
HAL Id: hal-02467123
https://hal.science/hal-02467123v1

Preprint submitted on 4 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ant Routing scalability for the Lightning Network
Cyril Grunspan, Gabriel Lehéricy, Ricardo Pérez-Marco

To cite this version:
Cyril Grunspan, Gabriel Lehéricy, Ricardo Pérez-Marco. Ant Routing scalability for the Lightning
Network. 2020. �hal-02467123�

https://hal.science/hal-02467123v1
https://hal.archives-ouvertes.fr

Ant Routing scalability for the Lightning Network

Cyril Grunspan, Gabriel Lehéricy ∗,1 and Ricardo Pérez-Marco †,2

1De Vinci Research Center, Paris-La Défense, France
2CNRS, IMJ-PRG, Université Sorbonne, Paris, France

February 4, 2020

Abstract

The ambition of the Lightning Network is to provide a second layer to the
Bitcoin network to enable transactions confirmed instantly, securely and anonymously
with a world scale capacity using a decentralized protocol. Some of the current
propositions and implementations present some difficulties in anonymity, scaling
and decentalization. The Ant Routing algorithm for the Lightning Network was
proposed in [7] for maximal decentralization, anonymity and potential scaling. It
solves several problems of current implementation, such as channel information
update and centralization by beacon nodes. Ant Routing nodes play all the same
role and don’t require any extra information on the network topology beside for their
immediate neighbors. The goal of LN transactions are completed instantaneously
and anonymously. We study the scaling of the Ant Routing protocol. We propose a
precise implementation, with efficient memory management using AVL trees. We
evaluate the efficiency of the algorithm and we estimate the memory usage of nodes
by local node workload simulations. We prove that the number of transactions per
second that Ant Routing can sustain is of the order of several thousands which is
enough for a global payment network.
Keywords. Bitcoin, Lightning Network, Ant Routing, AVL Trees

1 Introduction
The Lightning Network was introduced in order to address Bitcoin scalability [14].
It consist on a “layer 2”-network set on top of Bitcoin’s network which facilitates
micro-payments between bitcoin users without needing to broadcast the transaction
on the blockchain.

The Lightning Network is not a complete graph, but has the property of channel
composition. This allows any user on the network to make secure payments to any
other node in the same connected component of the network, even when no direct

∗Emails: cyril.grunspan@devinci.fr, gabriel.lehericy@devinci.fr,
†Email: ricardo.perez.marco@gmail.com

1

payment channel exists. For example, assume that Alice and Bob are both LN users,
but have no direct payment channel between them. Now assume that there is a third
user, Charlie, who has a direct channel with Alice and a direct channel with Bob.
Then Alice can pay to Bob via Charlie: Alice sends the payment to Charlie, who
will then forward it to Bob. All these payments are realized in a secured way by the
protocol of channel composition. This allows any LN node to send money to any
other LN node when the network is connected.

Obviously this requires finding a payment route from Alice to Bob, hence the
need for a good routing algorithm. Ideally, one wants to have a routing algorithm
which is safe, decentralized, anonymous, and only requires minimum knowledge of the
network from all participants. In [7], the authors proposed a new routing algorithm,
called Ant Routing. Ant Routing is a completely decentralized routing algorithm
which does not require beacon nodes nor routing tables. Instead, each node of the
network executes the exact same task which requires no knowledge of the topology
of the network. Moreover, it is worth noting that using Ant Routing on the lightning
network would have a positive impact on fees. Indeed, unlike the current routing
mechanism in use, ant routing does not allow for a node to ask for fees proportional
to the transaction amount. This also strengthens the network’s decentralization.

The goal of this article is to estimate the performance of Ant Routing, and propose
more precise and efficient implementation. In particular, we investigate if this routing
algorithm is compatible with the original ambition of the Lightning Network to solve
Bitcoin scalability at planetary level, hence providing an instantaneous decentralized
global payment network. In practice, the question is whether Ant Routing algorithm
can allow the network to sustain several thousands of transactions per second. This
article gives a positive answer to this question. The conservative estimates presented
in Sections 6 and 9 show that Ant Routing can sustain more than 10.000 transactions
per second.

The paper is organized as follows. In Section 2, we give an overview of routing
protocols which have been proposed for the Lightning Network and of algorithms
based on ant behavior. Section 3 explains the ant routing protocol. We start by
briefly recalling the rough ideas of ant routing as presented in [7]. We then give
a more detailed description of the Ant Routing protocol. In particular, we give a
precise list of data that must be kept in memory and a list of tasks performed by
nodes. In Section 5 we estimate the duration for seeds to be kept in memory. In
section 6 we give a general argument to determine network capacity for networks with
a similar structure than Bitcoin. This argument applies to Ant Routing provided
that the local process time for transactions in the nodes is neglectable or of the
same order of magnitude than the propagation time across the network. We propose
efficient local algorithms and run simulations. In Section 7, we review AVL trees,
which is the data structure used for the Ant Routing implementation. In Section
8, we propose a concrete implementation of Ant Routing. Finally, in Section 9 we
estimate the computing time and memory usage. Putting together these results, we
conclude by an estimate on the number of transactions per second that the proposed
implementation of Ant Routing can sustain.

2

2 Overview of routing proposals and existing ant
algorithms
The white paper for the Lightning Network is sketchy about routing and no specific
routing protocol is proposed [14]. The authors believe that routing tables are
necessary, and in fact, it seems every routing protocol proposed for the Lightning
Network prior to [7] makes use of routing tables. We review in this section some of
these proposals. A review of routing solutions for the lightning network can also be
found in [13]. One should keep in mind that, in accordance to Bitcoin philosophy, one
wishes the Lightning Network to remain decentralized and to preserve confidentiality
of payments.

One major constraint for routing in the Lightning Network is to find a path with
sufficient capacity. It seems natural to try to solve this problem via a distributed
max-flow approach which computes the path with the largest capacity [2, 9, 21].
However, max-flow routing performs poorly for large network, as its run time growths
quadratically on the number of channels [21]. Another possibility is to use beacons
instead. A beacon is a special node whose role is to enhance the other nodes’ visibility
of the network and help them in route computation. One example of an algorithm
which uses beacons is Flare [15]. Another classical approach to routing is landmark
routing. Landmark routing has been adapted to payment network in algorhitms such
as SilentWhispers [10]. The idea of landmark routing is to compute a route from
the source to the destination via a previously chosen node, called a landmark, which
is usually a highly connected node. The main drawback of having a system rely
on landmarks or beacons is the potential threat to decentralization, as well as its
fragility to attacks.

Another approach to routing is embedding-based routing. The idea is to embed
nodes into a vector space such that the hop distance between nodes is reflected
by their distance in the vector space. For routing, the source node chooses the
neighbor whose vector representation is the closest to the vector representation of
the destination node. Each node in the path then repeats this strategy. This requires
regularly updating information about the network. An example of such routing
algorithm is Speedy Murmurs, which is based on Voute [16, 17].

Recent attention has been given to payment routing solutions that keep chan-
nels balanced. Keeping channels balanced is considered important in the current
conception of the Lightning Network1: if a channel becomes too unbalanced, then
payment can only flow in one direction, and this restricts payment routes that can
no longer use that channel. In [20], the authors introduce an interesting idea which
considers channels’ balance for route seclection called Spider. More precisely, Spider
splits payments into several smaller payments, each of which can be sent through
a different route. The route for each of these payment is chosen to optimize the
re-balancing of unbalanced channels.

Note that all of these routing strategies either require giving some nodes a special
role (as a landmark or a beacon) or require each node to keep some knowledge of the
network topology. This knowledge is a vector of attack for the Lightning Network.
One of the reasons for the proposal of Ant Routing is to obfuscate the topology of the
network: It requires no landmark and requires no knowledge on the topology, while

1A network with only one directional channels is theoretically more limited, but in practical terms
can be useful since most of the channels are used unidirectionnally.

3

at the same time preserves anonymity and decentralization. The decentralization of
the algorithm is achieved by making every node play exactly the same role in the
routing process and using only knowledge about its neighbors.

The algorithm is inspired by the behavior of ants. Ant colonies have raised
the interested of ethologists by their ability to optimize their route from nest to
food source. Although each ant individually seems to follow a random motion,
their collective behavior finds efficiently the shortest path from their nest to a food
source. This is achieved through a “stygmergic” communication of the ants with
their environment through pheromones [4]. More precisely, each walking ant leaves a
trail of pheromone, which has the attracts other ants to its path.

The author of [4] and [5] describes the following experiment to explain this
remarkable observed ant optimization behavior. We study an ant colony connected
to a food source by two paths, a short and a longer one. At the outset of the
experiment, each ant walks in a random direction, choosing each path randomly with
equal probability. As they walk, the ants leave a pheromone trail behind. Because
ants will travel faster on the shorter path than on the longer one, pheromones
accumulate faster on the shorter path. The concentration of pheromone on the
shorter path increases, so does the probability that ants to choose this path. This
leads to a positive feedback, and eventually few ants will choose the longer path.

The author of [4] had the idea to simulate this ant behavior with a multi-agent
stochastic learning model to solve optimization problems. An application to network
routing problems is given in chapter 6 of [4].

The Ant Routing algorithm is inspired from these ant behavior models, but there
are some major differences with the routing propositions in [4] and [5]. Our algorithm
is simpler and deterministic, and not probabilistic. It only uses the idea of leaving
pheromones to trace a path, but does not consider accumulation of pheromones on
a path. Eventually, the model could be enhanced taking into account pheromone
accumulation to improve the efficiency. The paths are not chosen randomly. The
pheromones are flooding the network. Also, apparently the applications of ant
algorithms to routing problems in [4] and [5] use routing tables, which we want to
avoid.

3 Ant routing protocol
We briefly recall the main ideas of ant routing as presented in [7]. We assume that
Alice and Bob both have a node on the Lightning Network and they have a direct
communication channel but not necessarily a payment channel. Alice wants to pay
Bob via the Lightning Network, so they need to find a payment route in the Lightning
Network.

Alice and Bob start by agreeing on a random number S, chosen big enough
to avoid collisions. Alice creates the number S(0) = 0_S and Bob creates the
number S(1) = 1_S. S(0) and S(1) are called pheromone seeds. Alice and Bob
send their respective seeds to the network through their neighbors. Pheromone seeds
propagate on the network being successively forwarded by all nodes to their neighbors.
When S(0) and S(1) meet at some node we have a match. Each pheromone seed is
forwarded with a counter associated. This counter is increased by 1 at each hop. If
a node receives the same pheromone seed several times, then only the pheromone
seed with lower counter is stored and forwarded. The nodes keep track from whom

4

they received the stored seeds. When we have a match, the node where it occurs
creates matched seeds M(0) and M(1), and sents back to the respective neighbors
from whom he received S(0) and S(1). Nodes receiving a matched seed forward
them in the same way, and after a finite number of steps, bounded by the counters,
the matched seeds reach Alice and Bob.

After some time, Alice will receive several matched seeds, each corresponding to
a payment route. Alice is free to choose any of these matched seed as a payment
route. Note that, in order to preserve anonimity, it is desirable for Alice to choose a
route with at least two intermediary nodes. She selects one, by a selection algorithm
that she is free to decide. Creates a confirmed seed C and sends C back to her
neighbor from whom she received the matched seed. Nodes forward confirmed seed
they receive as for matched seeds. Hence, the confirmed seed will reach Bob though
a unique path. Once Bob has received C, he informs Alice and she can proceed with
the payment. The payment is then done via this path.

Notice that this “path discovering algorithm” finds a connecting path without
anyone knowing this path. The only knowledge the participating nodes have is about
their neighbors, and they don’t even know if these are Alice or Bob.

During the pheromone phase, a node may be tempted to cheat with the counter
in order to make the path more attractive. For this reason, we require a verification
phase after the confirmation phase and before the payment. The point of this
verification phase is to check that no node on the path indicated by C has cheated
with the counter. This can be done in the following way: during the confirmation
phase, each node, starting from Alice neighbor, is asked to generate a random number.
This random number is appended to a list l, which lists all the random numbers from
previous nodes. Then the nodes forwards l along with C to the next node. When C
and l reach Bob, Bob sends l back and communicates the list of random numbers to
Alice. The nodes forward it back only if their random number is in the list. Then l
can only reach back Alice through the nodes in the path if nobody has cheated on
the counter.

We make precise the task done by the nodes in the protocol. It is important to
note that all nodes, apart from Alice and Bob in their payment, execute the same
task. Moreover, the nodes have no knowledge about the topology of the network.
The only topological information a node needs is who are its direct neighbors.

We list in the next section which data the nodes must keep in memory, and which
must be relayed (Section 3.1). We then give the algorithms that the nodes perform
in each phase of the ant routing protocol: the pheromone phase, the match phase,
the confirmation phase and the counter check phase (Section 3.2).

3.1 Memory data
Each node allocates some memory space for the routing task. This memory space
contains three trees. The first one is used to store pheromone seeds, the second one
for matched seeds, and the third one for confirmation seeds. When she starts her
routing task, Alice creates a fourth tree in her memory, which we call the special
match tree. This tree will be destroyed once Alice has completed her payment.
This tree is used to store the matched seeds created from her own pheromone seed.
These matches are therefore stored separately from other matched seeds.

Each seed comes with some data. More precisely, for each pheromone seed P , a
node stores:

5

(1) The pheromone seed P .
(2) A counter c.
(3) The id s of the node from which it received the seed .
(4) The remaining fees f : at the start, Alice chooses a maximal amount fmax of

fees which she is willing to pay for the transaction. If g denotes the sum of all
the fees of all nodes through which the seed has traveled, then the remaining
fees f is f = fmax − g.

(5) The amount a of the transaction.
All this information is required for the functioning of the ant routing algorithm.

The id s is needed for the “match” phase, when the matched seed will have to trace
the way back to Alice. The amount of the transaction is used by the relaying nodes
to select channels with sufficient funds. The remaining fees are used by Alice at
the start of the confirmation phase in her choice of the matched seed. Finally, the
counter is used to tame the flood of data on the network (see section 3.2).

The node keeps s to itself to preserve anonymity. The nodes also relay one
extra piece of information which is not stored in memory: a timestamp t, which is
decided upon by Alice at the creation of the seed. This timestamp allows the node
to know the age of the seed, which is necessary information so that the the node
knows when to remove the seed from its memory. Pheromone seeds are therefore
forwarded as messages of the form: (P, c, f, a, t) (pheromone seed, counter, remaining
fees, payment amount and timestamp).

For each matched seed M , the node stores the following items:

(1) A “match identifier” Id.
(2) The “target” of the match, which is the name of the next node in the path

from Alice to Bob which M indicates.

The number Id is a random number generated at the creation of the match. Its
purpose is to distinguish between different matches which may have been created
from the same pheromone seed. Note that it is not necessary to store M itself,
although M needs to be forwarded. There are also four extra pieces of information
which need to be forwarded but do not have to be kept in memory. These are:

(1) Two counters c and C. The counter C gives the number of intermediate nodes
from Alice to Bob in the path indicated by M . The counter c is decreased by 1
at each hop. Its purpose is to be compared with the counter of the pheromone
seed associated to M (see section 3.2 below).

(2) The total remaining fees F associated to M . We have F = 2fmax −G, where
G denotes the sum of all fees from Alice to Bob in the path indicated by M .
The purpose of F is to be transmitted to Alice, so that she can choose the path
with the lowest fees.

(3) A timestamp t, which is the timestamp of the corresponding pheromone seed.

Therefore, matched seeds are forwarded to other nodes via a message of the form
(M, Id, c, C, F, t). Note that, in Alice’s special match tree, F and C are also stored.

A confirmation seed is simply a random number Id. For each confirmation seed,
the node stores:

6

(1) An identifier Id. This is the identifier of the matched seed chosen by Alice.
(2) The “target”, i.e. the next node in the path from Alice to Bob.
(3) An integer check. This is a randomly generated integer meant for the final

counter check phase.
Confirmed seeds are forwarded in messages of the form (Id, l, t), where l is a list of
integers and t is the timestamp of the corresponding pheromone seed. More precisely,
l is the list of the “check” integers of all preceding nodes.

Remark 3.1: The node does not store the timestamp of a given seed. However,
the location of a given seed in memory depends on its timestamp t. Indeed, we will
see in Section 8 that seeds are stored in several trees, each of which corresponds to
a time interval to which the seed’s timestamp belongs. It follows that, in order to
find a seed in its memory, the node needs to know the associated timestamp. This
explains why the timestamp also has to be forwarded with each type of seed.

3.2 Algorithms
The ant routing protocol has four phases: the “pheromone” phase, the “match” phase,
the “confirmation” phase and the “counter check” phase. We now describe these
phases one by one in this order.

Alice chooses two random numbers S and c0, the timestamp t, and the maximal
amount of fees fmax which she is willing to pay, and communicates to Bob this
data. The number S will be used to form the pheromone seeds and c0 will be used
the starting value for the counter2. The purpose of choosing a random number as
the starting value of the counter is to preserve Alice’s and Bob’s anonymity. If we
start the counter at 0, then the neighbors of ALice and Bob will know that they are
originating the transaction. The timestamp t serves as the time at which Alice and
Bob broadcast their pheromone seeds.

Assume that S, c0 and t have been agreed upon by Alice and Bob, and that
Alice has chosen fmax. Alice then creates P (0) := 0_S and stores the information
(P (0), c0, 0, fmax, a) in her pheromone tree, where a denotes the amount of money
which she wants to send Bob. The “0” indicates that the seed has no sender, so
the seed originates from Alice. Similarly, Bob creates P (1) := 1_S and stores
the information (P (1), c0, 0, fmax, a) in his pheromone tree. At time t, Alice sends
the message (P (0), c0, fmax, a, t) to all her neighbors, and Bob sends the message
(P (1), c0, fmax, a, t) to all his neighbors.

After this initial step, the nodes will keep forwarding P (0) and P (1) until matches
occur, increasing the counter by 1 at each hop. In general, the same node will receive
the same pheromone seed several times coming from different paths. However, after
a pheromone seed has been received the first time, then the node will only broadcast
new arrivals of the same seed if the counter of the newly arrived seed is smaller than
the counter of the previously received seed. This reduces the amount of information
sent through the network and makes sure that Alice only receives the shortest route
proposals.

2The value of c0 can be chosen between 26 = 64 and 27 = 128. By doing this, we only dedicate 1 Byte
to the counter, but still allow for 128 intermediary nodes between Alice and Bob, which is enough.

7

Each node substracts its own fees from the remaining fees before forwarding
the seed. A node only has knowledge of remaining fees, and does not know fmax.
This makes it extremely difficult for intermediary nodes to deduce from the fees any
information about the sender or receiver of the payment, thus preserving Alice’s and
Bob’s anonymity.

Here is an algorithm describing the work of a node upon receiving a pheromone
seed from node s in the form of a message (P, c, f, a, t). We denote by g the fees of
the node performing the task. P denotes the conjugate of P , i.e P (0) = P (1) and
P (1) = P (0).

Look for P in memory;
if P is not in memory and f − g ≥ 0 then

Insert (P, c, s, f, a) in memory;
else if (P, c′, s′, f ′, a) is in memory then

if c′ ≤ c then
Exit program;

else if f − g ≥ 0 then
Replace (P, c′, s′, f ′, a) by (P, c, s, f, a) in memory.

Look for P in memory.
if P is not in memory then

Send (P, c+ 1, f − g, a, t) to all neighbors with channel balance at least a, except s.
else

create_and_send_match(P).
Algorithm 1: treatment of pheromone seeds

The function create_and_send_match() used above starts the match phase
of the ant routing protocol. A matched seed has the form M(0) := 0_P (0) or
M(1) := 0_P (1), where P (0) and P (1) are pheromone seeds. M(0) is sent back to
Alice, and M(1) is sent back to Bob. Assume (P (0), c, s, f, a) and (P (1), c′, s′, f ′, a)
are both in memory, and denote by g the fees of the node where the match occurs.
Then the function create_and_send_match(P) does the following:

if f + f ′ − g ≥ 0 then
Set M(0) := 0_P (0), M(1) := 0_P (1).
Generate a random number Id;
Set F := f + f ′ − g;
Set C := c+ c′ + 1;
Store (Id, s′) in the match tree;
Send (M(0), Id, c, C, F, t) to s;
Send (M(1), Id, c′, C, F, t) to s′;

Algorithm 2: Match creation

Matched seeds are forwarded as messages of the form (M(ε), Id, c, C, F, t), ε ∈
{0, 1}. The counter c is decreased by 1 at each hop. When a node receives a matched
seed (M(ε), Id, c, C, F, t), it looks for the corresponding P (ε) in its memory and
checks that the counter associated to P (ε) is equal to c − 1. If this is the case,
then the node retrieves the sender s of P (ε) and forwards M(ε) to s. If the counter
associated to P (ε) does not agree with c − 1, this means that, before receiving
M , the node has received a new instance of P (ε) with lower counter. But then
the information associated to P (ε) in the node’s memory do not correspond to the

8

information associated to M(ε), and thus M(ε) must be discarded. However, the
node will eventually receive a new instance of M(ε) with new information.

Here is the algorithm for the treatment of matched seeds. The input is a message
of the form (M(ε), Id, c, C, F, t) received from node y, and g denotes the fees of the
node performing the task:

if ε = 0 then
Look for P (0) in memory.
if (P (0), c′, s, f, a) is in memory then

if c′ 6= c− 1 then
Exit program;

if s = 0 then
Store (Id, y, C, F) in the special match tree

else
Store (Id, y) in the general match tree;
Send (M(ε), Id, c− 1, C, F) to s.

if ε = 1 then
Look for P (1) in memory.
if (P (1), c′, s, f, a) is in memory then

if c′ 6= c− 1 then
Exit program;

Store (Id, s) in memory.
if s 6= 0 then

Send (M(ε), Id, c− 1, C, F, t) to s.
Algorithm 3: Treatment of matched seeds

After some time, Alice will have received several matched seeds, stored in her
special match tree. She now chooses one (say, the one with the lowest fees), which
is stored as (Id, y, C, F). Note that Alice can recover the amount of fees she will
have to pay by computing 2fmax − F . This number is bounded by 2fmax, but not
by fmax. If Alice is not willing to pay up to 2fmax in fees, then she can choose to
replace fmax by fmax

2 at the beginning of the pheromone phase.
To launch the confirmation phase, Alice generates a list of random numbers l0,

which will serve for the final counter check. Alice then sends the confirmation seed
(Id, l := l0, t) to y. This starts the confirmation phase of the ant routing protocol.

Here is the algorithm performed by a node after receiving the confirmation seed
(Id, l, t):

Look for the match identifier Id in the match tree;
if (Id, s) is in the match tree and s 6= 0 then

Generate a random integer check.
Append check to l.
Store (Id, s, check) in the confirmation tree;
Send (Id, l, t) to s;

Algorithm 4: Treatment of confirmed seeds
Remember that the “s” in the matched seed (Id, s, t) refers to the sender of the

pheromone seed from which Id was made, and that s = 0 only for Bob and Alice.
Therefore, the “s 6= 0” clause in algorithm 4 states that the algorithm is executed
by every intermediary node but not by Bob. When Bob receives (Id, l, t), then Bob
sends l to Alice. Alice then checks that the number of random numbers which were

9

appended to l is equal to C − 2c0 (note that the number of intermediary nodes
between Alice and Bob is C − 2c0). If this is not the case, this means that one of
the nodes on the route indicated by Id is a cheater. Alice then chooses another
route: she chooses another “Id” seed in her special match memory and starts a new
confirmation phase with this new “Id”.

If the number of random numbers appended to l matches C, then Alice removes
l0 from l. She appends a new list of random numbers l1 at the end of l and sends
(Id, l, t) to y. Then each node on the path checks that the first number in l is the
one that they generated, i.e each node follows the following algorithm:

Look for Id in the confirmation tree;
if (Id, s, check) is in the confirmation tree and s 6= 0 then

if check = l[0] then
Remove check from l;
Send (Id, l, t) to s;

Algorithm 5: counter check round
When Bob receives (Id, l, t), he sends a message to Alice telling her that she can

proceed with the payment. Note that the list l1 that has been appened to l at the
start of the counter check round is here so that nodes don’t know the lenght of the
payment route. In particular, no node knows that Alice is paying Bob.

Remark 3.2: One way of reducing the workload on the network would be to use a
variant of the ant routing algorithm which we just presented. In this variant, only
Alice, and not Bob, sends pheromone seeds. Bob then waits until he receives the
pheromone seed from Alice. Bob may receive several seeds, each indicating a different
route. Bob can then communicate the information he has on each of these routes to
Alice, who then chooses one of them. Bob then creates the match himself from the
pheromone seed chosen by Alice, and sends the matched seed back to Alice though
the chosen route.

Note that this variant is only viable if Alice trusts Bob. Indeed, since Bob knows
the remaining fees for each seed he receives, he could cheat Alice by taking all the
remaining fees for himself.

4 Robustness of ant routing
Payment routing depending on knowledge of the network threatens decentralization.
If knowledge of the network is required for payment, some nodes may choose to
delegate the task of gathering knowledge to other nodes. This can lead to the
emergence of “hub” nodes which centralize most routing tasks, with most nodes at
the periphery. In particular, the use of landmarks encourages this process. This type
of network is easy to disrupt: if all payments depend on a small group of nodes, then
one only needs to neutralize these nodes to incapacitate the whole network.

An important advantage of the ant routing algorithm is its total decentralization.
All nodes in the network performs the exact same task and obey the exact same
rules. To have the same protocol rules for all nodes is an important key idea of
decentralization. Ant routing requires no knowledge of the geometry of the network,
which prevents the emergence of “hub” nodes. This makes the network particularly
resilient to attacks: even if an attacker neutralizes a larger part of the network, the
remaining part can still function normally provided it remains connected.

10

It is worth noting that the main reason for the high failure rate of the current
routing algorithm in the lightning network is the fact that nodes who compute
payment routes only know the capacities of the channels on the network, but they do
not know their balances. As a consequence, the paying node often ends up choosing
a route which cannot relay the payment due to insufficient available funds in one
direction [22]. Ant routing solves this problem by making sure that every channel on
the path has sufficient funds in the desired direction. Indeed, during the pheromone
phase, a node will forward the seed to a neighbor only if the funds available on their
channel is sufficient. As a consequence, Alice knows that, for every match which
she receives, the channels on the path indicated by the match have enough funds to
forward her payment.

Note also that ant routing addresses some concerns about the privacy of lightning
transactions which have been raised in [3]. The authors of [3] noticed that many LN
transactions only have one intermediary node between payer and payee, which means
that the intermediary node knows their identities. Ant routing solves this problem
by offering several possible path to Alice. Thanks to the counter, Alice knows the
length of each path indicated by a match, and she can choose a path of length at
least 3 if she wants to preserve her privacy.

A malicious node may attempt to disturb the network by cheating on the counter.
Indeed, a malicious node may add a negative counter to a pheromone seed to make
the path more attractive. Setting very small fees also increases the chances of Alice
choosing this path. The malicious node could then refuse to transmit the payment,
thus disturbing the network. Note however that, thanks to the counter check phase
which we added at the end of ant routing, Alice will discover the presence of a
malicious node before sending the payment. Because the ant routing algorithm
usually returns several matched seeds to Alice, she can then choose another route,
avoiding the malicious node. If Alice sees that the confirmation phase, the counter
check phase or the payment itself did not terminate successfully, she can send a
message to the other nodes of the path to warn them of the presence of a malicious
node. If a node notices frequent problems with attempted payments through one
of its neighbors, it can decide to stop forwarding pheromone seeds throught him or
even to close the payment channel. In this way, the malicious node will eventually
be de facto isolated and rejected from the network, and will not be able to disturb
it any longer. The same will happen with a denial of service attack by nodes that
respect all the rules of the protocol but in the last moment refuse to collaborate in
establishing the payment. Therefore, each node has interest in keeping historical
data and statistics on the performance of its neighbors to avoid being connected to
dishonest nodes. In this sense, the network behaves more like an ant colony since
the traces left by older payments will reinforce the best neighbors.

5 Life time of seeds
The seeds are only useful for the routing task for a transaction, and must therefore
be kept only a short time in memory. This raises the question of the life time of
seeds: how long should the seeds be kept in memory? They need to be kept long
enough to allow the routing task to be completed, but as short as possible in order
to reduce memory usage.

To determine the optimal seed life time, we need an estimate of how long it

11

will take to Alice to receive matched seeds. This depends on the bandwith for
data propagation on the Lightning Network. We can have an approximate estimate
using the Bitcoin network as a proxy for the lightning network. Both networks are
topologically of the same nature, more precisely, they are well-connected networks.
Also seeds in ant routing do propagate faster through the network than bitcoin
transaction on the Bitcoin network. This is due to the fact that pheromone seeds are
much smaller than bitcoin transactions, but also because the local node process of
transactions in Bitcoin nodes is much heavier than the process of pheromone seeds.
It follows that the speed of transaction propagation on the Bitcoin network gives us
a generous upper bound on the speed of pheromone propagation on the Lightning
Network.

We found on [19] that, in 2014, it took around 0.8 seconds for a transaction
to reach 50% of the nodes in the Bitcoin network. This is in accordance with [11]
(See their fig. 16). It follows that we make the conservative assumption that in
average a pheromone seed reaches 50% of nodes in 0.8 seconds. Assuming the initial
independence of propagation of Alice and Bob seed, for a given node, the probability
to have a match after 0.8 seconds is 0.52 = 0.25 and the probability that there is
a match somewhere in the network after 0.8 seconds is 1 − 0.75N where N is the
number of nodes. For N ≥ 32, this probability is more than 99.99%. Now, if we
assume that both Alice’s pheromone and Bob’s pheromone have reached 10% of the
nodes in 0.5 seconds, then, the probability to have a match at this date is 1− 0.99N
which is greater than 99.99% when N ≥ 1000 which is already the case today. The
exact distribution of the time it takes to have a first match depends on the network
topology, but in view of these numbers it is reasonable to assume the expected
unmatched time cycle of a pheromone seed to be about 0.5 seconds. Obviously, this
may be higher when Alice or Bob do have a bad connectivity to the network, but
this situation is neglectable if the average node is well connected as we assume. Note
also that this estimate implies that the expected duration time for the whole routing
task to be completed is less than 1 second.

6 A general maximum capacity estimate
We can develop the previous argument using the Bitcoin network as a proxy for
estimating the maximum network capacity of an arbitrary network with similar
characteristics. We first estimate in an elementary way the maximum network
capacity of the Bitcoin network. We assume instant propagation of the data across the
network and that the local nodes workload time for the propagation of a transaction
is neglectable. The estimate remains valid if there is no lag caused by the local
workload of nodes. We consider several random variables, for t ≥ 0,

• N(t) number of blocks mined by the network at time t, N(0) = 0.
• L(t) number of transactions created by the network at time t, L(0) = 0.
• M(t) mempool size in Bytes at time t, M(0) = M0.
• B(b) size in Bytes of the block number b.
• m(x) size in Bytes of transaction x.
• t(x) time when transaction x was created.

Note that L,M ,N are random process, and L,N are Poisson processes [8]. The
distribution of M(t) depends on the network condition. At t = 0 we start counting

12

blocks B1, B2, . . . and transactions created x1, x2, . . . from this moment and the
initial condition M(0) = M0. We have

M(t) = M0 +
L(t)∑
k=1

m(xk)−
N(t)∑
k=1

B(bk) .

In the steady regime of maximum capacity, M(t) is constant, M(t) = M0. Taking
expected values in the precedent equation, we get, using Wald’s Theorem,

0 = E[L(t)]E[m]− E[N(t)]E[B]

thus
E[L(t)] = E[N(t)]E[B]

E[m]
We have, E[N(t)] = t/τ0 where τ0 is the average inter-block time. At steady
maximum capacity regime E[B] is constant and equal to the maximum block size,
E[B] = Bmax. Let m0 = E[m] the expected size of a transaction. These calculations
show the following result:

Theorem 6.1
With the previous assumptioons, at steady maximum capacity regime for typical
transactions we have

l0 = Bmax

m0τ0

where l0 is the maximum number of transactions per second, Bmax is the maximum
block size, m0 is the average size of a transaction, and τ0 is the average inter-block
time.

The arguments given to derive the above formula are quite general and apply to
any network with similar characteristics as the Bitcoin network.

Application (Bitcoin network): We can apply the precedent formula to the Bitcoin
network. We have τ0 = 10 min (slightly smaller when difficulty is increasing). Also,
before segwit improvement and neglecting the block header size of 80B, Bmax = 1 MB.
Typical Bitcoin transactions have a size of m0 = 250 B. We remind that one bitcoin
transaction can contain several financial transactions and the size depends sensitively
in the number of inputs and outputs. From this we get

lBTC = 6.67 tx/sec

for the maximum number of typical transactions per second in the Bitcoin network.
The minimal size of a transaction is 61 B (or 63 B for a coinbase transaction, but
this is neglectable, see [6]) then we get

lBTC = 27.3 tx/sec

Application (Monero network): Our formula applies directly. The maximum block
size is set to M0 = 1 MB, the current average size of a transaction is m0 = 550 B
and the average interblock time of τ0 = 120 sec. Our formula gives

lXMR = 15.15 tx/sec

for the maximum number of transactions per second in the Monero network.

13

Application (Ethereum network): We apply the precedent ideas to the Ethereum
network. The Ethereum protocol imposes no size limit on blocks or transactions, but
the miners set a gas limit Gmax for the blocks, currently set at Gmax = 107 units
of gas, that is the total sum of gas for the transactions in the block. The gas of
a transaction roughly measures the complexity of the computations in the smart
contracts in Ethereum transactions. Indeed one line of code costs 1 gas unit, hence
there is some correlation between the gas of a transaction and its size. But the
proper metric to measure the network capacity is by using our formula where we
replace the Bmax by Gmax, and m0 by the average gas g0 required by a transaction.
The formula for the maximum number of transactions per second is

lETH = Gmax

g0τ0

We currently have τ0 = 15 sec. Observe that the full capacity of the network can
be reached by a maximum of basic transactions with minimal gas, or by a few
transactions with maximal gas. For g0 = gmin = 21.000 we have

lETH = 31.75 tx/sec

For g0 = gmax = 200.000 we have

lETH = 3.33 tx/sec

Currently, the observed historical maximum block size, according to the block explorer
Etherscan, is 36 630 B. Note that this represents 1.46 MB size per 10 min. The
average Ethereum transactions size is about m0 = 500 B (not counting data volume
necessary for the smart contract). with these figures, applying our formula we get

lETH = 4.88 tx/sec

for the maximum number of transaction per seconds assuming a maximum size block
of 36 630B. Obviously this size limit is not set by the protocol, but the practical
limit has the same order of magnitude. Ethereum has similar scaling problems than
Bitcoin, and this is reflected by the current heavy size of its full blockchain.

Application (Ant Routing): The same argument leading to the formula applies
to the Lightning Network running the Ant Routing protocol. This time we denote
by M0 is the maximum size of the local mempool at each node. Let µ0 the average
size of data propagated through all the network for each transactions, essentially
unmatched and matched pheromone seeds so µ0 ' 100 B. Let η the average life
time of most data in the Lightning network, we can take the conservative figure of
η = 2 sec. We have,

lAR = M0

τ0η

for the number of transactions per second of the Lightning Network running on Ant
Routing. For the conservative figures choosen, we have

lAR = M0

200
For example, for a modest mempool of M0 = 20 MB we get

lAR = 10.000 tx/sec

14

As we will see in the next sections, the numerical simulations of the local process time
of seeds at nodes allow for a flow of 106 tx/sec with no impact on the propagation
and matching time, thus the network can process an order of 106 tx/sec.

7 AVL trees
In this section we describe the structure we choose in later sections to implement
the ant routing protocol: AVL trees. AVL trees were introduced in [1]

We first fix some notations. If T is a binary tree, we denote by h(T) the height
of T . If x is a node of T , we denote by Tx the subtree of T generated by x. T lx
denotes the subtree generated by the left child of x, and T rx denotes the subtree of T
generated by the right child of x. If x has no left child (respectively, right child), we
say that its left child (respectively, right child) is NULL.

A binary search tree is a binary tree T such that:
1. Every node of T is labelled with an integer.
2. For every nodes x, y of T respectively labeled by the integers n and m, we have

y ∈ T lx ⇒ m < n and y ∈ T rx ⇒ m > n.
If T is a binary search tree, we say that T is balanced if for every x ∈ T ,

|h(T lx)− h(T rx)| ≤ 1. An AVL tree is a balanced binary search tree.
The following is a look-up algorithm for a binary search tree. It takes an integer

n as entry, and returns the node of T labeled by n if it exists, and returns NULL if
no node of T is labeled by n.

input : Integer n, tree T
output : lookup(n, T):=the node of T labeled by n if it exists, “NULL” otherwise
Set node := root(T);
while node 6= NULL do

if n < label(node) then
node := left_child(node);

else if n > label(node) then
node := right_child(node);

else
return node;

end
Return node;

Algorithm 6: Look-up algorithm for binary search tree.

Once the lookup is done, insertion in a binary search tree can be done fast. Here

15

is an algorithm which inserts n in T if n is not already in T :
input : Integer n, tree T
Set node = root(T);
while true do

if n < label(node) then
if left_child(node) = NULL then

left_child(node) := create_node();
label(left_child(node)) := n;
Exit program;

else
node := left_child(node);

else if n > label(node) then
if right_child(node) = NULL then

right_child(node) := create_node();
label(right_child(node)) := n;
Exit program;

else
node := right_child(node);

else
Exit program;

end
Algorithm 7: Insertion algorithm for binary search tree.

Now we discuss the run time of these algorithms. Let N be the number of nodes
in T . If T is not assumed to be balanced, then in the worst case algorithms 6 and 7
could run in time O(N). However, if T is an AVL tree, then algorithms 6 and 7 are
guaranteed to run in time O(log2(N)).

Algorithm 7 is a naive insertion algorithm. This naive algorithm could be
problematic, as it takes no account of the height of the newly generated tree and
could thus result in an unbalanced tree if repeated enough times. This means we
cannot use algorithm 7 for insertion in AVL trees. Fortunately, there is a workaround
to this problem. More precisely, we can slightly change the insertion algorithm so
that the tree remains balanced. We now describe the insertion algorithm for AVL
trees. We first need to explain how an unbalanced tree can be rebalanced.

Re-balancing a tree is done via operations on the tree called rotations. A rotation
at a node z is one of the two operations shown in Figure 2.

16

Figure 2: Rotations at node z.

z

T3y

T2T1

y

z

T3T2

T1

Right rotation

z

yT1

T2 T3

y

z T3

T2T1Left rotation

Assume that T is balanced, and assumed that we now insert w in T following
algorithm 7. Assume further that, after this insertion, T has become unbalanced.
We can re-balance T by performing rotations on certain nodes of T . Starting from
w, move up towards the root of T . We denote by z the first unbalanced node which
we encounter on this path. Let y be the heigher child of z and x the heigher child
of y. There are four possible configurations for the relative positions of x, y and z,
as shown by Figure 3. To each configuration, we associate a sequence of rotations,
shown in Figure 3. These rotations transform Tz into a balanced tree. It is easy to
show that the new tree obtained from Tz by these rotations has the same height as
Tz had before inserting w. Since T was balanced before inserting w, it follows that
T is again balanced once the rotations have been performed.

17

Figure 3: Rebalancing the tree

z

T4y

T3x

T1 T2

y

z

T4T3

x

T1 T2Right rotation

z

T4y

T3

xT1

T2

z

T4x

T3y

T2T1

Left rotation

x

zy

T3 T4T2T1Right rotation

z

yT1

T4x

T2 T3

z

xT1

yT2

T3 T4

Right rotation

x

yz

T3 T4T2T1

z

yT1

T4

xT2

T3

y

x

T4T3

z

T1 T2Left rotation

Here is a modified version of algorithm 7 which gives the insertion algorithm for
AVL trees:

18

input : Integer n, tree T
Set node = root(T);
while true do

if n < label(node) then
if left_child(node) = NULL then

left_child(node) := create_node();
label(left_child(node)) := n;

else
node := left_child(node);

else if n > label(node) then
if right_child(node) = NULL then

right_child(node) := create_node();
label(right_child(node)) := n;

else
node := right_child(node);

else
Exit program;

end
height(node) := 1 +max(height(left_child(node)), heigt(right_child(node)))
balance := height(left_child(node))− height(right_child(node))
while −1 ≤ balance ≤ 1 do

if node = root then
return;

node := parent(node);
height(node) := 1 +max(height(left_child(node)), heigt(right_child(node)));
balance = height(left_child(node))− height(right_child(node));

end
if balance > 1 then

if n < label(left_child(node)) then
node = right_rotate(node);

else
left_child(node) = left_rotate(left_child(node));
node = right_rotate(node);

if balance < 1 then
if n > label(right_child(node)) then

node = left_rotate(node);
else

right_child(node) = right_rotate(right_child(node));
node = left_rotate(node);

Algorithm 8: AVL insertion
Now let us compute the running time of this algorithm. The algorithm starts

with the naive insertion, which runs in time O(log2(N)). We then have to move back
up the tree to update the heights of each node until we find the first unbalanced node.
In the worst case, this is done in time O(log2(N)). Finally, the rotation operations
are done in O(1) time. Therefore, this algorithm runs in time O(log2(N)). This
shows that AVL trees allow for fast look-up and insertion; more precisely, these
operations are performed in logarithmic time.

19

8 Implementation of ant routing
We saw earlier that the main task of a node is to manage a set of seeds. The node
must frequently operate a look-up on its set of stored seeds and sometimes insert a
new seed. It is therefore important to use a data structure allowing fast look-up and
insertion. For this reason, we chose AVL trees as the base structure for storing seeds.

A node must store three types of seeds: pheromone, matched and confirmed.
Each of these is stored in a separate tree.

We focus on how pheromone seeds are stored and managed. Let η be the life
time of seeds (in seconds), and set k := η

0.1 . Pheromone seeds are stored in a tree
T . The root of T has k + 1-many children. Each of these children is the root of an
AVL tree. We denote by T0, T1, . . . , Tk these subtrees of T . Each Ti corresponds
to a time interval Ii := [t0 + i ∗ 0.1, t0 + (i+ 1) ∗ 0.1[. A seed with timestamp t is
stored in the tree Ti such that t ∈ Ii. If the node receives a seed with a timestamp
outside of the time interval [t0, t0 + (k+ 1) ∗ 0.1[, then the seed is discarded. At time
t1 := t0 + (k + 1) ∗ 0.1, the node erases the tree T0, which contains seeds older than
η, and creates a new tree Tk+1. This new tree will contain the seeds with timestamp
in [t1, t1 + 0.1[. At time t1 + 0.1, the node will erase T1, create Tk+2, and the process
continues.

Each Ti is an AVL tree labeled by seeds. Each node of the tree contains the
following fields:

• An integer seed. This is the random number S chosen by Alice and Bob. This
also serves as the label of the node.

• An integer amount, indicating the amount of the transaction.
• A boolean pheromone0. The value is true if and only if P (0) has been received.
• A boolean pheromone1. The value is true if and only if P (1) has been received.
• An integer fees0, giving the remaining fees associated to P (0) if P (0) was

received, and set to 0 otherwise.
• An integer fees1, giving the remaining fees associated to P (1) if P (1) was

received, and set to 0 otherwise.
• An integer counter0. This is the counter associated to P (0), set to 0 if P (0)

was never received.
• An integer counter1. This is the counter associate to P (1), set to 0 if P (1) was

never received.
• An integer sender0. This is the node which sent P (0), set to 0 if P (0) was

never received.
• An integer sender1. This is the node which sent P (1), set to 0 if P (1) was

never received.
• A pointer left_child.
• A pointer right_child.

This describes the pheromone tree. The match tree is built in a similar way. The
only difference between pheromone and match trees resides in the structure of the
nodes. In the match tree, each tree Ti is labeled with a match identifier Id. Each
node of Ti contains the following fields:

20

• An integer Id (match identifier).
• An integer target.
• A pointer left_child.
• A pointer right_child.

The confirmation tree is similar to the pheromone and the match tree, except for
the structure of nodes. Each node of the confirmation tree contains the following
fields:

• An integer Id (match identifier).
• An integer target.
• An integer check.
• A pointer left_child.
• A pointer right_child.

We now give an estimate of the memory space used by the seeds with this imple-
mentation. The following table gives the size in Bytes of a node of each tree:

seed counter amount fees sender/target children check total
pheromone 8 1 4 4 1 16 0 34

match 8 0 0 0 1 16 0 25
confirmation 8 0 0 0 1 16 8 33

Note also that biggest nodes have around 100 neighbors, which is why 1 Byte is
enough to store the sender or target. Pointers typically have size 8 Bytes, which is
why a tree node needs 16 Bytes to store the addresses of its children. We can check
if the length of 8 Bytes for seeds is sufficient to avoid collisions. We can estimate the
probability of collisions occuring by using an approximation formula of the birthday
problem. If n is the number of seeds simultaneously present in the network and N
the number of all possible seeds, then the probability p of having a collision at a
given time is p ' n2

2N . We have n = λη, where λ is the rate of incoming transactions
and η the life time of seeds. If we take λ = 10000 and η = 2, then we get n = 20000.
For seeds of length 8 Bytes we have N = 264. Therefore, the probability of having a
collision at a given time is p ' (20000)2

265 . The probability of having a collision in 100
years is then 1− (1− (20000)2

265)3600×24×31×12×100, which is approximately 3%.
If one wishes to improve these odds, one can increase the length of seeds to 9

Bytes. In that case, the probability of having a collision in 100 years is 1 − (1 −
(20000)2

282)3600×24×31×12×100, which is approximately 2.10−5.
Note that the simulations whose results we present in Section 9 were done with

seeds of size 8 Bytes. However, increasing the length of seeds to 9 Bytes will have a
negligeable effect on the computation time needed for the treatment of seeds.

Now let us compute the total memory M taken in one node for the routing task.
For one routing task, a node stores at most one pheromone seed and one confirmed
seed, but potentially several matched seeds. Therefore, The memory taken in a node
for one routing task is upper-bounded by 34 + 25r+ 33 Bytes, where r is the number
of matched received. Let λ be the rate of transactions, i.e. the average number of

21

transactions performed on the network at each second. Then the number of seeds
kept in memory by a node is at most λη, where η is the life time of seeds, so the
maximal amount of memory taken is λη(34 + 25r + 33)).

We argued above that we can expect to set η := 2. Setting λ = 10000, we get
a M = 20000× (67 + 25r). For smaller, less connected nodes, r should take small
values. For r ≤ 8, we get 2MB≤ M ≤ 4MB. For bigger nodes, r may take bigger
values, in which case we get (for r > 8) M ' 500000r = 0.5rMB.

Finally, we want to estimate the necessary bandwidth for the propagation of
pheromones. Remember that pheromone seeds are relayed as messages of the form
(P, c, f, a, t) (see Section 3.1). The size in Bytes of one such message is given by the
following table:

pheromone seed counter fees amount timestamp total
8 1 4 4 1 16

With a transaction rate of λ = 10000, this means we need a bandwidth of
16 × 10000 Bytes per second, i.e 160kB/s. The parameter amount above is the
amount of the transaction. By comparison with the Bitcoin network, 16 Bytes
is half the size of the hash of a Bitcoin transaction that is sent to nodes in an
“inventory message” to announce a new transaction. See [11, 12] for details on bitcoin
transactions propagation.

Remark 8.1: Note that a standard timestamp like the unix timestamp is 4 Bytes
long. However, we propose here to use timestamps of length 1 Byte. Here is how
we think timestamps should work in ant routing: each timestamp indicates a time
interval of 0.1 seconds modulo 20 seconds. Since there are only 200 such time intervals
within 20 seconds, 1 Byte is enough to express every possible timestamp. We argue
that these small timestamps are enough to make ant routing function. Because seeds
are stored in trees each corresponding to a time interval of 0.1 seconds, it is indeed
enough to have timestamps with precision 0.1 second. Moreover, we argued in section
5 that the life time of seeds can be chosen to be 2 seconds. This means that every
seed can be removed after staying more than 2 seconds in memory. It follows that
couting timestamps modulo 20 seconds is engouh to manage seeds.

9 Estimating scalability
We address now the following question: is the ant routing protocol compatible with
the goal of solving bitcoin’s scalability problem? In other words, how many routing
requests per second can the network process using ant routing? In view of the
arguments given in section 6, we answer this question by computing the time taken
by a node to process all incoming routing requests. This is given by formula (2) below,
which depends on the rate λ of transactions. In section 9.2, we give the numerical
values for the parameters appearing in formula (2), which we obtained experimentally.
This allows us to give a numerical estimate of the maximal transaction rate which
the network can sustain.

22

9.1 Formula
We now want to estimate the time taken by a node to perform the routing task.
We showed in Section 7 that look-up and insertion in an AVL tree both run in
logarithmic time. The operation of deleting a tree is linear in N . We respectively
denote by α, β and γ the numbers such that, for an AVL tree T with N -many nodes,
look-up in T runs in α log2(N) seconds, Insertion in T runs in β log2(N) seconds,
and deleting the whole tree takes γN seconds.

Let us estimate the time taken by a node to process all pheromone seeds for one
routing task. We denote by λ the rate of transactions, i.e. the number of transactions
performed per second. In our implementation of ant routing given in Section 8, the
tree containing pheromone seeds is split into k + 1-many subtrees. We can assume
that the routing tasks arrive at a constant rate, so that each subtree has the same
number of nodes. In that case, each subtree has λ

10 -many nodes. The node will only
have to perform one insertion of pheromone seed, but may have to perform several
look-ups. Let p be the number of look-ups to be performed. Then the total time
taken to process the pheromone seeds of one routing task is pα log2(λ10) + β log2(λ10).

Now let us consider the match phase. Now the trees containing the matches are
labelled by the identifier Id of the match. In general, a node may receive several
matches produced by the same pheromone seed. Denote by m the average number of
matches created by one pheromone seed and received by a node. The node will need
to perform m-many insertions (one for each match received) on the match tree, but
only one look-up (the look-up will be performed during the confirmation phase). The
total time taken to process matched seeds is on average α log2(m λ

10) +mβ log2(m λ
10).

Finally, the confirmation seed only needs one insertion and one look-up (the
look-up is actually performed during the counter check phase). Note that, for a given
transaction, only very few nodes will actually have to process a confirmation seed.
Let c denote the probability that a node receives a confirmation seed. The time to
process confirmed seeds is then on average c(α log2(c λ10) + β log2(c λ10)).

The total time to process one routing task is therefore on average:

T (λ) := (pα+ β) log2(λ10) + (α+mβ) log2(m λ

10) + c(α+ β) log2(c λ10) (1)

Now let us estimate the total time that a node must dedicate to the routing task to
process all the routing demands that arise in the span of one second. The node has to
process on average λ-many routing tasks, so the time taken to process seeds is λT (λ).
We must also take into account the time taken to clean old seeds. This is done by
deleting a tree every 0.1 seconds. The time dedicated to cleaning the mempool is
therefore γλ(1 +m+ c). Thus, the total time dedicated to the ant routing algorithm
is

T̂ (λ) := λ(T (λ) + γ(1 +m+ c)) (2)

Now we just need to estimate the value of the coefficients α, β, γ, p,m, c.

9.2 Experimental result
We do determine α, β and γ experimentally. We have implemented the work of
a node with a C program following Section 8. Our program treats seeds stored

23

in an AVL tree. We use a look-up and insertion algorithm in our program that
is a recursive Implementation of algorithms 6 and 8. Our program first randomly
generates a mempool of a given size N . The program then inserts a new randomly
generated seed in the tree and records the time it takes to the program to perform
this insertion.

We ran the program for different values of N in the range from 100 to 100000.
For each N , we ran a Montecarlo simulation executing the program with 1000 trials.
We also did the same for the tasks of look-up and cleaning of the mempool. The
experimental results are shown in Figure 4 below. This allowed us to estimate the
values of α, β and γ appearing in formula (2). Experimentally, we find α = 0.7×10−6,
β = 1.1× 10−6 and γ = 8.2× 10−8.

Figure 4: Insertion, look-up and cleaning time depending on the size of the mempool

Now we come back to formula (2). We can now determine the maximum number
of routing tasks which a node can perform per second. In other words, the maximum
λ such that T̂ (λ) < 1. The value of this maximal λ depends on parameters p,m and
c. Note that these parameters essentially depend on the centrality and connectivity
of the node.

For most nodes, we can assume that c is negligible, and that m = 1 on average,

24

so it remains to determine p. It is established in [18] that the average number
of channels per node is 7. This means that p is bounded by 8. In the worst
case, we thus have T (λ) = (8α + 2β) log2(λ10) = 7.8 log2(λ10)10−6 and T̂ (λ) =
λ(7.8 log2(λ10)10−6 + 8.2× 10−8 × 2). We find λmax ' 12500.

Remark 9.1: • This result means that an average node can process up 12500
tx per second. However, it is important to note that it is not necessary that
all nodes process all incoming routing tasks. Indeed, since the network is
well-connected, a routing task should still be completed successfully even if
only 50 percent of the network is performing the task. This means that we can
hope that the network could sustain up to 25000 tx per second.

• The above estimate is valid for nodes with low or average connectivity. However,
for big nodes, p can be much higher, the value of c might be non-negligible, and
m might take an average value higher than 1. It would take a deeper analysis
of the network to estimate the capacity of these nodes to process all incoming
routing tasks.

The C code used in this section for estimating the capacity of Ant Routing algo-
rithm is available at : https://github.com/gabrielLehericy/Ant-routing-simulation

Acknowledgement The two first authors were partially supported by the FUI
Moneytrack project joined between INRIA and Pôle Universitaire Léonard de Vinci.

References
[1] G.M. Adelson-Velski, E.M. Landis, An algorithm for the organization of informa-

tion, Dokl. Akad. Nauk SSSR, 146:2, 263–266, 1962.
[2] B. Awerbuch, Reducing complexities of the distributed max-flow and breadth-first-

search algorithms by means of network synchronization. Networks, 1985.
[3] F. Beres and I.A. Seres and A.A. Benczur A Cryptoeconomic Traffic Analysis of

Bitcoins Lightning Network, preprint, Cryptoeconomic systems, MIT Press, 2020.
[4] M. Dorigo and T. Stützle Ant Colony Optimization, Bradford Company, 2004.
[5] M. Dorigo, V. Maniezzo and A. Colorni, Ant system: optimization by a colony

of cooperating agents in IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 26, no. 1, pp. 29-41, 1996.

[6] E. Giorgiadis, How many transactions per second can bitcoin really handle ?
Theoretically, Cryptology ePrint Archive, Report 2019/416, 2019.

[7] C. Grunspan and R. Perez-Marco, Double spend races, International Journal of
Theoretical and Applied Finance, Vol. 21, 2018.

[8] C. Grunspan and R. Perez-Marco, Ant routing algorithm for the Lightning
Network, arxiv:1807.00151, 2018.

[9] Lester R Ford and Delbert R Fulkerson. Maximal Flow Through a Network.
Canadian Journal of Mathematics, 8(3), 1956.

[10] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei. Silentwhispers:
Enforcing security and privacy in decentralized credit networks. ISOC Network
and Distributed System Security Symposium - NDSS, 2017.

25

[11] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, I. Beschastnikh, Bandwidth-
efficient transaction relay in Bitcoin, CCS’19, Proceeding of the ACM SIGSAC
Conference on Computer and Communication Security, 2019.

[12] S. Bakshi, B. Bhattacharjee, S. Delgado-Segura, J. Litton, A. Miller, A. Pachul-
ski, C. Pérez-Solà, TxProbe: Discovering Bitcoin’s Network Topology Using
Orphan Transactions, Financial Cryptography and Data Security, 2019.

[13] Shivanand C Kohalli, Coordinate Routing in the Lightning Network, Master’s
Thesis, Delft University of Technology, 2019.

[14] J. Poon and T. Dryja, The bitcoin Lightning Netwgoogleork: scalable off-chain
instant payment, Online, http://lightning.network/docs/ , 2016.

[15] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Osuntokun Flare:
An approach to routing in Lightning Network. Online, https://bitfury.com , 2016.

[16] S. Roos, M. Beck, and T. Strufe. Anonymous addresses for efficient and resilient
routing in f2f over- lays. In Computer Communications, IEEE INFOCOM 2016-
The 35th Annual IEEE International Conference on, pages 1–9. IEEE, 2016.

[17] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg. Settling payments fast
and private: Efficient decentralized routing for path-based transactions. ISOC
Network and Distributed System Security Symposium - NDSS, 2018.

[18] I.A. Seres, L. Gulyas, D.A. Nagy, P. Burcsi, Topological analysis of Bitcoin’s
Lightning Network, arxiv:1901.04972, 2019.

[19] http://bitcoinstats.com/network/propagation/
[20] V. Sivaraman, S. Bojja Venkatakrishnan, M. Alizadeh, G. Fanti, P. Viswanath,

Routing cryptocurrency with the spider network, arXiv:1809.05088, 2018.
[21] H. S. Wilf. Algorithms and complexity. AK Peters/CRC Press, 2002.
[22] Imbalance measure and proactive channel rebalancing algorithm for the Light-

ning Network, M. Nowostawski, R. Pickhardt, arXiv:1912.09555, 2019.

26

	Introduction
	Overview of routing proposals and existing ant algorithms
	Ant routing protocol
	Memory data
	Algorithms

	Robustness of ant routing
	Life time of seeds
	A general maximum capacity estimate
	AVL trees
	Implementation of ant routing
	Estimating scalability
	Formula
	Experimental result

