of fractional order calculus to design digital filters for biomedical signal
processing, Journal of Mechanics in Medicine and Biology 12 (02) (2012) 1240008. doi:10.1142/
S0219519412400088.265

18

http://dx.doi.org/10.1007/s11071-012-0507-y
http://dx.doi.org/10.1142/S0219519412400088
http://dx.doi.org/10.1142/S0219519412400088


[8] Z. Wang, X. Huang, G. Shi, Analysis of nonlinear dynamics and chaos in a fractional order financial
system with time delay, Computers and Mathematics with Applications 62 (3) (2011) 1531 – 1539,
special Issue on Advances in Fractional Differential Equations II. doi:https://doi.org/10.1016/j.
camwa.2011.04.057.

[9] S. Najar, M. N. Abdelkrim, M. Abdelhamid, M. Aoun, Discrete fractional kalman filter, IFAC Pro-270

ceedings Volumes 42 (19) (2009) 520 – 525, 2nd IFAC Conference on Intelligent Control Systems and
Signal Processing. doi:https://doi.org/10.3182/20090921-3-TR-3005.00090.

[10] M. Aoun, S. Najar, M. Abdelhamid, M. N. Abdelkrim, Continuous fractional kalman filter, in: Interna-
tional Multi-Conference on Systems, Sygnals Devices, 2012, pp. 1–6. doi:10.1109/SSD.2012.6198068.

[11] A. Dzielinski, D. Sierociuk, Observer for discrete fractional order state-space systems, IFAC Proceed-275

ings Volumes 39 (11) (2006) 511 – 516, 2nd IFAC Workshop on Fractional Differentiation and its
Applications. doi:https://doi.org/10.3182/20060719-3-PT-4902.00085.

[12] T. Raïssi, D. Efimov, A. Zolghadri, Interval state estimation for a class of nonlinear systems, IEEE
Transactions on Automatic Control 57 (1) (2012) 260–265.

[13] D. Efimov, W. Perruquetti, T. Raïssi, A. Zolghadri, Interval observers for time-varying discrete-time280

systems, IEEE Transactions on Automatic Control 58 (12) (2013) 3218–3224.
[14] F. Mazenc, T. Dinh, S.-I. Niculescu, Interval Observers for Discrete-time Systems, International Journal

of Robust and Nonlinear Control 24 (17) (2014) 2867–2890.
[15] J. Sabatier, M. Moze, C. Farges, LMI stability conditions for fractional order systems, Computers &

Mathematics with Applications 59 (5) (2010) 1594 – 1609. doi:10.1016/j.camwa.2009.08.003.285

[16] T. Hartley, C. Lorenzo, J.-C. Trigeassou, N. Maamri, Equivalence of history-function based and infinite-
dimensional-state initializations for fractional-order operators, ASME Journal of computational and
nonlinear dynamics 8 (4) (2013) 041014–041014–7. doi:10.1115/1.4023865.

[17] J. C. Trigeassou, N. Maamri, Initial conditions and initialization of linear fractional differential equa-
tions, Signal Process. 91 (3) (2011) 427–436.290

[18] C. F. Lorenzo, T. T. Hartley, Initialization in fractional order systems, in: 2001 European Control
Conference (ECC), 2001, pp. 1471–1476.

[19] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional dif-
ferential equations, to methods of their solution and some of their applications, Mathematics in Science
and Engineering, Academic Press, London, 1999.295

[20] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[21] T. Hartley, C. Lorenzo, A solution to the fundamental linear fractional order differential equation, in:

NASA/TP–1998-208693 report, Lewis Research Center, 1998.
[22] T. Hartley, C. Lorenzo, Optimal fractional-order damping, in: ASME IDETC/CIE Conferences, Vol.

DECT2003/VIB-48388, Chicago, Illinois, USA, 2003.300

[23] R. Malti, A note on Lp-norms of fractional systems, Automatica 49 (9) (2013) 2923 – 2927. doi:
https://doi.org/10.1016/j.automatica.2013.06.002.

[24] C. Bonnet, J. Partington, Coprime factorizations and stability of fractional differential systems, Systems
& Control Letters 41 (3) (2000) 167 – 174. doi:10.1016/S0167-6911(00)00050-5.

[25] D. Matignon, Stability properties for generalized fractional differential systems, ESAIM proceedings -305

Systèmes Différentiels Fractionnaires - Modèles, Méthodes et Applications 5.
[26] R. Malti, X. Moreau, F. Khemane, A. Oustaloup, Stability and resonance conditions of elementary

fractional transfer functions, Automatica 47 (11) (2011) 2462–2467. doi:10.1016/j.automatica.
2011.08.021.

[27] D. Matignon, B. d’Andréa Novel, Some results on controllability and observability of finite-dimensional310

fractional differential systems, in: IMACS, Vol. 2, IEEE-SMC, Lille, France., 1996, pp. 952–956.
[28] D. Matignon, B. d’Andréa Novel, Observer-based controllers for fractional differential systems, in: 36th

IEEE Conference on Decision and Control, IEEE, 1997, pp. 4967–4972.
[29] M. Bettayeb, S. Djennoune, A note on the controllability and the observability of fractional dynamical

systems, IFAC Proceedings Volumes 39 (11) (2006) 493 – 498, 2nd IFAC Workshop on Fractional315

Differentiation and its Applications.

19

http://dx.doi.org/https://doi.org/10.1016/j.camwa.2011.04.057
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2011.04.057
http://dx.doi.org/https://doi.org/10.3182/20090921-3-TR-3005.00090
http://dx.doi.org/10.1109/SSD.2012.6198068
http://dx.doi.org/https://doi.org/10.3182/20060719-3-PT-4902.00085
http://dx.doi.org/10.1016/j.camwa.2009.08.003
http://dx.doi.org/10.1115/1.4023865
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2013.06.002
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2013.06.002
http://dx.doi.org/10.1016/S0167-6911(00)00050-5
http://dx.doi.org/10.1016/j.automatica.2011.08.021
http://dx.doi.org/10.1016/j.automatica.2011.08.021


[30] J. Sabatier, C. Farges, M. Merveillaut, L. Feneteau, On observability and pseudo state estimation of
fractional order systems, European Journal of Control 18 (3) (2012) 260 – 271.

[31] S. Guermah, S. Djennoune, M. Bettayeb, Discrete-time fractional-order systems: Modeling and stability
issues, in: M. S. Mahmoud (Ed.), Advances in Discrete Time Systems, IntechOpen, Rijeka, 2012, Ch. 8.320

doi:10.5772/51983.
[32] M. Buslowicz, A. Ruszewski, Necessary and sufficient conditions for stability of fractional discrete-time

linear state-space systems, Bulletin of the Polish Academy of Sciences Technical Sciences 61 (4).
[33] S. Guermah, S. Djennoune, M. Bettayeb, Controllability and observability of linear discrete-time

fractional-order systems, International Journal of Applied Mathematics and Computer Science 18 (2).325

[34] T. Raïssi, M. Aoun, On Robust Pseudo State Estimation of Fractional Order Systems, Springer Inter-
national Publishing, Cham, 2017, pp. 97–111.

[35] R. Malti, M. Thomassin, Differentiation similarities in fractional pseudo-state space representations
and the subspace-based methods, Fractional Calculus and Applied Analysis 16 (2013) 273–287. doi:
10.2478/s13540-013-0017-8.330

[36] C. Combastel, Stable interval observers in bbc for linear systems with time-varying input bounds, IEEE
Transactions on Automatic Control 58 (2) (2013) 481–487. doi:10.1109/TAC.2012.2208291.

[37] T. Kaczorek, K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer Publishing
Company, Incorporated, 2014.

20

http://dx.doi.org/10.5772/51983
http://dx.doi.org/10.2478/s13540-013-0017-8
http://dx.doi.org/10.2478/s13540-013-0017-8
http://dx.doi.org/10.1109/TAC.2012.2208291


Review Reply Concerning submission –335

CNSNS-D-19-01015 – Fractional Interval Observers
And Initialization Of Fractional Systems

General
We would like to thank the associate editor and the reviewers for their careful reading

during the review process. There comments helped us improving clarity and readability of340

the manuscript.

All the points raised by the associate editor and the reviewers, have been addressed in
the revised version of the manuscript. We give more specific answers (in black) to the com-
ments and the questions (in blue). Descriptions on how the changes are implemented are345

provided in red in the paper to facilitate the revision process.

We hope the highlighted modifications will satisfy the reviewers and the associate editor
and we look forward to their decision.

350

Yours sincerely,

Ghazi BEL HAJ FREJ
Post Doctoral, Université de Bordeaux, France
ghazibelhajfrej@yahoo.fr

355

Rachid MALTI
Professor, Université de Bordeaux, France
rachid.malti@ims-bordeaux.fr

Moahemd AOUN360

Associate Professor, Université de Gabes, Tunisia
mohamed.aoun@gmail.com

Tarek RAÏSSI
Professor, CNAM, Paris, France365

tarek.raissi@cnam.fr

Reply written on September 5, 2019

1



Authors’ reply to the associate editor
Q: stands for AE’s Question or Comment.
R: stands for authors’ response.370

Q: Reviewers have now commented on your paper. You will see that they are advising
that you revise your manuscript. If you are prepared to undertake the work required, I will
send your revised manuscript back to the reviewers for further advice.

375

R: The AE is gratefully acknowledged for providing us the opportunity to reconsider the
paper for publication after revision. Please find below answers to all questions and comments
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Author’s reply to Reviewer 1
Q: stands for reviewer’s Question or Comment.380

R: stands for authors’ response.

Q: The authors dicuss the discretized pseudo-state system of a continuous-time fractional
linear system with bounded disturbance and noise, taking into account the whole past to
future output as a bounded initialization function. Their main result is the establishment of385

a fractional interval observer for fractional differentiation order 0 < ν < 1 and the existence
of a gain matrix L such that the estimation error stays nonnegative and stable. In case the
latter conditions cannot be combined, the authors give an additional theorem which resolves
this issue via an appropriate change of coordinates. The two theorems are then illustrated
with reference to two corresponding examples. The paper has a clear structure and clear390

novel results whose usefulness is well exemplified numerically.
R: The reviewer is gratefully acknowledged for his careful reading, for pointing out the

main results, the clarity and the novelty of the paper.

Q1. The preliminaries seem very sloppy at certain points. The fractional order derivative395

is defined for some x(t) withouth making clear what kind of object it is (for example a
continuous function). In the definition of Dνx(t) (1) there is a discretization which is not
explained. Additionally, when the Laplace transform is introduced (3), the dependence on
s is not made clear and just before there is the nonsensical explanation "t equals zero for all
t < 0". On a similar note, it is not explained what the role of y(t) is in system (4). I ask for400

a mathematically consistent description of these objects and a careful introduction of the
concepts.

R1: The reviewer is completely right regarding the definition of x(t), which is now defined
as a continuous time function ∈ R (check text in red before (1)). Regarding the definition of
Dνx(t) in (1), the discretization was not meant to be present. It was an error of the authors.405

Please check the definition of (1). Regarding the s variable, it is now clearly defined as the
Laplace variable (check the text after equation (3)). Moreover, the quoted sentence has been
corrected as ‘x(t) equals zero for all t < 0’. The role of y(t) in system (4) is now explained
after equation (4). We hope that the objects are consistently described and that the objects
are better introduced.410

Q2. Model (4), and thereby also Model (14), are not motivated at all. What is the
physical meaning? Why the fractional derivative? What are the roles of disturbance and
noise, in particular in relation to similar models?

R2: Model (4) and (14) and now motivated in the last sentence of paragraph after415

equation (4). All sensors provide measurements with a certain level of noise, which is usually
assessed by a signal to noise ratio. Hence, this noise is external to the system (due to the
sensor). Disturbances however are noises which may affect the states internal. Our objective
is to implement estimation methods robust to measurements noise and disturbances.

Regarding the use of fractional derivative, the authors pointed out some applications of420
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fractional calculus in the first paragraph of the introduction (see the text in red). As shown
in Fig. 9 below, the number of contributions related to fractional calculus is very high. It
becomes impossible to mention them all. The authors tried to select the most significant
ones.

Figure 9: Search on Clarivate Analytics (ex-Thomson-Reuters) with the key words “Fractional systems” from
year 1999 to 2019. For example in orange: there were 19143 contributions with the key words "fractional
systems" in the field of Engineering from year 1999 to 2019.

Q3: In Theorems 2 and 3 the concepts of asymptotic stability and observability of425

fractional discrete-time systems are taken for granted. It would improve the readability of
the manuscript enormously if such concepts were properly introduced.

R3: As suggested by the reviewer, the asymptotic stability and the observabiliy of linear
systems are defined in def 1,2,3,4 (pages 5-6).

430

Q4: In 2.3, when the discretization is introduced, it would be interesting to have some
comment on the accuracy of the Grünwald Letnikov approximation compared to the con-
tinuous time fractional derivative.

R4: When the discretization is introduced, the error is proportional to the sampling
period as it is now explained after equation (8).435

Q5: The problem formulation, Section 3, compares to [34] which considered continuous-
time fractional observers on the basis of the Caputo derivative. Then there is a direct jump
to the discrete-time problem as object of the subsequent analysis. It would help the reader to
be a little more precise about the efforts in [34] and make clear why the Grünwald Letnikov440

derivative is taken here.
R5: As previously explained by the authors, the use of the Caputo does not allow to

account the whole past of the system. However, Grünwald Letnikov approximation allows
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considering the whole past. In order to consider the whole past, the discrete time approxi-
mation of fractional derivative is used in this paper.445

Q6: I do not fully understand how Lemma 4 goes into Theorem 5. The matrix R seems
to be related to the matrix A? but in Lemma 4, this matrix R is given and P is determined,
and in the formulation of Theorem 5, the matrix P is fixed and then A is defined. Could
the authors please clarify their reasoning here?450

R6: The reviewer is totally right. There is no link between Lemma 4 and Theorem 5.
Theorem 5 has been reformulated accordingly. In the paper, Lemma 4 is used to refer to
works on rational systems.

Q7. Quite a few editorial comments...455

R7: All the editorial comments pointed out by the reviewer have been corrected.
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Author’s reply to Reviewer 2
Q: stands for reviewer’s Question or Comment.
R: stands for authors’ response.460

Q: Reviewed paper deals with an interval observer which is synthesized for fractional
linear systems with additive noise and disturbances. Some corrections are necessary.

R: The reviewer is gratefully acknowledged for his careful reading, encouragements, and
guidance for improving the manuscript.465

Q1. Since order ν is real, defined in (1), definition of binomial coefficients in form of
factorial (2) cannot be used, it is valid only for integer number, not real one, rather use
definition by Gamma function.

R1: Since j is an integer, the presented definition of Newton binomial is correct. The470

authors do not use factorial of ν. The definition of Newton’s binomial exists and is an
alternative for the previous version of equation (2). As suggested by the reviewer, the two
definitions of Newton’s binomial are now presented in equation (2).

Q2. Laplace transform (3) is valid for all kind of definitions, but only for zero initial475

conditions.
R2: The reviewer is completely right. That’s why, the authors stated in the first version

of the paper :x(t) relaxed at t = 0.

Q3. approximation ((7)) is called Grünwald-Letnikov, not Grunwald.480

R3: The authors agree fully with the reviewer and the sentence pointed out has been
modified. Check the sentence in red.

Q4. Fig.(1) legend is not readable, check also other figures.
R4: As suggested by the reviewer, all figures legend are checked.485

Q5. Example 1: why you use different notation for fractional derivative in (40) than
notation in (4)?

R5: As advised by the reviewer, a unique notation of fractional derivative is now used
in equations (4) and (40).490

Q6. check References, e.g. Ref. [19] and [20] are the same, etc.
R5: Authors have now updated and checked all the references.
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