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A convexity approach to dynamic output feedback robust MPC for LPV
systems with bounded disturbances
Xubin Ping*, Sen Yang, Baocang Ding, Tarek Raïssi, and Zhiwu Li

Abstract: A convexity approach to dynamic output feedback robust model predictive control (OFRMPC) is pro-
posed for linear parameter varying (LPV) systems with bounded disturbances. At each sampling time, the model
parameters and disturbances are assumed to be unknown but bounded within pre-specified convex sets. Robust
stability conditions on the augmented closed-loop system are derived using the techniques of robust positively in-
variant (RPI) set and the S-procedure. A convexity method reformulates the non-convex bilinear matrix inequalities
(BMIs) problem as a convex optimization one such that the on-line computational burden is significantly reduced.
The on-line optimized dynamic output feedback controller parameters steer the augmented states to converge within
RPI sets and recursive feasibility of the optimization problem is guaranteed. Furthermore, bounds of the estimation
error set are refreshed by updating the shape matrix of the future ellipsoidal estimation error set. The dynamic
OFRMPC approach guarantees that the disturbance-free augmented closed-loop system (without consideration of
disturbances) converges to the origin. In addition, when the system is subject to bounded disturbances, the aug-
mented closed-loop system converges to a neighborhood of the origin. Two simulation examples are given to verify
the effectiveness of the approach.

Keywords: Dynamic output feedback, model predictive control, linear parameter varying systems, uncertain sys-
tems.

1. INTRODUCTION

Robust model predictive control (RMPC) has been an
active research topic since more than three decades [1–3].
This is due to the fact that RMPC is capable of dealing
with multi-variable systems, and allowing for system un-
certainties and physical constraints to be considered in
control sequence optimization in a straightforward man-
ner. The MPC feedback control sequence are computed
based on receding horizon solving an open-loop optimal
control problem subject to system uncertainties and phys-
ical constraints. The optimal control problem in MPC
usually bases on system states. However, most of RMPC
approaches are often formulated assuming that full sys-
tem states are measurable. In many practical cases, full
states are often unmeasurable, and only system outputs
are available. This motivates extensive investigations of
output feedback RMPC (OFRMPC) based on for exam-
ple Luenberger state observer (e.g., [4–7, 10, 11]) and dy-
namic output feedback controller (e.g., [12, 14–18]). The
interesting works on OFRMPC for constrained linear sys-

tems with bounded disturbances can refer to [7–9], and
to [10–14, 17] for systems that have both model paramet-
ric uncertainties represented by linear parameter varying
(LPV) system with bounded disturbances.

Output feedback controller design is a theoretically
challenging issue in control theory and has attracted con-
siderable attention due to its great importance in practice.
However, many of existing output feedback optimization
problems often lead to bilinear matrix inequalities (BMIs)
formulations. Nevertheless, optimization problems with
BMIs constraints are intrinsically known to be non-convex
and NP-hard in general [19, 20]. Several methods of deal-
ing with non-convex BMIs optimization in OFRMPC have
been proposed. In [4, 17], the dynamic output feedback
controller parameters take a parameter-dependent form
such that the non-convex optimization problem is refor-
mulated in terms of linear matrix inequalities (LMIs) and
solved by convex optimization. In [6, 10, 11], the state
observer gain is off-line optimized, and the on-line con-
troller design considers the dynamics of the estimation er-
ror determined by the off-line observer gain. Therefore,
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the difficulty in solving BMIs is avoided. Note that the
optimization problems in [4, 6, 10, 11, 17] are solved as
the convex optimization, but the non-negative combining
coefficients of LPV systems should be known in advance
at each sampling time. However, when the non-negative
combining coefficients of LPV systems are not exactly
known (e.g., [12–16,18]), it is not trivial to solve the opti-
mization problem by a convex optimization due to the ex-
istence of BMIs constraints. In [12–14], the cone comple-
mentary linearization (CCL) [21] approach is employed
to deal with BMIs constraints, where a set of LMIs are
iteratively solved to optimize a performance cost and dy-
namic output feedback controller parameters. Notice that
on-line solving dynamic OFRMPC optimization via the
CCL approach often suffers from large computational bur-
den due to the iterative optimization. An off-line dynamic
OFRMPC approach based on a look-up table method is
considered in [14], where the computational burden is
reduced but the control performance degrades compared
with the on-line dynamic output feedback RMPC meth-
ods. This motives us to design an on-line convex dynamic
OFRMPC optimization problem solved by a non-iterative
optimization for LPV systems with unknown non-negative
combining coefficients.

The main contribution of the paper is to present a con-
vexity approach to dynamic OFRMPC for LPV systems
with unknown non-negative combining coefficients and
bounded disturbances. By employing robust positively in-
variant (RPI) sets and the S-procedure [25], an optimiza-
tion problem with the update of the ellipsoidal estimation
error set is formulated to ensure robust stability of the
augmented closed-loop system. For the non-convex BMI
conditions in the main optimization problem, the tech-
nique of Young’s inequality is utilized to reformulate BMI
conditions as LMIs, where some parameters are off-line
searched to ensure the initial feasibility of the on-line main
optimization problem. At each sampling time, the convex
optimization problem is solved only one time to minimize
the performance cost with respect to dynamic output feed-
back controller parameters. Compared with [12–14], the
on-line main optimization is solved as a non-iterative, and
therefore the on-line computational burden on the main
optimization problem is significantly reduced. The re-
cursive feasibility of the on-line optimization problem is
guaranteed by ensuring that the augmented closed-loop
system evolves within time-varying RPI sets. The on-line
optimization problem guarantees that the disturbance-free
augmented closed-loop system (without consideration of
bounded disturbances) converges to the origin, and the
augmented closed-loop system bounded within RPI sets is
steered to a neighborhood of the origin when the system
is subject to bounded disturbances.

Notations: Let R, R+ Z and Z+ denote respectively
the set of real numbers, non-negative real numbers, inte-
ger numbers, and non-negative integers. Z[s,k] and Z[s,∞)

denote the set of non-negative integers from s to k, and
the set of non-negative integers that are greater than or
equal to s, where s,k ∈ Z+. For any vector x and positive-
definite matrix W , ‖x‖2

W , xTWx. x(i|k) is the value of
x at time k + i, predicted at time k. x(0|k) is the value
of x at time k. I is the identity matrix with appropri-
ate dimensions. All vector inequalities are interpreted in
an element-wise sense. An element belonging to Co{·}
means that it is a convex combination of the elements in
{·}. P = diag{P1,P2} denotes the diagonal matrix P com-
posed by the matrices P1 and P2. The symbol “?” induces
a symmetric structure in matrices inequalities. A matrix
or value with the superscript “∗” means that it is the op-
timal solution to an optimization problem. A matrix or
value with the superscript “o” means that it is related with
the final solution to the CCL approach. A matrix or value
with the superscript “t” means that it is the solution to
an iterative optimization problem at the t-th optimization.
The trace of the matrix W is represented as tr{W}. De-
note E(p,M) , {ξ |(ξ − p)TM(ξ − p) ≤ 1} as the ellip-
soidal set associated with the center p, where p,ξ ∈ Rnx ,
and M is a positive-definite matrix. When all the elements
of the vector p are 0, E(p,M) is also denoted by E(M).
The time-dependence of the MPC decision variable is of-
ten omitted for brevity.

2. SYSTEM DESCRIPTION

Consider the discrete-time uncertain LPV system

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)w(k), (1)

y(k) =C(k)x(k)+E(k)w(k),

where u ∈ Rnu , x ∈ Rnx , y ∈ Rny and w ∈ Rnw are respec-
tively the system input, state, output and disturbance vec-
tors. The disturbance w(k) ∈ E(Pw). The input and state
are respectively bounded in the sets U and S given by

U, {u(k)|− ū≤ u(k)≤ ū},
S, {x(k+1)|− ψ̄ ≤ x(k+1)≤ ψ̄}, (2)

where ū = [ū1, ū2, · · · , ūnu ]
T, ūs > 0, s ∈ Z[1,nu]; ψ̄ =

[ψ̄1, ψ̄2, · · · , ψ̄nx ]
T, ψ̄ f > 0, f ∈ Z[1,nx]. The system pa-

rameters [A|B|C|D|E](k) are bounded within the con-
vex set Ω , Co{[Al |Bl |Cl |Dl |El ]}. It means that
there exist non-negative combining coefficients λl(k), l ∈
Z[1,L], such that ∑

L
l=1 λl(k) = 1 and [A|B|C|D|E](k) =

∑
L
l=1 λl(k)[Al |Bl |Cl |Dl |El ], where {Al |Bl |Cl |Dl |El} are the

sub-models of the LPV system. Furthermore, for the con-
trol problem to make sense, it is assumed that system
(1) is controllable and observable for all admissible non-
negative combining coefficients of the LPV system.

For the controlled system (1), the dynamic output feed-
back controller [12–14] is given by{

xc(i+1|k) = Ac(k)xc(i|k)+Lc(k)y(i|k),
u(i|k) = Fx(k)xc(i|k)+Fy(k)y(i|k), i≥ 0,

(3)
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where xc ∈Rnx is the controller state; {Ac,Lc} are the con-
troller gain matrices; {Fx,Fy} are the feedback gain ma-
trices. Denote the estimation error e(k) = x(k)− xc(k)
and the augmented state x̃(k) = [xT

c (k), eT(k)]T. The aug-
mented closed-loop system [14] based on (1) and (3) is

x̃(i+1|k) = T (k, i)x̃(i|k)+H(k, i)w(k+ i), i≥ 0,

x̃(k+1) = x̃(1|k), (4)

[T (k, i),H(k, i)] =
L

∑
l=1

L

∑
j=1

λl(k+ i)λ j(k+ i)[Tl j,Hl j],

Tl j =

[
Ac(k)+Lc(k)C j Lc(k)C j

∆̄l j Al +BlFy(k)C j−Lc(k)C j

]
,

∆̄l j = Al +BlFy(k)C j−Lc(k)C j +BlFx(k)−Ac(k),

Hl j =

[
Lc(k)E j

BlFy(k)E j +Dl−Lc(k)E j

]
.

In the following, it is assumed that the actual system
state and bounded disturbances are unmeasurable, and
the non-negative combining coefficients λl(k), l ∈ Z[1,L],
of the LPV system (1) are unknown at each sampling
time. To stabilize the controlled system (1), the dynamic
OFRMPC approach that optimizes the dynamic output
feedback controller parameters in (3) by a convex opti-
mization is developed to guarantee robust stability of the
augmented closed-loop system (4).

3. ROBUST STABILITY CONDITIONS AND
PHYSICAL CONSTRAINTS

In this Section, robust stability conditions on the aug-
mented closed-loop system (4) are formulated in Theorem
1 according to the techniques of the S-procedure and RPI
set. Then, the constraints on the input and state are con-
sidered in Lemma 2. To deal with non-convex BMIs in
constraints, Lemma 1 is introduced.

Lemma 1: (Young’s inequality [24]) Given two ma-
trices X and Y with appropriate dimensions, then for any
symmetric positive definite matrix S and a scalar ε > 0,
we have

εXTSX +
1
ε

Y TS−1Y ≥ XTY +Y TX . (5)

Remark 1: Suppose that Θ is a symmetric positive
definite matrix. It can be seen that Θ+XTY +Y TX ≥ 0
is equivalent to Θ−XT(−Y )− (−Y )TX ≥ 0. According
to Lemma 1 and considering the quadratic form of ma-
trix Y (k), (6) is a sufficient condition for Θ−XT(−Y )−
(−Y )TX ≥ 0. Let S = I, and apply the Schur complement
[22], (6) is equivalent to (7).

Θ− εXTSX− 1
ε

Y TS−1Y ≥ 0, (6) Θ ? ?
X ε−1I 0
Y 0 εI

≥ 0. (7)

3.1. Robust stability conditions
Theorem 1: Assume that at time k ≥ 0, e(k) ∈

E(Q−1
e (k)), where Qe(k) is known at time k. The

augmented state x̃(k) ∈ E(P−1(k)) (the matrix P(k) ,
diag{P1(k),P2(k)} and P−1(k) , diag{M1(k),M2(k)}) is
satisfied if there exists a scalar ρ(k) ∈ (0,1) such that
(8) and (9) hold. For all possible x̃(k) ∈ E(P−1(k))
and w(k + i) ∈ E(Pw), i ≥ 0, if there exist non-negative
scalars {α1,α2}, positive scalars γ > 0 and ε > 0, weight-
ing matrices Q,R and matrices Mc(k) = Ac(k)P1(k),
YF(k) = Fx(k)P1(k) such that (8)-(11) are satisfied, the
controller parameters {Ac(k),Lc(k),Fx(k),Fy(k)} guaran-
tee that x̃(i+1|k), i≥ 0, are RPI in E(P−1(k)) thereafter.[

ρ(k)Q−1
e (k) ?

I P2(k)

]
≥ 0, (8)[

1−ρ(k) ?
xc(k) P1(k)

]
≥ 0, (9)

Π
C
l j(k,ε)≥ 0, l = j, l, j ∈ Z[1,L],

Π
C
l j(k,ε)+Π

C
jl(k,ε)≥ 0, j > l, l, j ∈ Z[1,L], (10)

1−α1−α2 ≥ 0,1≥ α1 ≥ 0,1≥ α2 ≥ 0, (11)

where ΠC
l j(k,ε), l, j ∈ Z[1,L], are given in (10.a).

Proof: For the constraint on x̃(k) ∈ E(P−1(k)), accord-
ing to the definitions of the augmented state and P(k),

xT
c (k)P

−1
1 (k)xc(k)+ eT(k)P−1

2 (k)e(k)≤ 1. (12)

Let eT(k)P−1
2 (k)e(k) ≤ ρ(k)eT(k)Q−1

e (k)e(k) ≤ ρ(k).
Then, (12) amouts to xT

c (k)P
−1
1 (k)xc(k) ≤ 1− ρ(k). The

above two constraints are respectively guaranteed by (8)
and (9). For all possible x̃(i|k)∈ E(P−1(k)) and w(k+ i)∈
E(Pw), i ≥ 0, by applying the S-procedure, x̃(i + 1|k) ∈
E(P−1(k)), i ≥ 0, are satisfied if there exist non-negative
scalars {α1,α2} and a positive scalar γ > 0 such that

1−‖x̃(i+1|k)‖2
P−1(k)−α1(1−‖x̃(i|k)‖2

P−1(k))−α2(1−

‖w(k+ i)‖2
Pw
)≥ 1

γ

[
‖y(i|k)‖2

Q +‖u(i|k)‖2
R

]
. (13)

If (11) and (14) are satisfied, then (13) holds.

α1‖x̃(i|k)‖2
P−1(k)+α2‖w(k+ i)‖2

Pw
−‖x̃(i+1|k)‖2

P−1(k)

≥ 1
γ

[
‖y(i|k)‖2

Q +‖u(i|k)‖2
R

]
. (14)

For all x̃(i|k) ∈ E(P−1(k)) and w(k+ i) ∈ E(Pw), i≥ 0, the
sufficient and necessary condition for (14) is

Φ(k)−
[

T T(k, i)
HT(k, i)

]
P−1(k)

[
T (k, i),H(k, i)

]
≥

1
γ

[
CE

T
(k, i)QCE(k, i)+FXY

T
(k, i)RFXY

]
, (15)
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Π
C
l j(k,ε) =



α1P1(k) ? ? ? ? ? ? ? ? P1(k) ?
0 α1P2(k) ? ? ? ? ? ? ? ? P2(k)
0 0 α2Pw ? ? ? ? ? ? ? ?

Mc(k) 0 Lc(k)E j P1(k) ? ? ? Λ48 j Λ49 j ? ?
Λ51l AlP2(k) Λ53l j 0 P2(k) ? ? Λ58l j Λ59l j ? ?

Λ61 j Λ62 j Q1/2E j 0 0 γI ? ? ? ? ?

R1/2YF(k) 0 R1/2Fy(k)E j 0 0 0 γI Λ78 j Λ79 j ? ?
0 0 0 ? ? 0 ? ε−1I 0 ? ?
0 0 0 ? ? 0 ? 0 ε−1I ? ?
? 0 0 0 0 0 0 0 0 εI ?
0 ? 0 0 0 0 0 0 0 0 εI


,(10.a)

Λ48 j = Λ49 j = Lc(k)C j,Λ51l = AlP1(k)+BlYF(k)−Mc(k), Λ53l j = BlFy(k)E j +Dl−Lc(k)E j,

Λ58l j = Λ59l j = BlFy(k)C j−Lc(k)E j,Λ61 j = Q1/2C jP1(k),Λ62 j = Q1/2C jP2(k),Λ78 j = Λ79 j = R1/2Fy(k)C j.

where Φ(k) = diag{α1P−1(k),α2Pw}, FXY (k, i) =
[Fx(k)+Fy(k)C(k, i),Fy(k)C(k, i),Fy(k)E(k, i)], CE(k, i) =
[C(k, i),C(k, i),E(k, i)]. By applying the Schur comple-
ment and considering the convexity of description of sys-
tem parameters, (15) is equivalent to

Π̃
C
l j(k) =


α1M(k) ? ? ?

0 α2Pw 0 ?
Tl j Hl j P(k) ?

∆̃41 j ∆42 j 0 γI

≥ 0, (16)

∆̃41 j =

[
Q1/2C j Q1/2C j

R1/2[Fx(k)+Fy(k)C j] R1/2Fy(k)E j

]
.

∆42 j =

[
Q1/2E j

R1/2Fy(k)E j

]
Pre- and post-multiply the left and right sides of (16) by
diag{P(k), I}, respectively, and let Mc(k) = Ac(k)P1(k),
YF(k) = Fx(k)P1(k), then (16) is reformulated as


α1P(k) ? ? ?

0 α2Pw 0 ?

∆̂31l j Hl j P(k) ?

∆̂41 j ∆42 j 0 γI

≥ 0, (17)

∆̂31l j =

[
Mc(k)+Lc(k)C jP1(k) Lc(k)C jP2(k)

∆̂21
31l j ∆̂22

31l j

]
,

∆̂
21
31l j = AlP1(k)+BlFy(k)C jP1(k)−Lc(k)C jP1(k)

+BlYF(k)−Mc(k), ∆̂
22
41 j = Q1/2C jP2(k),

∆̂
22
31l j = AlP2(k)+BlFy(k)C jP2(k)−Lc(k)C jP2(k),

∆̂41 j =

[
Q1/2C jP1(k) Q1/2C jP2(k)

R1/2[YF(k)+Fy(k)C jP1(k)] ∆̂22
41 j

]
.

Finally, (17) is equivalent to

Ξl j(k)−XT
l j(k)Y (k)−Y T(k)Xl j(k)≥ 0, (18)

Ξl j(k) =


α1P(k) ? ? ?

0 α2Pw 0 ?
∆31l ∆32l j P(k) ?
∆41 j ∆42 j 0 γI

 ,
∆31l =

[
Mc(k) 0
Λ51l AlP2(k)

]
,∆32l j =

[
Lc(k)E j

Λ53l j

]
∆41 j =

[
Q1/2C jP1(k) Q1/2C jP2(k)
R1/2YF(k) 0(k)

]
,

Xl j(k) =
[

0 0 0 ΛT
48 j ΛT

58l j 0 ΛT
78 j

0 0 0 ΛT
49 j ΛT

59l j 0 ΛT
79 j

]
,

Y (k) =
[
−P1(k) 0 0 0 0 0 0

0 −P2(k) 0 0 0 0 0

]
.

By applying the Young’s inequality in Lemma 1 and the
Schur complement, and considering the quadratic form
of the matrix Y (k), (18) is satisfied if ∑

L
l=1 ∑

L
j=1 λl(k +

i)λ j(k+ i)ΠC
l j(k,ε)≥ 0, where ΠC

l j(k,ε) are given in The-
orem 1. By employing “Proposition 2" in [26] (where
the complexity parameter n = 2) to deal with the non-
negativity of double convex summations, ∑

L
l=1 ∑

L
j=1 λl(k+

i)λ j(k+ i)ΠC
l j(k,ε)≥ 0 is guaranteed by (10). �

3.2. Constraints on the input and state

Based on the robust stability of the augmented closed-
loop system (4), the following Lemma 2 deals with the
input and state constraints in (2).

Lemma 2: The input and state constraints in (2)
are satisfied if there exist matrices P1(k),P2(k),Mc(k) =
Ac(k)P1(k), YF(k) = Fx(k)P1(k), and non-negative scalars
{θ1,θ2,θ3,θ4}, such that (8)-(11) and the following con-
ditions are satisfied:

Π
U
js ≥ 0, s ∈ Z[1,nu], j ∈ Z[1,L], (19)
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Π
U
js =


θ1P(k) ? ? ? P(k)

0 θ2Pw ? ? ?
ΠU

31s ξsFy(k)E j ū2
s ΠU

34 js ?

0 0 ? ε−1I ?
? 0 0 0 εI

 ,
Π

U
31s =

[
ξsYF(k) 0

]
,ΠU

34 js = ξs[Fy(k)C j,Fy(k)C j],

1−θ1−θ2 ≥ 0,1≥ θ1 ≥ 0,1≥ θ2 ≥ 0, (20)

Π
S
l j f (k,ε)≥ 0, l = j, l, j ∈ Z[1,L],

Π
S
l j f (k,ε)+Π

S
jl f (k,ε)≥ 0, j > l, l, j ∈ Z[1,L], (21)

ϒ
S
l j f (k,ε) =


θ3P(k) ? ? ? P(k)

0 θ4Pw ? ? ?
ΠS

31l f ΠS
32l j f ψ̄2

f ΠS
34l j f ?

0 0 ? ε−1I ?
? 0 0 0 εI

 ,
Π

S
31l f = [ζ f AlP1(k)+BlYF ,ζ f AlP2(k)],

Π
S
32l j f = ζ f (BlFy(k)E j +Dl),

Π
S
34l j f = [ζ f BlFy(k)C j,ζ f BlFy(k)C j], l, j ∈ Z[1,L],

1−θ3−θ4 ≥ 0,1≥ θ3 ≥ 0,1≥ θ4 ≥ 0, (22)

where ξs (ζ f ), s ∈ Z[1,nu] ( f ∈ Z[1,nx]), are the s-th ( f -th)
row of the nu-ordered (nx-ordered) identity matrix.

Proof: The proof is given in Appendix A. �

4. DYNAMIC OFRMPC WITH CONVEX
OPTIMIZATION

4.1. Main optimization problem and bounds of the es-
timation error set

The following main optimization problem is solved to
minimize the scalar γ and optimize the dynamic output
feedback controller parameters.

min
α1,α2,θ1,θ2,θ3,θ4,ρ,γ,Mc,Lc,YF ,Fy,P1,P2

γ, (23)

s.t.(8)− (11), (19)− (22). (24)

Notice that there are some bilinear terms in (17), (A.4),
and (A.11), which lead to the difficulties in solving non-
convex BMI optimization problem [19, 20]. By resorting
to the Young’s inequality in Lemma 1, the non-convex
BMI constraints in (17), (A.4), and (A.11) are respectively
reformulated as (10), (19) and (21). When the scalars α1,
θ1, θ3 and ε are pre-specified, the constraints in problem
(23)-(24) are LMIs and solved by semi-definite program-
ming, which is a convex optimization and solved via an
LMI toolbox.

Suppose that at time k≥ 0, the optimal solution to prob-
lem (23)-(24) is {α1,α2,θ1,θ2,θ3,θ4,ρ,γ,Mc,Lc,YF ,Fy,P1,
P2}∗(k). Based on Theorem 1, the augmented state at time
k+1 satisfies x̃(k+1) ∈ E([P∗(k)]−1), i.e.,

‖xc(k+1)‖2
[P∗1 (k)]−1 +‖e(k+1)‖2

[P∗2 (k)]−1 ≤ 1. (25)

In problem (23)-(24), only (8) and (9) are related with the
state information. At time k+1, choose {P1(k+1),P2(k+
1)}= {P∗1 (k),P∗2 (k)} and let

ρ(k+1) = 1− xT
c (k+1)[P1(k+1)]−1xc(k+1),

Qe(k+1) = ρ(k+1)P2(k+1), (26)

the constraints (8) and (9) at time k+ 1 are satisfied. By
further choosing {α1,α2,θ1,θ2,θ3,θ4,ρ,γ,Mc,Lc,YF ,Fy}(k+
1) = {α1,α2,θ1,θ2,θ3,θ4,ρ,γ,Mc,Lc,YF ,Fy}∗(k), prob-
lem (23)-(24) is feasible at time k + 1. Therefore, ac-
cording to the invariance condition on the augmented
closed-loop system, e(k+ 1) ∈ E(Q−1

e (k+ 1)). Lemma 3
refreshes bounds of the estimation error set at time k+1,
which bases on the estimation error system and compares
with the set E(Q−1

e (k+1)).

Lemma 3: For systems (1) and (3), suppose that at
time k ≥ 0, e(k) ∈ E(Q−1

e (k)) and w(k) ∈ E(Pw). If
there exist a symmetric positive matrix Q̂e(k + 1) and
non-negative scalars {φ1,φ2} such that problem (27)-(29)
is feasible, e(k + 1) ∈ E(Q̂−1

e (k + 1)), else e(k + 1) ∈
E(Q−1

e (k+1)).

min
Q̂e(k+1)≥0,φ1≥0,φ2≥0

tr(Q̂e(k+1)), (27)

s.t.


Γ11 ? ? ?
0 φ1Q−1

e ? ?
0 0 φ2Pw ∗

Γ31l Al Dl Q̂e(k+1)

≥ 0, (28)

Qe(k+1)≥ Q̂e(k+1). (29)

Γ11 = 1−φ1−φ2,

Γ31l = Alxc(k)− xc(k+1)+Blu(k), l ∈ Z[1,L].

Proof: Define θ̃ = [1,eT(k),wT(k)]T ∈ R1+nx+nw . Ac-
cording to (1) and (3),

e(k+1) = x(k+1)− xc(k+1) ∈ Co{Πl θ̃(k)},
Πl = [Alxc(k)− xc(k+1)+Blu(k),Al ,Dl ]. (30)

At time k+1, e(k+1) ∈ E(Q̂−1
e (k+1)) is represented by

θ̃
Tdiag{1,0,0}θ̃ − θ̃

T
Π

T
l Q̂−1

e (k+1)Πl θ̃ ≥ 0. (31)

Furthermore, eT(k)Q−1
e (k)e(k) ≤ 1 and wT(k)Pww(k) ≤ 1

can be represented by (32) and (33), respectively.

θ̃
Tdiag{1,−Q−1

e (k),0}θ̃ ≥ 0, (32)

θ̃
Tdiag{1,0,−Pw}θ̃ ≥ 0. (33)

By applying the S-procedure, a sufficient condition for
“(32) and (33) ⇒ (31)” to hold is that there exist non-
negative scalars φ1 and φ2 such that

θ̃
Tdiag{1,0,0}θ̃ − θ̃

T
Π

T
l Q̂−1

e (k+1)Πl θ̃ −φ1θ̃
T×

diag{1,−Q−1
e ,0}θ̃ −φ2θ̃

T(k)diag{1,0,−Pw}θ̃ ≥ 0.

l ∈ Z[1,L]. (34)
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The necessary and sufficient condition for (34) is

diag{1,0,0}−Π
T
l Q̂−1

e (k+1)Πl−φ1diag{1,
−Q−1

e ,0}−φ2diag{1,0,−Pw} ≥ 0, l ∈ Z[1,L]. (35)

By applying the Schur complement, (35) is equivalent to
(28). If problem (27)-(29) is feasible, a smaller estima-
tion error set E(Q̂−1

e (k + 1)) satisfying E(Q̂−1
e (k + 1)) ⊆

E(Q−1
e (k+1)) is optimized. If problem (27)-(29) is infea-

sible, at time k+1, e(k+1) ∈ E(Q−1
e (k+1)). �

4.2. Overall algorithm for dynamic OFRMPC
Algorithm 1 synthesizes the convex main optimization

problem to optimize the dynamic controller parameters
and the refreshment on bounds of the estimation error set.

Algorithm 1: Suppose that e(0) ∈ E(Q−1
e (0)), where

Qe(0) is known at time k = 0. Choose xc(0) sat-
isfying E(xc(0),Q−1

e (0)) ⊆ S. Pre-specify the scalars
{α1,θ1,θ3} ∈ (0,1).

At time k = 0, the gridding method (Remark 5 in
[23]) searches the scalar ε to ensure feasibility of prob-
lem (23)-(24). Let the scalars ∆ε = 1/N, N ∈ Z+, and
κr = r∆ε ,r ∈ Z[1,N]. Rescale ε by defining κ = ε/(1+ ε).
Then, εr = κr/(1−κr),r ∈ Z[1,N]. Set r = 1 and perform
steps (1)-(3).

(1) Let ε = εr, and solve problem (23)-(24).
(2) If problem (23)-(24) is infeasible and r < N, increase

r by 1 and return to step (1).
(3) If problem (23)-(24) is feasible, the searched ε is εo.

At time k ≥ 0, fix ε = εo and perform steps (4)-(7).

(4) Solve problem (23)-(24) to obtain the solution
{α1,α2,θ1,θ2,θ3,θ4,ρ,γ,Mc(k),Lc(k),YF(k),Fy(k),
P1(k),P2(k)}∗.

(5) Calculate A∗c(k) = M∗c (k)[P
∗
1 (k)]

−1 and F∗x (k) =
Y ∗F (k)[P

∗
1 (k)]

−1. Implement the control input u(k) =
F∗x (k)xc(k)+F∗y (k)y(k) to system (1), and let xc(k+
1) = A∗c(k)xc(k)+L∗c(k)y(k).

(6) Calculate the scalar ρ(k+1) and matrix Qe(k+1) ac-
cording to (26).

(7) If problem (27)-(29) is feasible, let e(k + 1) ∈
E(Q̂−1

e (k+1)), else e(k+1) ∈ E(Q−1
e (k+1)).

Remark 2: In Algorithm 1, the scalar ε is off-line
searched to ensure feasibility of problem (23)-(24) at time
k = 0. Obviously, the scalars εr > 0 if and only if κr ∈
(0,1). For each grid points of (κ1,κ2, . . . ,κN), we can get
a sequence of scalars εr,r∈Z[1,N]. It can be seen that when
the integer N is larger, the uniform grid on each κr will be
smaller, which is advantageous for improving search ac-
curacy on the scalar ε . However, the off-line computation
burden on searching the scalar ε will be larger. Compared
with “Algorithm 1 in [12, 14]" and the main optimization

problem in [13], where an iterative CCL approach prob-
lem is applied to optimize dynamic controller parameters,
problem (23)-(24) is solved as a non-iterative method and
the computational burden can be reduced. Furthermore,
by properly updating bounds of the estimation error sets
in steps (6) and (7), recursive feasibility of problem (23)-
(24) can be ensured (see the proof in Theorem 2).

5. THE COMPARISON WITH DYNAMIC
OFRMPC VIA THE CCL APPROACH

Similar to “Algorithm 1 in [12, 14]" and the main op-
timization problem in [13], the following optimization
problem can be solved to optimize the dynamic output
feedback controller parameters.

min
α1,α2,θ1,θ2,θ3,θ4,γ,Ac,Lc,Fx,Fy,P1,P2,M1,M2

γ, (36)

s.t. (8)(9)(11)(20)(22)(A.4),P(k) = M−1(k), (37)

Π̃
C
l j(k)≥ 0, l = j, l, j ∈ Z[1,L],

Π̃
C
l j(k)+ Π̃

C
jl(k)≥ 0, j > l, l, j ∈ Z[1,L], (38)

Π̃
S
l jt(k)≥ 0, l = j, l, j ∈ Z[1,L], t ∈ Z[1,nx]

Π̃
S
l jt(k)+ Π̃

S
jlt(k)≥ 0, j > l, l, j ∈ Z[1,L], (39)

where Π̃C
l j(k) and Π̃S

l j(k) are respectively in (16) and
(A.10). Problem (36)-(39) is non-convex optimization
even if α1, θ1 and θ3 are fixed due to inverse matrices P(k)
and M(k) [21]. To solve problem (36)-(39), the CCL ap-
proach in [12–14] is employed to achieve P(k) = M−1(k)
and minimize γ by an iterative approach. Firstly, add con-
dition (40) to problem (36)-(39).[

P(k) I
I M(k)

]
≥ 0. (40)

Then, problem (36)-(39) becomes

min
α1,α2,θ1,θ2,θ3,θ4,γ,Ac,Lc,Fx,Fy,P1,P2,M1,M2

γ, (41)

s.t. (8)(9)(11)(20)(22)(A.4)(38)− (40). (42)

In problem (41)-(42), it is possible to achieve
P(k) = M−1(k) by minimizing tr(P(k)M(k)) because
tr(P(k)M(k)) ≥ 2nx always satisfies when (40) is consid-
ered. The minimization of tr(P(k)M(k)) should accom-
pany the minimization of γ . Algorithm 2 summarizes the
procedures to solve problem (41)-(42) and refresh bounds
of the estimation error set.

Algorithm 2: At time k = 0, select xc(0) and e(0) ∈
E(Q−1

e (0)). Pre-specify a larger integer N0 ∈ Z+ and
scalars {α1,θ1,θ3,κ} ∈ (0,1). At time k ≥ 0, perform the
following steps:

(1) Set t = 0, flag = 0, γo = ∞. Solve problem (41)-(42)
and denote {P,M,ρ}t = {P,M,ρ}∗.
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(2) Increase t by 1 and solve

min
α2,θ2,θ4,γ,ρ,Ac,Lc,Fx,Fy

γ, (43)

s.t.(8)(9)(11)(20)(22)(A.4)(38)− (39),

{P,M,ρ}= {M,M,ρ}t−1,γ < κγ
o. (44)

If problem (43)-(44) is feasible, denote
{γ,Ac,Lc,Fx,Fy}o(k)= {γ,Ac,Lc,Fx,Fy}∗, {P,M}o(k)
= {(Mt−1)−1 ,Mt−1}, {P,M,ρ}t = {P,M,ρ}t−1, set
flag = 1 and go to step (4), else solve problem (45)-
(46) to obtain {M,P,ρ}t = {M,P,ρ}∗ and go to step
(3).

min
α2,θ2,θ4,γ,ρ,Ac,Lc,Fx,Fy,M1,M2,P1,P2

tr(Θ), (45)

s.t. (8)(9)(11)(20)(22)(A.4)(38)− (40),γ < κγ
o,

Θ = Pt−1M+Mt−1P. (46)

(3) If t < N0 and flag = 0, go to step (2).
(4) If t < N0 and flag = 1, set {M,P,ρ}0 = {M,P,ρ}t ,

t = 0, and go to step (2).
(5) If t = N0 and flag = 1, the final it-

erative solution to problem (43)-(44) is
{γ,Ac,Lc,Fx,Fy,M1,M2,P1,P2}o(k).

(6) Implement u(k) = Fo
x (k)xc(k) + Fo

y (k)y(k) and let
xc(k+1) = Ao

c(k)xc(k)+Lo
c(k)y(k).

(7) Let {P1,P2}(k+ 1) = {P1,P2}o(k). Select the scalar
ρ(k+1) and matrix Qe(k+1) according to (26).

(8) If problem (27)-(29) is feasible, let e(k + 1) ∈
E(Q̂−1

e (k+1)), else e(k+1) ∈ E(Q−1
e (k+1)).

Remark 3: In Algorithm 2, N0 is the maximal number
of iterative steps for the CCL method; t gather the counts
for the iterative optimization. At each iteration optimiza-
tion, three cases are involved. For the case (a) in step (3),
problems (43)-(44) and (45)-(46) are iteratively solved to
find an initial solution to problem (43)-(44). For the case
(b) in step (4), a solution to problem (43)-(44) is obtained
and the parameter t is reset to 0, then problems (43)-(44)
and (45)-(46) will be iteratively solved in the following
procedures to minimize a smaller γ . For the case (c) in
step (5), the iterative CCL approach to minimize γ is ter-
minated, then the final solution to problem (43)-(44) is
obtained. It can be seen that the iterative optimization ter-
minates when problem (43)-(44) cannot get the solution
within N0 steps. Therefore, at each time k, problems (43)-
(44) and (45)-(46) will be iteratively solved at least N0

times, which increases the on-line computational burden.

6. COMPLEXITY ANALYSIS

The complexity analysis (Table 1) for the optimization
problems in Algorithms 1 and 2 solved by an LMI tool
is polynomial-time, which (regarding the fastest interior-
point algorithms) is proportional to K3L, where K is the

number of LMI scalar variables and L is the number of
LMI rows [27]. In Algorithm 1, at each time k, the convex
optimization problem (23)-(24) is only solved one time to
simultaneously minimize the scalar γ with the correspond-
ing optimal dynamic output feedback controller parame-
ters. In Algorithm 2, considering the existence of mutual
inverse matrices P(k) and M(k) in the optimization prob-
lem, at each time k ≥ 0, the iterative CCL approach op-
timizes the mutual inverse matrices P(k) and M(k) and
minimizes the scalar γ by an iterative method, where the
following steps iterate in finite steps. Firstly, find mutual
inverse matrices P(k) and M(k) satisfying P(k) = M−1(k)
by an iterative optimization; secondly, minimize the scalar
γ to optimize the dynamic output controller parameters
with the satisfaction of P(k) = M−1(k); thirdly, find mu-
tual inverse matrices P(k) and M(k) again with the ad-
ditional consideration of the decrease in the scalar γ . In
Table 1, the optimization problems in the compared al-
gorithms have the similar LMI scalar variables and LMI
rows. Because the optimization problem in Algorithm 2
takes the iterative optimization, the computational time
will increase compared with Algorithm 1.

7. RECURSIVE FEASIBILITY AND ROBUST
STABILITY

Theorem 2: For the LPV system (1) with bounded
disturbances, the dynamic OFRMPC approaches in Algo-
rithms 1 and 2 are performed. If problem (23)-(24) (or
(36)-(39)) is feasible at time k = 0, then recursive feasi-
bility of problem (23)-(24) (or (36)-(39)) is ensured. The
optimized dynamic output feedback controller parameters
steer the augmented closed-loop system (4) to converge
to a neighborhood of the origin such that robust stability
of the controlled system (1) is guaranteed. The input and
state constraints in (2) are satisfied for all time k ≥ 0.

Proof: Recursive feasibility of the optimization prob-
lem means that once the optimization problem is fea-
sible at time k = 0, it will be feasible for all time
k ≥ 0. In Algorithm 1, suppose that at time k ≥ 0,
the optimal solution to problem (23)-(24) is Γ∗(k) =
{α1,α2,ε,θ1,θ2,θ3,θ4,ρ,γ,Mc,Lc,YF ,Fy,P1,P2}∗(k). As
the analysis in Section 4.1, at time k + 1, by choos-
ing ρ(k + 1) and Qe(k + 1) according to (26), and
let {α1,α2,ε,θ1,θ2,θ3,θ4,γ,Mc,Lc,YF ,Fy}(k + 1) =
{α1,α2,ε,θ1,θ2,θ3,θ4,γ,Mc,Lc,YF ,Fy}∗(k), problem
(23)-(24) is feasible at time k+1. If problem (27)-(29) is
feasible, a smaller estimation error set E(Q̂−1

e (k+1)) sat-
isfying E(Q̂−1

e (k+ 1)) ⊆ E(Q−1
e (k+ 1)) can be obtained.

Replace the matrix Qe(k+1) in (8) by Q̂e(k+1), problem
(23)-(24) will also be feasible at time k+1. Therefore, the
optimal solutions to problems (23)-(24) and (27)-(29) at
time k are a feasible solution to problem (23)-(24) at time
k+ 1 such that recursive feasibility of problem (23)-(24)
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Table 1. The comparison of complexity analysis

the optimization problems the scalars K and L

problem (23)-(24) K= 5+n2
x +nxny +nunx +nuny +nx(nx +1), L= 3nx +

L(L+1)
2 [8nx +nw +ny +nu +nx(3nx +

nw +1)]+Lnu(3nx +nw +1)+4
problem (43)-(44) K = 5+n2

x +nxny +nunx +nuny, L = 3nx +
L(L+1)

2 [4nx +nw +ny +nu +nx(2nx +nw +1)]+
Lnu(nx +nw +1)+5

problem (45)-(46) K= 5+n2
x +nxny+nunx+nuny+2nx(nx+1), L= 5nx+

L(L+1)
2 [4nx+nw+ny+nu+nx(2nx+

nw +1)]+Lnu(nx +nw +1)+5

is ensured. Here we omit the proof on recursive feasibil-
ity of problem (36)-(39) for brevity because the proof is
similar. When problem (23)-(24) is solved at time k+ 1,
γ∗(k+1) ≤ γ∗(k) will be obtained. With the evolution of
time, γ∗(k) will converge to a constant value.

Consider the following disturbance-free augmented-
closed loop system (i.e., system (4) without consideration
of bounded disturbances), where x̃u(k) = [xT

cu(k),e
T
u (k)]

T.

x̃u(i+1|k) = T (k, i)x̃u(i|k), i≥ 0, x̃u(0|k) = x̃(k),

yu(i|k) =C(k)[xcu(i|k)+ eu(i|k)],
uu(i|k) = Fx(k)xcu(i|k)+Fy(k)yu(i|k). (47)

In Theorem 1, condition (10) guarantees the satisfaction
of (18). Accordingly, if (18) is satisfied, then (16) holds.
By applying the Schur complement, (16) also implies that

α1P−1(k)−T T(k, i)P−1(k)T (k, i)≥ 1
γ∗(k)

×[
CE

T
(k, i)QCE(k, i)+FT

XY (k, i)RFXY (k, i)
]
, (48)

CE(k, i) = [C(k, i),C(k, i)],

FXY (k, i) = [Fx(k)+Fy(k)C(k, i),Fy(k)C(k, i)].

Since α1 ∈ (0,1) is pre-specified, (48) ensures that

P−1(k)−T T(k, i)P−1(k)T (k, i)>
1

γ∗(k)
[CE

T
(k, i)×

QCE(k, i)+FT
XY (k, i)RFXY (k, i)], i≥ 0. (49)

The above condition (49) guarantees the stability of the
disturbance-free augmented-closed loop system (47), i.e.,

‖x̃u(i|k)‖2
P−1(k)−‖x̃u(i+1|k)‖2

P−1(k) >
1

γ∗(k)
×[

‖yu(i|k)‖2
Q +‖uu(i|k)‖2

R

]
, i≥ 0. (50)

Therefore, (49) guarantees that the disturbance-free aug-
mented state converges within the set E(P−1(k)). By sum-
ming (50) from i = 0 to i = ∞, then considering x̃u(0|k) =
x̃(k) and x̃u(0|k) ∈ E(P−1(k)), it can be obtained that

J∞(k) =
∞

∑
i=0

[
‖yu(i|k)‖2

Q +‖uu(i|k)‖2
R

]
< γ

∗(k).

Here, γ∗(k) is an upper bound of the performance cost
for system (47). The condition J∞(k) < γ∗(k) results in
limi→∞{yu(i|k),uu(i|k)} = {0,0}. With the evolution of
time, the disturbance-free system outputs and inputs will
converge to the origin. Since bounded disturbances are
considered, the augmented closed-loop system (4) will be
stabilized within a region in a neighborhood of the origin
such that robust stability of the controlled system (1) is
ensured. Satisfaction of input and state constraints are due
to (19)-(22). �

8. SIMULATION EXAMPLE

In this section, we provide two simulation examples.
The first example is the mass-spring-damping mechani-
cal system, and the second example is a numerical exam-
ple. For the two simulations examples, we compare Al-
gorithms 1 and 2. In Algorithm 2, select N0 = 50 and
κ = 0.98. In Algorithms 1 and 2, choose parameters
α1 = θ1 = θ3 = 0.98, Pw = 25, weight matrices Q = 25,
R = 1. Matlab 9.3 (Intel i5-7200U 2.5GHz, 8G Memory)
is utilized for the simulations.

8.1. Example 1
According to Newton’s law, the mass-spring-damping

mechanical system in Figure 1 is described by

mẍ+Ff +Fs = u(k), (51)

where m stands for the mass, Ff is the friction force, Fs is
the restoring force of the spring. The friction force Ff = cẋ
with c > 0; the hardening spring force Fs = k0(1+a2x2)x
with constant parameters a and k0. Being different from
[28], where the parameter k0 is uncertain in an interval set,
we assume that the scalar k0 = 8N/m is a constant value.
Let x denote the spring’s displacement from a reference
point. Thus,

mẍ+ cẋ+ k0x+ k0a2x3 = u(k). (52)

Define x(k) = [x1(k),x2(k)]T = [x(k), ẋ(k)]T. Let x1(k) ∈
[−2,2], u(k) ∈ [−2,2], m = 1kg, a = 0.3m−1, c =
2N.m/s. System (52) is reformulated as the following
continuous-time state space model, where bounded dis-
turbance w(k) ∈ εPw is additional considered.

ẋ(k) = Ac(k)x(k)+Bc(k)u(k)+Dc(k)w(k),
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y(k) =Cc(k)x(k)+Ec(k)w(k), (53)

where Ac(k) =

[
0 1

− k0+k0a2x2
1(k)

m − c
m

]
, Bc(k) =

[
0
1
m

]
,

Cc(k) = [1,0], Dc(k) = [0.01,0.01]T, Ec(k) = 0.05.
Here, the matrices with the subscript “c" stand for the
continuous-time system parameters. Considering the term
“− k0+k0a2x2

1(k)
m ” in system matrix Ac(k) is nonlinear and the

constraints on the state x1(k), by applying the sector non-
linearity method [29], the nonlinear system (53) can be
approximated by the convex combination of continuous-
time LPV system’s sub-models, i.e.,

ẋ(k) =
L

∑
l=1

λl(k)[Ac
l x(k)+Bc

l u(k)+Dc
l w(k)],

y(k) =
L

∑
l=1

λl(k)[Cc
l x(k)+Ec

l w(k)], l ∈ Z[1,2], (54)

Ac
1 =

[
0 1

− k0+4k0a2

m − c
m

]
,Ac

2 =

[
0 1
− k0

m − c
m

]
,

Bc
l =

[
0
1
m

]
,Cc

l = [1,0],Dc
l = [0.01,0.01]T,

Ec
l = 0.05, l ∈ Z[1,2],λ1(k) =

x2
1(k)
4

,λ2(k) = 1− x2
1(k)
4

.

Since the state x1(k) is unmeasurable, the non-negative
combining coefficients λ1(k) and λ2(k) of the LPV system
are not exactly known. Use the first order Euler approxi-
mation to discretize the continuous-time system (54) with
sampling period Ts = 0.1s, the corresponding discrete-
time LPV system parameters in system (1) are obtained.

In the simulation, for Algorithms 1-2, choose Q−1
e (0) =

diag{ 0.5
0.152 ,

0.5
0.32 }, e(0) = [0.15,−0.3]T, xc(0) = [1.5,−3]T

and x(0) = [1.65,−3.3]T. For Algorithm 1, at time k = 0,
choose N = 1000. The searched scalar εo = 89.9091. The
responses of the estimated states and true states with the
corresponding estimation error sets are shown in Figures
2 and 3 (where the solid (dash) lines with legends are the
true (estimated) states, and the ellipsoidal set are the es-
timation error sets). In Figures 2 and 3, the estimated
states converge to the origin, and the true states contained
in the ellipsoids with the centers of the estimated states
are steered to the neighborhood of origin. The responses
of xc(k) and x(k) for Algorithms 1 and 2 in Figure 4 are
almost the same. Figure 5 indicates that the input con-
straints are satisfied. The average computational time for
three times simulations that spent on Algorithm 1 and Al-
gorithm 2 are respectively 38.36 seconds and 1569.95 sec-
onds. Compared with Algorithm 2, Algorithm 1 signifi-
cantly reduces the on-line computational burden.

8.2. Example 2

Consider the system A(k) =
[

0.385 0.33
0.21+µ(k) 0.59

]
,

where µ(k) is an uncertain scalar satisfying |µ(k)| ≤ µ̄ ,

Fig. 1. The mass-spring-damping mechanical system.
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Fig. 2. The responses of xc(k), x(k) and e(k), Algorithm
1, Example 1.
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Table 2. The simulation time for different bounds of the parameters |µ(k)| ≤ µ̄

µ̄ 0.11 0.09 0.07 0.05 0.03 0.01
Simulation time for Algorithm 1 (seconds ) 22.38 21.45 21.70 21.55 21.29 21.11
Simulation time for Algorithm 2 (seconds ) 1017.64 1024.97 1111.40 1141.65 825.39 794.90

B(k) = [1, 0]T, C(k) = [0, 1], D(k) = [0.3, 0.3]T,
and E(k) = 1, ψ̄ = 24. λ1(k) =

0.5−µ(k)
0.5 , λ2(k) =

µ(k)
0.5 .

ū = 2. For Algorithms 1-2, choose µ̄ = 0.11, µ(k) =
sin(k), Q−1

e (0) = diag{ 0.5
22 ,

0.5
22 }, e(0) = [2,2]T, xc(0) =

[13.9500,13.9500]T, and x(0) = [15.9500,15.9500]T. In
Algorithm 1, choose N = 10000 and the searched scalar
εo = 1110.011. Figures 6 and 7 are the responses of the
estimated states and true states with the corresponding es-
timation error sets (where the solid (dash) lines with leg-
ends are the true (estimated) states, and the ellipsoidal set
are the estimation error sets). In Figures 8 and 11, the re-
sponses of xc(k) and x(k) in the compared algorithms are
almost the same. The input constraints shown in Figure
12 are satisfied. Considering that different bounds of LPV
system’ parameters may have effects on the computational
time, Table 2 compares the simulation time for different
bounds of parameter |µ(k)|, where the average computa-
tional time for three times simulations are considered. It
can be seen that the computational time for Algorithm 1
is about 21 seconds. Different bounds of |µ(k)| can affect
the simulation time on Algorithm 2. Nevertheless, similar
to Example 1, Algorithm 1 compared with Algorithm 2
reduces the on-line computational burden.

9. CONCLUSION

A convexity approach to dynamic OFRMPC is pro-
posed for LPV systems with unknown non-negative com-
bining coefficients and bounded disturbances. The off-line
optimization problem searches some parameters to ensure
initial feasibility of the on-line main optimization problem
such that the dynamic output feedback controller param-
eters can be simultaneously optimized via the convex op-
timization problem. The auxiliary optimization problem
refreshes bounds of the estimation error set to ensure re-
cursive feasibility of the optimization problem. Compared
with the dynamic OFRMPC with the CCL approach, the
dynamic OFRMPC with the convex optimization signifi-
cantly reduces the on-line computational burden.

APPENDIX A

A.1. Proof of Lemma 2
The input constraints −ū ≤ u(i|k) ≤ ū amount to ū2

s ≥
‖ξsu(i|k)‖2

I , i ≥ 0, i.e., 1−‖ξsu(i|k)‖2
[1/ū2

s ]
≥ 0,s ∈ Z[1,nu ]. Since

x̃(i|k) ∈ εP−1(k) and w(k+ i) ∈ E(Pw), i ≥ 0, according to the S-
procedure, the constraints on 1−‖ξsu(i|k)‖2

[1/ū2
s ]

, s ∈ Z[1,nu ], are

satisfied if there exist non-negative scalars {θ1,θ2} such that

1−‖ξsu(i|k)‖2
[1/ū2

s ]
−θ1(1−||x̃(i|k)||2[P−1(k)])−

θ2(1−||w(k+ i)||2Pw
)≥ 0, s ∈ Z[1,nx ]. (A.1)

A sufficient condition for (A.1) is that conditions (20) and (A.2)
simultaneously hold.

θ1||x̃(i|k)||2P−1(k)+θ2||w(k+ i)||2Pw
−‖ξsu(i|k)‖2

[1/ū2
s ]
. (A.2)

Considering that u(i|k) = ∆x̃(k, i)x̃(i|k)+∆w(k, i)w(k+ i), where
∆x̃(k, i) = [Fx +FyC(k, i),FyC(k, i)] and ∆w(k, i) = FyE(k, i), the
sufficient and necessary conditions for (A.2) are[

θ1P−1 0
0 θ2Pw

]
− [∆u

s (k, i)]
T 1

ū2
s
[∆u

s (k, i)]≥ 0, (A.3)

∆
u
s (k, i) = ξs[∆x̃(k, i),∆w(k, i)],s ∈ Z[1,nu ].

By applying the Schur complement and considering the poly-
topic description of system parameters, (A.3) is equivalent to

Π̃
U
s j =

 θ1M ? ?
0 θ2Pw ?

ξs∆
j
x̃ ξs∆

j
w ū2

s

≥ 0, j ∈ Z[1,L]. (A.4)

∆
j
x̃ = [Fx +FyC j,FyC j],∆

j
w = FyE j

By applying the congruent transformation via diag{P, I}, (A.4)
holds if θ1P ? ?

0 θ2Pw ?

ξs∆̃
j
x̃ ξsFyE j

1
2 ū2

s

≥ 0, j ∈ Z[1,L], (A.5)

∆̃
j
x̃ = [YF(k)+FyC jP1(k),FyC jP2(k)].

The above (A.5) can be reformulated as

Θ
U
js− X̂T

jsŶ − Ŷ TX̂ js ≥ 0, (A.6)

Θ
U
js =

[
θ1P ? ?

0 θ2Pw ?
ξs[YF ,0] ξsFyE j

1
2 ū2

s

]
,

X̂ js =
[

0 0 0 [ΠU
34 js]

T
]
,Ŷ = [ −P 0 0 0 ] .

Similar to Theorem 1, by applying the Young’s inequality in
(5) and the Schur complement, then further considering the
quadratic form of the matrix Ŷ (k), (A.6) is guaranteed by (19).

The state constraints −ψ̄ ≤ x(i+ 1|k) ≤ ψ̄ amount to ψ̄2
f ≥

‖ξ f x(i+1|k)‖2
I , i≥ 0, i.e., 1−‖ξ f x(i+1|k)‖2

[1/ψ̄2
f ]
≥ 0, f ∈Z[1,nx ].

Since x̃(i|k) ∈ εP−1(k) and w(k+ i) ∈ E(Pw), i ≥ 0, according to
the S-procedure, the constraints on 1−‖ξ f x(i+ 1|k)‖2

[1/ψ̄2
f ]

, f ∈
Z[1,nx ], are satisfied if there exist non-negative scalars {θ3,θ4}
such that

1−‖ξ f x(i+1|k)‖2
[1/ψ̄2

t ]
−θ3(1−||x̃(i|k)||2P−1(k))−

θ4(1−||w(k+ i)||2Pw
)≥ 0, f ∈ Z[1,nx ]. (A.7)

A sufficient condition for (A.7) is that conditions (22) and (A.8)
simultaneous hold.

θ3||x̃(i|k)||2P−1(k)+θ4||w(k+ i)||2Pw
−‖ξ f x(i+1|k)‖2

[1/ψ̄2
f ]
,

f ∈ Z[1,nx ]. (A.8)
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The sufficient and necessary conditions for (A.8) are[
θ3P−1 0

0 θ4Pw

]
−Π

T(k, i)
1

ψ̄2
f

Π(k, i)≥ 0, (A.9)

Π(k, i) = [[I, I]T (k, i), [I, I]H(k, i)], f ∈ Z[1,nx ].

By applying the Schur complement and considering the poly-
topic of the system parameters, (A.9) is equivalent to

Π̃
S
l j f =

 θ3M1 ? ? ?
0 θ3M2 ? ?
0 0 θ4Pw ?

Ξ41l j f Ξ42l j f Ξ43l j f ψ̄2
f

≥ 0, (A.10)

Ξ41l j f = ζ f [Al +BlFyC j +BlFx],Ξ42l j f = ζ f [Al +BlFyC j],

Ξ43l j f = ζ f [BlFyE j +Dl ].

Further by applying the congruent transformation via diag{P, I},
(A.10) is guaranteed by θ3P1 ? ? ?

0 θ3P2 ? ?
0 0 θ4Pw ?

ζ f Ξ
′
41l j f ζ f Ξ

′
42l j f ζ f Ξ43l j f ψ̄2

f

≥ 0, (A.11)

Ξ
′
41l j f = ζ f [AlP1 +BlFyC jP1 +BlYF ],

Ξ
′
42l j f = ζ f [AlP2 +BlFyC jP2].

Condition (A.11) can be reformulated as

Θ
S
l j f − X̃T

l j f Ŷ − X̃T
l j f Ŷ ≥ 0, (A.12)

Θ
S
l j f =

 θ3P1 ? ? ?
0 θ3P2 ? ?
0 0 θ4Pw ?

Ξ̄41l f ζ f AlP2 Ξ43l j f ψ̄2
f

 ,
Ξ̄41l f = ζ f [AlP1 +BlYF ], X̃l j f =

[
0 0 0 [ΠS

34l j f ]
T ] .

By applying Young’s inequality and the Schur complement, then
further considering the quadratic form of matrix Ŷ , (A.8) is guar-
anteed by (23) with additional dealing with the non-negativity of
double convex summations by applying “Proposition 2" in [26].
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