
HAL Id: hal-02466702
https://hal.science/hal-02466702v1

Preprint submitted on 4 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interpreting a Penalty as the Influence of a Bayesian
Prior

Pierre Wolinski, Guillaume Charpiat, Yann Ollivier

To cite this version:
Pierre Wolinski, Guillaume Charpiat, Yann Ollivier. Interpreting a Penalty as the Influence of a
Bayesian Prior. 2020. �hal-02466702�

https://hal.science/hal-02466702v1
https://hal.archives-ouvertes.fr

Interpreting a Penalty as the Influence of a Bayesian Prior

Pierre Wolinski∗

pierre.wolinski@u-psud.fr

Guillaume Charpiat∗

guillaume.charpiat@inria.fr

Yann Ollivier†

yol@fb.com

February 4, 2020

Abstract

In machine learning, it is common to optimize the parameters of a probabilistic model,
modulated by a somewhat ad hoc regularization term that penalizes some values of the pa-
rameters. Regularization terms appear naturally in Variational Inference (VI), a tractable
way to approximate Bayesian posteriors: the loss to optimize contains a Kullback–Leibler
divergence term between the approximate posterior and a Bayesian prior. We fully char-
acterize which regularizers can arise this way, and provide a systematic way to compute
the corresponding prior. This viewpoint also provides a prediction for useful values of the
regularization factor in neural networks. We apply this framework to regularizers such as
L1 or group-Lasso.

1 Introduction

Adding a penalty term to a loss, in order to make the trained model fit some user-defined property,
is very common in machine learning. For instance, penalties are used to improve generalization,
prune neurons or reduce the rank of tensors of weights. Therefore, usual penalties are mostly
empirical and user-defined, and integrated to the loss as follows:

L(w) = `(w) + r(w),

with w the vector of all parameters in the network, `(w) the error term and r(w) the penalty
term.

From a Bayesian point of view, optimizing such a loss L is equivalent to finding the Maximum
A Posteriori (MAP) of the parameters w given the training data and a prior α ∝ exp(−r). Indeed,
assuming that the loss ` is a log-likelihood loss, namely, `(w) = − ln pw(D) with dataset D, then
minimizing L is equivalent to minimizing LMAP(w) = − ln pw(D)− ln(α(w)). Thus, within the
MAP framework, we can interpret the penalty term r as the influence of a prior α [14].

However, the MAP approximates the Bayesian posterior very roughly, by taking its max-
imum. Variational Inference (VI) provides a variational posterior distribution rather than a
single value, hopefully representing the Bayesian posterior much better. VI looks for the best
posterior approximation within a family βu(w) of approximate posteriors over w, parameterized

∗Inria, Team TAU, Gif-sur-Yvette, France
†Facebook, France

1

ar
X

iv
:2

00
2.

00
17

8v
1

 [
cs

.L
G

]
 1

 F
eb

 2
02

0

by a vector u. For instance, the weights w may be drawn from a Gaussian distribution with
mean u and fixed variance. The loss to be minimized over u is then:

LVI(βu) = −Ew∼βu ln pw(D) + KL(βu‖α) = Ew∼βu`(w)︸ ︷︷ ︸
data fit term

+ KL(βu‖α)︸ ︷︷ ︸
penalty term

, (1)

and is also an upper bound on the Bayesian negative log-likelihood of the data [7]. Here pw(D)
is the likelihood of the full dataset D given w, `(w) = − ln pw(D) is the log-likelihood loss, and
α is the Bayesian prior. The posteriors βu that minimize this loss will be concentrated around
values of w that assign high probability to the data, while not diverging too much from the prior
α. Thus, the KL divergence term can be seen as a penalty r(·) over the vector u.

Contributions and outline. We start from the following question: given some arbitrary
penalty r(·), does it admit such an interpretation? Does there exist a prior α such that for all
u, r(u) = KL(βu‖α) (up to an additive constant)? If so, is there a systematic way to compute
such α?

First, we provide a necessary and sufficient condition (Theorem 1) over the penalty r, that
ensures the existence of a prior α such that VI with prior α reproduces the penalty r. The
theorem comes with an explicit formula for α. We recover the MAP case as a degenerate case
(Section 4.3).

Thus, we are able to determine whether a penalty r makes sense in a Bayesian framework
and can be interpreted as the influence of a prior. We find this to be a strong constraint on r
(Section 4.2). Here the regularizer r operates on the variational posterior βu; for deterministic
β this reduces to r directly acting on w, and we recover the traditional MAP correspondence in
this case (Section 4.3).

Second (Section 5), we propose a heuristic to predict a priori useful values of the penalty
factor λ to be put in front of a penalty r for neural networks, potentially bypassing the usual
hyperparameter search on λ. Namely, we posit that the Bayesian prior α(w) corresponding to λr
should reasonably match what is known for good a priori values of weights w in neural networks,
namely, that the variance of weights under the prior α should match the Glorot initialization
procedure [2]. This usually provides a specific value of λ. Moreover, the penalty size gets
automatically adjusted depending on the width of the various layers in the network.

We test this prediction for various penalties (Section 6), including group-Lasso [25], for which
per-layer adjustment of the penalty is needed [1]. Experimentally, the predicted value of the
regularization factors leads to reasonably good results without extensive hyperparameter search.
Still, the optimal penalization factor is found to be systematically about 0.01 to 0.1 times our
predicted value, showing that our heuristic provides a usable order of magnitude but not a perfect
value, and suggesting that the Bayesian VI viewpoint may over-regularize.

2 Related Work

Interpretations of existing empirical deep learning methods in a Bayesian variational inference
framework include, for instance, variational drop-out [8], a version of drop-out which fits the
Bayesian framework. Further developments of variational drop-out have been made by [18] for
weight pruning and by [12] for neuron pruning.

Closer to our present work, the links between a penalized loss and the Bayesian point of view
have previously been mentioned by [19] with a few approximations. [14] noted the equivalence
of the penalized loss L(w) = `(w) + r(w) and the MAP loss LMAP(w) = `(w) − ln(α(w))
when `(w) is the negative log-likelihood of the training dataset given the weights w, and with a

2

prior α(w) ∝ exp(−r(w)). That is, finding the vector ŵ minimizing a loss L can be equivalent
to finding the MAP estimator ŵMAP by minimizing the loss LMAP with a well-chosen prior
distribution α.

However, the MAP framework is not completely satisfying from a Bayesian point of view:
instead of returning a distribution over the weights, which contains information about their
uncertainty, it returns the most reasonable value. In order to evaluate this uncertainty, [13] pro-
posed a second-order approximation of the Bayesian posterior. In the process, [15] also proposed
a complete Bayesian framework and interpretation of neural networks. Still, this approximation
of the Bayesian posterior is quite limited.

In the same period, [5] applied the Minimum Description Length (MDL) principle to neural
networks. Then, [16] made the link between the MDL principle and variational inference, and [3]
applied it to neural networks, allowing for variational approximations of the Bayesian posterior
in a tractable way.

3 Variational Inference

We include here a reminder on variational inference for neural networks, following [3].
From a Bayesian viewpoint, we describe the vector of weights w ∈ RN of a neural network

as a random variable. Given a dataset D, we denote by pw(D) the probability given to D by
the network with parameter w. For instance, with a dataset D = {(x1, y1), · · · , (xn, yn)} of n
input-output pairs and a model that outputs (log-)probabilities pw(yi|xi) for the outputs, then
ln pw(D) =

∑n
i=1 ln pw(yi|xi) is the total log-likelihood of the data given the model.

Given the dataset D, the posterior distribution over weights w is:

πD(w) =
pw(D)α(w)

P(D)
, P(D) =

∫
w

α(w)pw(D)

which is analytically intractable for multi-layer nonlinear neural networks. However, the posterior
πD can be approximated by looking for probability distributions β that minimize the loss

LVI(β) = −Ew∼β ln pw(D) + KL(β‖α), (2)

where KL(β‖α) =
∫
RN ln

(
β(w)
α(w)

)
β(w) dw is the Kullback–Leibler divergence. Indeed, one has

LVI(β) = − lnP(D) + KL(β‖πD), which is minimal when β = πD.
The first term in the loss (2) represents the error made over the dataset D: it is small

if β is concentrated around good parameters w. The second term can be seen as a user-
defined penalty over β that keeps it from diverging too much from the prior α. Moreover,
for any distribution β, the quantity LVI(β) is a bound on the Bayesian log-likelihood of the data:
LVI(β) ≥ − ln

∫
w
α(w)pw(D) [7].

In variational inference, a parametric family B of probability distributions β is fixed, and one
looks for the best approximation β∗ of the Bayesian posterior in B by minimizing LVI(β) in this
family: the variational posterior. Importantly, for some families such as Gaussians with fixed
variance, the gradient of LVI(β) can be computed if the gradients of ln pw(D) can be computed
[3], so that LVI(β) can be optimized by stochastic gradient descent. Thus, this is well-suited for
models such as neural networks.

Thus, we consider a parametric family B = {βu : u ∈ RP } with parameter u, where each
βu is a probability distribution over w ∈ RN . Then we learn the parameters u instead of the
weights w. For instance, we can choose one of the following families of variational posteriors.

3

Example 1. The family of products of Gaussian distributions over w = (w1, · · · , wN):

βu = β(µ1,σ2
1 ,··· ,µN ,σ2

N) = N (µ1, σ
2
1)⊗ · · · ⊗ N (µN , σ

2
N).

In this case, the weights of the neural network are random and independently sampled from differ-
ent Gaussian distributions N (µk, σ

2
k). Instead of learning them directly, the vector of parameters

u = (µ1, σ
2
1 , · · · , µN , σ2

N) is learned to minimize LVI(βu).

Example 2. The family of products of Dirac distributions over w = (w1, · · · , wN):

βu = β(µ1,··· ,µN) = δµ1 ⊗ · · · ⊗ δµN .

In this case, the weights are deterministic: wk and µk are identical for all k.

4 Bayesian Interpretation of Penalties

4.1 When Can a Penalty Be Interpreted as a Prior?

In this section, we provide a necessary and sufficient condition that ensures that a penalty r(u)
over the parameters of a variational posterior can be interpreted as a Kullback–Leibler divergence
with respect to a prior α; namely, that

∃K ∈ R, ∀u, r(u) = KL(βu‖α) +K

(the constant K does not affect optimization). In the process, we give a formula expressing α as
a function of r(·).

In a nutshell, we place ourselves in the framework of variational inference: we assume the
vector of weights w of the probabilistic model to be a random variable, drawn from a learned
distribution βu parameterized by a vector u. For instance, the vector of weights w can be drawn
from a multivariate normal distribution βµ,Σ ∼ N (µ,Σ).

We use some notions of distribution theory. We provide a reminder in Appendix C.

Notation. In order to approximate the posterior distribution of a vector w ∈ RN , we denote
by (βµ,ν)µ,ν the family of variational posteriors over w, parameterized by its mean µ and a
vector of additional parameters ν. The basic example is a multivariate Gaussian distribution
βµ,ν parameterized by its mean µ ∈ RN and its covariance matrix ν = Σ ∈MN,N (R).

We say that the family (βµ,ν)µ,ν of variational posteriors is translation-invariant if βµ,ν(θ) =
β0,ν(θ − µ) for all µ,ν, θ.

We denote by r(µ,ν) = rν(µ) some penalty, to be applied to the distribution βµ,ν .
We denote by F the Fourier transform, given by (Fϕ)(ξ) :=

∫
RN ϕ(x)e−iξ·x dx for ϕ ∈

L1(RN). This definition extends to the class of tempered distributions S ′(RN) (see Appendix C).
In the sequel, we always restrict ourselves to priors α ∈ T (RN) = {α s.t. ln(α) ∈ S ′(RN)},

i.e. log-tempered probability distributions, hence the condition ln(α) ∈ S ′(RN) in the results
below. This provides a reasonable behavior of α at infinity. Common probability distributions
belong to this set. As a simple counter-example, one may take α(θ) ∝ exp(− exp |θ|), for which
ln(α) /∈ S ′(R).

Definition 1. We define the following distribution over RN :

Aν := −Ent(β0,ν)1 − F−1

[
Frν
F β̌0,ν

]
, (3)

4

where β̌0,ν(θ) := β0,ν(−θ) and 1 is the constant function equal to 1. We say that

r fulfills (?)⇔
{
Aν does not depend on ν, i.e. Aν = A;
A is a function such that exp(A) integrates to κ > 0.

Theorem 1. Let (βµ,ν)µ,ν be a translation-invariant family of variational posteriors. Let
r(µ,ν) = rν(µ) be a penalty over βµ,ν .

We assume that ∀ν, the probability distribution β0,ν has finite entropy and lies in the Schwartz
class S(RN); that Fβ0,ν is nonzero everywhere; and that Frν ∈ E ′(RN), the class of distributions
with compact support.

We are looking for probability distributions α such that:

∃K ∈ R : ∀(µ,ν), rν(µ) = KL(βµ,ν‖α) +K. (4)

We have the following equivalence:

α is a solution to (4), with α ∈ T (RN) ⇔ r fulfills (?) and α =
1

κ
exp(A),

where A is defined in Equation (3).

The proof is given in Appendix D. It is based on the resolution of a classical integral equation
([20], Section 10.3-1) adapted to the wider framework of distribution theory. This extension
is necessary, since the Fourier transform of the widely-used L2 penalty (r(x) = x2) cannot be
expressed as a function.

The preceding result holds under some technical assumptions. Even if some of the technical
assumptions fail, the formula is still useful to compute a candidate prior α from a penalty r(·):
apply Equation (3) on a penalty r to compute Aν , then check that Condition (?) holds, define
α = 1

κ exp(A), and finally compute KL(βµ,ν‖α) analytically and compare it to r.

Remark 1. The assumption Frν ∈ E ′(RN) includes the L2 penalty and all L2p penalties (for any
positive integer p), but not the L1 penalty. Indeed, For r2(x) = x2 one has Fr2 = −2πδ′′ ∈ E ′(R).
For r2p(x) = x2p, one has Fr2p = (−1)p2πδ(2p) ∈ E ′(R), but for r1(x) = |x|, (Fr1)(t) = 2t−2 /∈
E ′(R). Still, for any penalty r ∈ S ′(RN), it is always possible to find a sequence (rn)n ∈ S ′(RN)
converging to r in S ′(RN) such that Frn ∈ E ′(RN) for all n (see Appendix E).

Particular case: variational posteriors parameterized by their mean (ν = ∅). Theo-
rem 1 provides a method to compute a prior from a penalty and a family of variational posteriors
(βµ,ν)µ,ν . Still, Eq. (3) returns a distribution Aν which may or may not satisfy the condition.
Here we present a corollary which guarantees that the condition is satisfied; this holds under
stricter conditions over the variational posteriors.

Corollary 1. Assume that the family of posterior distributions (βµ,ν)µ,ν is only parameterized
by their means, that is βµ,ν = βµ and rν(µ) = r(µ). Assume that β0 ∈ S(RN), Fr ∈ E ′(RN),
Fβ0 is nonzero everywhere and β0 has a finite entropy. Assume that F−1[FrF β̌0

] is a function

satisfying

∃ (a, b, k) ∈ R+
∗ × R+

∗ × R : ∀θ ∈ RN , F−1

[
Fr
F β̌0

]
(θ) ≥ a|θ|b + k. (5)

Then there exists κ > 0 such that:

α(θ) =
1

κ
exp

(
−Ent(β0)−F−1

[
Fr
F β̌0

]
(θ)

)
=

1

κ
eA(θ)

5

is a probability density satisfying r(µ) = KL(βµ‖α) up to a constant, and is the unique such
probability density in T (RN).

Remark 2. In many cases, condition (5) is not a limitation. For instance, with βµ ∼ N (µ, σ2),
where σ2 is a constant, and with the penalty r the L2 penalty, Condition (5) reads: ∃ (a, b, k) ∈
R+
∗ × R+

∗ × R such that θ2 − σ2 ≥ a|θ|b + k for all θ ∈ RN , which is satisfied.

4.2 Example 1: Gaussian Distributions with L2 Penalty

Let us study the variational posteriors from Example 1: each vector of weights w ∈ RN is
drawn from a Gaussian distribution βu = N (µ1, σ

2
1) ⊗ · · · ⊗ N (µN , σ

2
N) with parameter u =

(µ1, σ
2
1 , · · · , µN , σ2

N). We assume that each pair of variational parameters (µk, σk) is penalized
independently by some penalty ra,b depending on two real-valued functions a and b:

ra,b(µk, σ
2
k) = a(σ2

k) + b(σ2
k)µ2

k. (6)

The penalty over u is assumed to be the sum of the penalties ra,b(µk, σk). Therefore, we study
each pair (µk, σk) independently and we omit the index k.

Corollary 2. If the penalty (6) above corresponds to a prior α, then α is Gaussian.
More precisely, let α be a probability distribution in T (R), and assume that ra,b(µ, σ

2) =
KL(βµ,σ2‖α), up to a constant. Then there exists σ2

0 > 0 such that α = N (0, σ2
0). Moreover, in

that case, the penalty is, up to a constant:

ra,b(µ, σ
2) =

1

2

[
σ2 + µ2

σ2
0

+ ln

(
σ2

0

σ2

)
− 1

]
.

This corollary is an application of Theorem 1. We give the proof in Appendix G.
Thus, the assumption that a penalty r arises from a variational interpretation is a strong

constraint over r. Here the penalty r was initially parameterized by a pair of real functions
(a, b), and is finally parameterized by a single number σ2

0 .

4.3 Example 2: Deterministic Posteriors and the MAP

Another basic example is to use Dirac functions as variational posteriors (Example 2): βµ,ν = δµ.
Since δ0 /∈ S(R), the technical conditions of Theorem 1 are not satisfied. However, it is possible
to apply Formula (3) and check that the resulting prior α is consistent with a chosen penalty r.

Applying Formula (3) yields

A = −Ent(δ0)1−F−1

[
Fr
Fδ0

]
= −F−1

[
Fr
1

]
= −r.

Thus, if exp(−r) integrates to 0 < κ <∞, then we can define α = 1
κ exp(−r). Then, we can

check that indeed KL(δµ‖α) = r(µ) up to a constant:

KL(δµ‖α) = −Ent(δ0)− 〈δµ, ln(α)〉 = − lnα(µ)− Ent(δ0) = r(µ) + lnκ− Ent(δ0),

which confirms that the proposed prior α is consistent with the penalty r(·).
Thus, this formula recovers via variational inference the well-known penalty–prior equivalence

in the MAP approximation, αVI(θ) ∝ exp(−r(θ)) ∝ αMAP(θ) [14].
However, this is somewhat formal: the entropy Ent(δ0) of a Dirac function is technically

undefined and is an “infinite constant”. In practice, though, with a finite machine precision ε,
a Dirac mass can be defined as a uniform distribution over an interval of size ε, and Ent(δ0)
becomes the finite constant ln ε.

6

5 Application to Neural Networks: Choosing the Penalty
Factor

In this section, we compare the prior α arising from a penalty via Theorem 1, to reasonable weight
priors for neural networks. In particular, we study how the prior varies when scaling the penalty
by a factor λ, namely, rλ(·) = λr̃(·) for a reference penalty r̃. Requiring that α is comparable to
standard priors for neural network weights provides a specific value of the regularization constant
λ. Specifically, we compare the prior to the standard initialization of neuron weights [2]: the
variance of weights sampled from the prior α should be approximately equal to the inverse of
the number of incoming weights to a neuron. This constraint can be used to determine λ. In
particular, this suggests different values of λ for different layers, depending on their size.

Possible advantages of being able to predict a good value for λ include avoiding a hyper-
parameter search, and better adjustment of the relative penalties of different layers or groups
of neurons. For instance, one application of penalties in neural networks is to push neurons
or convolutional filters towards zero, allowing for network pruning and reduced computational
overhead. Penalties have been developed to remove entire neurons or filters, often based on the
Lasso penalty: for instance, group-Lasso [21] and sparse group-Lasso [1]. In the latter work,
different penalties are used for different layers, with values of λ determined empirically. We will
compare our predicted values of λ to the values used in these works.

Additive penalties and independent priors. Below, we focus on penalties that are ex-
pressed as sums over neurons or groups of neurons, such as L2 or group-Lasso penalties. In the
Bayesian setup, this corresponds to the additivity property of Kullback–Leibler divergence over
products of distributions, KL(β1⊗β2‖α1⊗α2) = KL(β1‖α1)+KL(β2‖α2). Thus, sums of penal-
ties over different neurons or groups of neurons correspond to priors α and variational posteriors
β that decompose as independent distributions over these neurons or groups of neurons.

5.1 A Reasonable Condition over the Prior α

Let us consider the variational inference framework applied to one weight wlij , the j-th weight of
the i-th neuron in the l-th layer of a neural network. As a default distribution, one could expect
α to be usable to initialize the weight wlij .

Therefore, we require α to satisfy the condition given by [2] over the initialization procedure,
which we call (]):

α fulfills (]) ⇔ Ewlij∼α[wlij] = 0 and Ewlij∼α[w2
lij] = 1/Pl

where Pl is the number of incoming weights in one neuron of the layer l. More generally, this
condition can be written for the whole set of incoming weights to each neuron: denoting by wli

the vector of all incoming weights of neuron i in layer l, one can define Condition (]′):

α fulfills (]′) ⇔ Ewli∼α[wli] = 0 and Ewli∼α[‖wli‖2] = 1

which slightly extends (]).
Thus, if the prior α depends on some variable b, then Condition (]) is reflected on b. For

instance, in Example 1 (Section 4.2), (]) is satisfied if and only if ασ2
0

is N (0, 1/Pl). In the
end, our suggested recipe for finding reasonable values for parameters b of a penalty rb is the
following:

1. Follow the formulas in Thm. 1 to compute a prior αb such that rb(µ,ν) = KL(βµ,ν‖αb)+K.

2. write Condition (]) or (]′) (depending on the case) for αb: this provides a constraint on b.

7

5.2 Examples: L2, L1, and Group-Lasso Penalties

We now review some standard penalties, and apply this criterion to compute the penalty factor
λ in front of each penalty.

Here we work with Dirac posterior distributions βµ = δµ (Example 2 and Section 4.3). In
that case, since each weight wlij is deterministically set to µlij , we use wlij and µlij indifferently.
Thus, the penalty with penalty factor λ is

rλ(w) = rλ(µ) = λr̃(µ) = KL(δµ‖αλ) +K

for some reference penalty r̃. For each λ, the corresponding prior is αλ(θ) ∝ e−λr̃(θ).
We will apply Condition (]) to find a value for λ, for various penalties. In Table 1 we compare

these values to usual ones.
We recall that Pl in the number of incoming weights of a neuron in layer l.

Remark 3. We recall that r(w) is a full-dataset penalty (see Eq. 1), so that the actual per-
minibatch penalty for stochastic gradient is 1

nr(w) for individual samples or B
n r(w) for mini-

batches of size B.

The results below apply equally to fully connected and to convolutional networks; in the
latter case, “neuron” should read as “individual filter”.

L2 penalty. We have rλ(w) = λw2, thus αλ(θ) ∼ N (0, 1/(2λ)). Then Condition (]) is equiva-
lent to λ = Pl

2 . Thus, from a Bayesian viewpoint, when using a L2-penalty, each weight w of a
neuron with Pl incoming weights should be penalized by

rλ(w) =
Pl
2
w2. (7)

L1 penalty. We have rλ(w) = λ|w|, thus αλ(θ) = λ
2 e
−λ|θ|. Therefore, Condition (]) is equiv-

alent to λ =
√

2Pl. As a consequence, when penalizing weight w in the l-th layer of a neural
network with a L1-penalty, this weight w should be penalized with the term:

rλ(w) =
√

2Pl|w|. (8)

Standard Group-Lasso penalty. The group-Lasso jointly penalizes all the incoming weights
of each neuron wl,i ∈ RPl . Thus, we consider a prior and a posterior that are probability
distributions on RPl , and use Condition (]′). Denoting by w ∈ RPl the incoming weights of a
neuron, we have

rλ(w) = λ‖w‖2. (9)

Then αλ(θ) = λPl
SPl−1Γ(Pl)

e−λ‖θ‖2 , where Γ is Euler’s Gamma function and Sn−1 is the surface

of the (n − 1)-sphere. After computation of the variance, Condition (]′) is equivalent to λ =√
Pl(Pl + 1). As a consequence, when penalizing neuron w in the l-th layer of a neural network

with a group-Lasso penalty, this neuron w should be penalized with the term:

rλ(w) =
√
Pl(Pl + 1)‖w‖2. (10)

8

Table 1: How the regularization constant λ depends on the number of neurons nl and the number
of parameters per neuron Pl in layer l, both for our heuristics (λBayesian) and for standard set-
tings (λusual). For details on group-Lasso and reversed group-Lasso penalties, see Equations (9)
and (12).

penalty L2 L1 group-Lasso rev. gr.-Lasso

λBayesian Pl/2
√

2Pl
√
Pl(Pl + 1)

√
Pl(nl + 1)

λusual 1 1
√
Pl

√
nl

This choice differs from [1], who use λ ∝
√
Pl, after an intuition proposed in [25]. Their

whole-network penalty is

L(w) = `(w) +

L∑
l=1

λ̃l

(
(1− γ)

√
Pl

nl∑
i=1

‖wl,i‖2 + γ

nl∑
i=1

‖wl,i‖1

)
, (11)

where γ ∈ [0, 1] is a fixed constant, L is the number of layers, nl is the number of neurons in
the l-th layer, Pl is the number of parameters in each neuron in the l-th layer, and wl,i is the

set of weights of the i-th neuron of the l-th layer. The per-layer regularization constants λ̃l are
chosen empirically in [1]. On the other hand, our Bayesian reasoning yields a scaling

√
Pl(Pl + 1)

instead of
√
Pl for the penalties ‖wl,i‖2 in (11).

Reversed Group-Lasso penalty. We recall that the standard group-Lasso penalty groups the
weights of a layer by neurons, that is output features. It is also possible to group them by input
features, namely, to group together the outgoing weights of each neuron. For a fully-connected
neural network, the loss penalized by a “reversed” group-Lasso can be written:

L(w) = `(w) +

L∑
l=1

λl

Pl∑
j=1

‖wl,·,j‖2, (12)

where wl,·,j ∈ Rnl is the vector of weights of the l-th layer linked to the j-th input feature and
nl is the number of neurons in the l-th layer. By computations similar to standard group-Lasso,
(]′) is equivalent to λ =

√
Pl(nl + 1) where nl is the number of neurons in layer l, namely,

rλ(wl,·,j) =
√
Pl(nl + 1)‖wl,·,j‖2.

6 Experiments

Penalty terms are often used in the literature [21, 1, 4] in order to prune neural networks, that
is, to make them sparse. Indeed, penalties such as L1 or group-Lasso tend to push weights or
entire groups of weights towards 0 [24]. The efficiency of such methods can be measured in terms
of final accuracy and number of remaining parameters.

We have chosen to compare within this context our heuristic to usual setups for the penalty
factor, for different penalties. Our main criterion remains the final accuracy of the pruned

9

network. According to the results given in Table 1, the global penalty should be decomposed
into a sum of penalties over each layer:

r(w) = λ

L∑
l=1

λlr(wl),

where λ is a global penalty factor, L is the number of layers, r(wl) is the penalty term due to the
l-th layer and λl is its corresponding penalty factor. According to our heuristic, each λl should
be set to λBayesian given in Table 1 and λ = λTh = 1/n, where n is the size of the training dataset
(by Remark 3). In the usual setup, each λl is set to λusual given in Table 1, while several values
for λ are tested.

We test the quality of our heuristic in two steps. First, we only test the computed partial
penalty factors λl: they are fixed to λBayesian, while several values for λ are tested. Second, we
test the full heuristic: each λl is fixed to its corresponding λBayesian and λ = λTh = 1/n.

Experimental setup. We consider two neural networks: a version of VGG19 [22] with one
fully connected layer of size 512, and CVNN, which is a simple network with two convolutional
layers (of respective sizes 100 and 200 with 5× 5 patches), each followed by a ReLU and a 2× 2
max-pool layer, and two fully-connected layers (of sizes 1000 and 200).

The training and pruning procedure is detailed in Appendix A and the full experimental
procedure is detailed in Appendix B. The CIFAR-10 dataset is decomposed into three parts: a
training set (42000 images), a validation set (8000 images), and a test set (10000 images). All
reported accuracies are computed over the test set, which is never used during each run.

Results. We give the results in Figure 1. Each point gives the final accuracy and number of
parameters of a neural network for a given setup, averaged over 3 runs. The red line and the
blue line correspond respectively to the usual setup and our setup for per-layer penalty λl, for
various global factors λ. To check the quality of the heuristics over λl, we should compare the
maxima of the two lines in each graph. The theoretical value λ = λTh is marked by the grey
vertical line, so the blue point on the grey vertical line illustrates the performance of the joint
theoretical values on both λl and λ.

We report in Table 2 the values of relevant quantities: acc∗usual, the best (over λ) accuracy of
the usual per-layer scaling λl; acc∗Bayesian, the best (over λ) accuracy of the Bayesian per-layer
scaling λl (we denote by λ∗ the optimal λ); and accBayesian, the accuracy of the Bayesian per-layer
λl together with the Bayesian predicted λ = λTh. This would allow us to conclude:

1. if acc∗Bayesian > acc∗usual, then we can conclude that our theoretical estimation for λl is
better that the usual ones;

2. moreover, we check whether accBayesian > acc∗usual. If it is, then we can conclude that our
theoretical estimation for λl and the choice λ = λTh are better than the usual ones;

3. finally, the closer the ratio λTh/λ
∗ is to 1, the closer we are to the Bayesian theoretical

framework.

Regarding Point 1, our theoretical estimation for λl leads to accuracies which remain close
to accuracies obtained in the usual setup. Our setup leads to slightly better accuracies when
training CVNN, and slightly worse for VGG19.

Regarding Points 2 and 3, the usual setup with optimized λ and our setup with Bayesian
estimation for λ = λTh perform similarly, though the second one usually performs slightly worse,

10

due to a systematic mismatch between λTh and λ∗. Indeed, λTh is always roughly 10 times
greater than λ∗.

CVNN VGG19

L2 penalty

10 7 10 6 10 5 10 4 10 3 10 2

penalty factor

0.82

0.84

0.86

0.88

0.90

0.92

ac
cu

ra
cy

CVNN + L2 penalty

pen. L2 (usual)
pen. L2 (Bayesian pen.)

10 7 10 6 10 5 10 4 10 3 10 2

penalty factor

0.86

0.88

0.90

0.92

0.94

ac
cu

ra
cy

VGG19 + L2 penalty

pen. L2 (usual)
pen. L2 (Bayesian pen.)

L1 penalty

10 7 10 6 10 5 10 4 10 3

penalty factor

0.82

0.84

0.86

0.88

0.90

0.92

ac
cu

ra
cy

CVNN + L1 penalty

pen. L1 penalty (usual)
pen. L1 penalty (Bayesian pen.)

10 7 10 6 10 5 10 4 10 3

penalty factor

0.86

0.88

0.90

0.92

0.94

ac
cu

ra
cy

VGG19 + L1 penalty

pen. L1 penalty (usual)
pen. L1 penalty (Bayesian pen.)

Group-Lasso penalty

10 7 10 6 10 5 10 4 10 3

penalty factor

0.82

0.84

0.86

0.88

0.90

0.92

ac
cu

ra
cy

CVNN + group-Lasso penalty

pen. group-Lasso (usual)
pen. group-Lasso (Bayesian pen.)

10 7 10 6 10 5 10 4 10 3

penalty factor

0.86

0.88

0.90

0.92

0.94

ac
cu

ra
cy

VGG19 + group-Lasso penalty

pen. group-Lasso (usual)
pen. group-Lasso (Bayesian pen.)

Reversed group-Lasso

10 7 10 6 10 5 10 4 10 3 10 2

penalty factor

0.82

0.84

0.86

0.88

0.90

0.92

ac
cu

ra
cy

CVNN + rev. group-Lasso penalty

pen. Rev. gr. Lasso (usual)
pen. Rev. gr. Lasso (Bayesian pen.)

10 6 10 5 10 4 10 3 10 2

penalty factor

0.86

0.88

0.90

0.92

0.94

ac
cu

ra
cy

VGG19 + rev. group-Lasso penalty

pen. Rev. gr. Lasso (usual)
pen. Rev. gr. Lasso (Bayesian pen.)

Figure 1: Final performance and number of parameters for various penalties in function of the
penalty factor λ. Red line: standard setup for the penalty; blue line: setup provided by the
heuristic (]) or (]′). Each bar corresponds to a final neural network: its abscissa is the penalty
factor λ used for training it, its ordinate is its final accuracy, and its width corresponds to its
final number of parameters. The vertical grey line is the value of the heuristic for λ.

11

Table 2: Comparison of the results. We show on the first row the best accuracy acc∗usual obtained
with the usual setup. Then we show its difference with the best accuracy acc∗Bayesian obtained
with our setup, its difference with the accuracy accBayesian obtained with our setup with the
Bayesian theoretical value for λ, that is λTh = n−1, and the ratio between λTh and the factor
λ = λ∗, that is the optimal value for λ. Among the results obtained with our methods, those
highlighted in blue are better, and those highlighted in red are worse than in the usual setup.

L2 pen. L1 pen. group-Lasso pen. rev. gr.-Lasso pen.

CVNN VGG CVNN VGG CVNN VGG CVNN VGG

acc∗
usual

(%) 88.00 ± .4 93.35 ± .15 88.36 ± .3 93.17 ± .3 88.43 ± .14 92.78 ± .19 88.04 ± .4 93.37 ± .09

acc∗Bayesian 88.69 ± .12 93.48 ± .09 88.41 ± .3 92.89 ± .2 88.67 ± .09 92.35 ± .18 88.32 ± .16 93.03 ± .15
accBayesian 88.25 ± .3 93.28 ± .17 87.48 ± .08 92.74 ± .19 87.45 ± .17 92.24 ± .14 85.49 ± .3 92.85 ± .06

λTh/λ
∗ 100.5 101 101 101 102 102 101.5 101

Discussion. This systematic overestimation of the penalty factor indicates that some phe-
nomenon is not yet understood. We have two mutually compatible explanations.

First, the choice λ = 1/n could be overestimated, as a strict Bayesian setup might be over-
cautious from the very beginning. Indeed, in other Bayesian approaches to neural networks, such
observations have been made. For instance, when using stochastic Langevin dynamics to approx-
imate the posterior, performance is better if the weight of the posterior is arbitrarily decreased
by an additional factor n (see footnote 5 in [17], and [9]).

Second, our choice for λl, based on Glorot’s initialization, could also be overestimated. Indeed,
λl only depends on Pl (the number of parameters in each neuron in layer l), and not on the
location of layer l in the network for instance, while the following observations suggest that the
heuristic used to set λl should take into account the architecture. We noticed that in most of
the pruning experiments we made, the reached level of sparsity is much higher in the second half
of the network (layers closer to the output). This is corroborated by [26] which shows that the
layers may behave differently from a training point of view, depending on the architecture of the
network and their position in it. Notably, they have proven that, in a trained VGG, some of
the last convolutional layers can be reset to their initial value without changing much the final
accuracy, while this cannot be done for the first layers.

7 Conclusion

We have provided a theorem that bridges the gap between empirical penalties and Bayesian
priors when learning the distribution of the parameters of a model. This way, various regular-
ization techniques can be studied in the same Bayesian framework, and be seen as probability
distributions. This unified point of view allowed us to take into account well known heuristics
(as Glorot’s initialization) in order to find reasonable values for hyperparameters of the penalty.

We have checked experimentally that our theoretical framework leads to reasonable results.
However, we noticed a constant mismatch (about a factor 10) between our predicted penalty
factor λTh and the best one λ∗. This fact raises interesting questions about a possible overcau-
tiousness of the Bayesian framework and the possible impact of the architecture when penalizing
layers, which we plan to investigate further.

12

References

[1] Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks.
In Advances in Neural Information Processing Systems, pages 2270–2278, 2016.

[2] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[3] Alex Graves. Practical variational inference for neural networks. In Advances in neural
information processing systems, pages 2348–2356, 2011.

[4] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neu-
ral Networks with Pruning, Trained Quantization and Huffman Coding. arXiv preprint
arXiv:1510.00149, 2015.

[5] Geoffrey E Hinton and Drew van Camp. Keeping neural networks simple. In International
Conference on Artificial Neural Networks, pages 11–18. Springer, 1993.

[6] Lars Hörmander. The Analysis of Linear Partial Differential Operators I. Springer, 1998.

[7] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
introduction to variational methods for graphical models. Machine learning, 37(2):183–233,
1999.

[8] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local repa-
rameterization trick. In Advances in Neural Information Processing Systems, pages 2575–
2583, 2015.

[9] Chunyuan Li, Changyou Chen, David E. Carlson, and Lawrence Carin. Preconditioned
stochastic gradient Langevin dynamics for deep neural networks. In Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA., pages 1788–1794, 2016.

[10] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[11] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Computer Vision
(ICCV), 2017 IEEE International Conference on, pages 2755–2763. IEEE, 2017.

[12] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning.
In Advances in Neural Information Processing Systems, pages 3288–3298, 2017.

[13] David JC MacKay. Bayesian model comparison and backprop nets. In Advances in neural
information processing systems, pages 839–846, 1992.

[14] David JC MacKay. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

[15] David JC MacKay. Probable networks and plausible predictionsa review of practical bayesian
methods for supervised neural networks. Network: computation in neural systems, 6(3):469–
505, 1995.

13

[16] David JC MacKay. Information theory, inference and learning algorithms. Cambridge
university press, 2003.

[17] Gaétan Marceau-Caron and Yann Ollivier. Natural langevin dynamics for neural networks.
In International Conference on Geometric Science of Information, pages 451–459. Springer,
2017.

[18] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies
deep neural networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2498–2507. JMLR. org, 2017.

[19] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision research, 37(23):3311–3325, 1997.

[20] Andrei D Polyanin and Alexander V Manzhirov. Handbook of integral equations. CRC press,
1998.

[21] Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse
regularization for deep neural networks. Neurocomputing, 241:81–89, 2017.

[22] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[23] Elias M Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean spaces (PMS-
32), volume 32. Princeton university press, 2016.

[24] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[25] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67,
2006.

[26] Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? arXiv
preprint arXiv:1902.01996, 2019.

14

A Training and Pruning: Details

Since pruning neurons causes an accuracy drop, we divided the learning into two phases: learning
and pruning phase; fine-tuning phase. This trick is widely used in pruning literature [10, 21, 11],
in order to achieve better performance.

We define a pruning criterion based on the “norm” of each neuron. The tested penalties, i.e.
L2 penalty, L1 penalty, group-Lasso penalty, and reversed group-Lasso penalty, can be separated
into two categories: penalization of the output features of each layer (L2, L1, group-Lasso) and
penalization of input features of each layer (reversed group-Lasso).

Pruning with L2, L1 and group-Lasso penalties. For each neuron wl,i, we check whether:

‖wl,i‖2 ≤ 0.001.

If so, then the neuron is pruned.

Pruning with reversed group-Lasso penalty. For each vector wl,·,j of the j-th input
weights of the neurons in layer l, we check whether:

‖wl,·,j‖2 ≤ 0.001.

If so, then the j-th neuron in layer l− 1 is pruned, because its output is almost not used in layer
l.

Pruning and training phase. The penalty is applied and, after each training epoch, pruning
is performed over all layers. This phase ends when the number of neurons and the best validation
accuracy have not improved for 50 epochs.

Fine-tuning phase. The penalty is removed and the learning rate is decreased by a factor
10 each time the validation accuracy has not improved for 50 epochs, up to 2 times. The third
time, training is stopped. No pruning is performed during this phase.

B Experimental Procedure

For each combination of neural network (VGG19 or CVNN) and penalty (L2, L1, group-Lasso,
or reversed group Lasso), we have tested two setups: our Bayesian heuristic for the penalty factor
λl of each layer l, and the usual setup for them (as described in Table 1). For each setup, we
have planned to plot the final accuracy and final number of parameters in function of the global
penalty factor λ. We have proceeded as follows:

1. we define a set Λ of λ we want to use into our experiments. Typically, we have chosen
Λ = (1/n) · {10−2.5, 10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5} in our setup (where n is the size
of the training set), and Λ = {10−6, 10−5.5, 10−5, 10−4.5, 10−4, 10−3.5, 10−3, 10−2.5} in the
usual setup;

2. for each λ ∈ Λ, we test several learning rates η ∈ {10−2, 10−3, 10−4}, and we select the
learning rate ηλ which led to the best accuracy;

3. for each λ ∈ Λ, we run 2 more experiments with the selected learning rate ηλ. Thus, we
are able to average our results over 3 runs.

15

C Reminder of Distribution Theory

In order to explain the main result, we recall some basic concepts of distribution theory. We use
three functional spaces: the Schwartz class S(RN), the space of tempered distributions S ′(RN),
and the space of distributions with compact support E ′(RN).

Above all, we recall the definition of the space of distributionsD′(RN). We denote by C∞(RN)
the space of infinitely derivable functions mapping RN to R, and by C∞c (RN) ⊂ C∞(RN) the
subspace of functions with compact support, that is ϕ ∈ C∞c (RN) if, and only if:

ϕ ∈ C∞(RN) and ∃K ⊂ RN compact s.t.: {x ∈ RN : ϕ(x) 6= 0} ⊆ K.

The set {x ∈ RN : ϕ(x) 6= 0} is also denoted by supp(ϕ).

Space of distributions D′(RN). The space of distributions D′(RN) is defined as the space
of continuous linear forms over C∞c (RN). For any distribution T ∈ D′(RN), we denote by 〈T, φ〉
the value of T at a given test function ϕ ∈ C∞c (RN).

More formally, T ∈ D′(RN) if, and only if, for all compact set K of RN , there exists p ∈ N
and C > 0 such that:

∀ϕ ∈ C∞c (RN) with supp(ϕ) ⊆ K, |〈T, ϕ〉| ≤ C sup
|α|≤p

‖∂αϕ‖∞.

Distributions are easier to visualize in specific cases. For instance, if a function f : RN → R
is integrable on every compact set K ∈ RN , then we can define a distribution Tf by:

∀ϕ ∈ C∞c (RN), 〈Tf , ϕ〉 =

∫
fϕ.

Therefore, distributions are often called “generalized functions”, since most functions can be seen
as distributions. In fact, by abuse of notation, 〈f, ϕ〉 stands for 〈Tf , ϕ〉.

Another classic example of distribution is the Dirac at zero δ, defined as follows:

∀ϕ ∈ C∞c (RN), 〈δ, ϕ〉 = ϕ(0).

Schwartz class S(RN). A function ϕ belongs to S(RN) if, and only if ϕ ∈ C∞(RN) and:

∀p ∈ N,∃Cp > 0 : sup
|α|≤p,|β|≤p

‖xα∂βϕ(x)‖∞ ≤ Cp.

In few words, S(RN) contains smooth and rapidly decreasing functions. For instance, any Gaus-
sian density function belongs to S(RN).

We can easily define the Fourier transform on S(RN). Let ϕ ∈ S(RN):

(Fϕ)(ξ) =

∫
RN

ϕ(x)e−iξx dx.

Thus, F−1 = (2π)−N F̄ , where F̄ϕ = F ϕ̌ and ϕ̌(x) = ϕ(−x).

16

Space of tempered distributions S ′(RN). Let T ∈ D′(RN) be a distribution. T belongs to
S ′(RN) if, and only if, there exists p ∈ N and C > 0 such that:

∀ϕ ∈ C∞c (RN), |〈T, ϕ〉| ≤ sup
|α|≤p,|β|≤p

‖xα∂βϕ‖∞.

The Fourier transform is defined on S ′(RN) by duality. For any T ∈ S ′(RN), FT ∈ S ′(RN)
and is defined by:

∀ϕ ∈ S(RN), 〈FT, ϕ〉 = 〈T,Fϕ〉.

Notably, this definition allows us to compute the Fourier transform of functions that do not lie
in L2. This is very useful in the applications of Theorem 1, where we need the Fourier transform
of f : x 7→ x2, which is Ff = −2πδ′′ ∈ S ′(R) (where δ′′ is the second derivative of the Dirac,
defined below).

Space of distributions with compact support E ′(RN). Let T ∈ D′(RN). The support of
T is defined by:

supp(T) = RN\{x ∈ RN : ∃ω neighborhood of x s.t. T|ω = 0}.

Thus, T is said to have a compact support if, and only if, supp(T) is contained into a compact
subset of RN . As fundamental property of E ′(RN), one should notice that E ′(RN) ⊂ S ′(RN).
That is, the Fourier transform is defined on E ′(RN).

For instance, the Dirac at zero δ and its derivatives δ(k) have support {0}, which is compact:

〈δ, ϕ〉 = ϕ(0)

〈δ(k), ϕ〉 = (−1)kϕ(k)(0),

for any test function ϕ ∈ C∞c (RN).

D Proof of Theorem 1

Proof. The proof can be split into three parts:

1. according to Definition 1, we have:

Aν := −Ent(β0,ν)1−F−1

[
Frν
F β̌0,ν

]
,

and we prove that, for all (µ,ν):

Ent(β0,ν)− 〈Aν , βµ,ν〉 = rν(µ). (13)

2. we prove that, if exp ◦Aν is a function integrating to κ > 0, then there exists K ∈ R such
that:

∀(µ,ν), r(µ,ν) = KL(βµ,ν‖αν) +K, (14)

where αν = 1
κ exp ◦Aν .

At that point, if Condition (?) is satisfied, then r can be written as a KL-divergence with
respect to a prior. Thus, Condition (?) is a sufficient condition to ensure the existence of
a solution to Equation (4).

17

3. we prove that, if α is a solution to Equation (4), then ln ◦α is equal to Aν (up to a constant)
and Aν satisfies Condition (?).

In the proof, and notably in Appendix D.3, we need the following proposition.

Proposition 3. Let T ∈ S ′(RN) and ϕ ∈ S(RN). Then T ∗ ϕ ∈ S ′(RN) and:

F [T ∗ ϕ] = (FT) · (Fϕ).

Proof. This statement is directly given in the proof of Theorem 3.18 [23].

D.1 Proof of Equation (13)

The distribution Aν is defined by:

Aν = −Ent(β0,ν)1−F−1

[
Frν
F β̌0,ν

]
.

Since 1 ∈ S ′(RN) and Frν
F β̌0,ν

∈ S ′(RN), then Aν ∈ S ′(RN) by stability of S ′ by Fourier transform

([6], Lemma 7.1.3).
We compute:

− Ent(β0,ν)− 〈Aν , βµ,ν〉

= −Ent(β0,ν) +

〈
Ent(β0,ν)1 + F−1

[
Frν
F β̌0,ν

]
, βµ,ν

〉
=

〈
F−1

[
Frν
F β̌0,ν

]
, βµ,ν

〉
,

since
∫
βµ,ν = 1.

By definition of the Fourier transform over S ′(RN) ([6], Definition 7.1.9), we have:

− Ent(β0,ν)− 〈Aν , βµ,ν〉

=

〈
Frν
F β̌0,ν

,F−1βµ,ν

〉
. (15)

We compute F−1βµ,ν :

(F−1βµ,ν)(ξ) = (2π)−N 〈eiξ·, βµ,ν(·)〉
= (2π)−N 〈eiξ·, β0,ν(· − µ)〉
= (2π)−N 〈eiξ·, β̌0,ν(µ− ·)〉,

using the assumptions over the family (βµ,ν)µ,ν .
Thus:

(F−1βµ,ν)(ξ) = (2π)−N 〈eiξ(µ−·), β̌0,ν(·)〉
= (2π)−Neiξµ〈e−iξ·, β̌0,ν(·)〉
= (2π)−Neiξµ(F β̌0,ν)(ξ).

18

By injecting the result into Equation (15), we have:

− Ent(β0,ν)− 〈Aν , βµ,ν〉

= (2π)−N
〈
Frν
F β̌0,ν

, eiµ·(F β̌0,ν)(·)
〉

= (2π)−N
〈
Frν , eiµ·

F β̌0,ν

F β̌0,ν

〉
= (2π)−N

〈
Frν , eiµ·

〉
.

Since Frν ∈ E ′(RN), we can apply Theorem 7.1.14 [6]:

(2π)−N
〈
Frν , eiµ·

〉
= (F−1Frν)(µ)

= rν(µ),

which achieves the proof of Equation (13).

D.2 Proof of Equation (14)

Now, we assume that exp ◦Aν is a function integrating to κ > 0. We define αν :

αν =
1

κ
exp ◦Aν ,

which is non-negative and integrates to 1. Thus, αν is a density of probability.
We compute the KL-divergence between βµ,ν and αν :

KL(βµ,ν‖αν) =

∫
RN

ln

(
βµ,ν(θ)

αν(θ)

)
βµ,ν(θ) dθ

= −Ent(βµ,ν)− 〈ln ◦αν , βµ,ν〉
= −Ent(βµ,ν)− 〈− ln(κ)1 +Aν , βµ,ν〉
= −Ent(βµ,ν) + ln(κ) 〈1, βµ,ν〉 − 〈Aν , βµ,ν〉
= rν(µ) + lnκ,

since βµ,ν integrates to 1 and Ent(βµ,ν) does not depend on µ. Therefore, using Equation (13):

KL(βµ,ν‖αν) = r(µ,ν) + lnκ.

Moreover, if Aν does not depend on ν, then:

KL(βµ,ν‖α) = r(µ,ν) + lnκ.

Therefore, Condition (?) is a sufficient condition to ensure the existence of a solution α to
Equation (4).

D.3 Uniqueness of the Solution

We assume that α is a probability distribution in T (RN) and:

rν(µ) = KL(βµ,ν‖α) +K,

19

where K ∈ R is a constant.
Thus:

rν(µ) =

∫
RN

ln

(
βµ,ν(θ)

α(θ)

)
βµ,ν(θ) dθ +K

= −Ent(βµ,ν)−
∫
RN

[ln(α(θ))−K]βµ,ν(θ) dθ

= −Ent(βµ,ν)−
∫
RN

Â(θ)βµ,ν(θ) dθ (where Â(θ) := ln(α(θ))−K)

= −Ent(βµ,ν)−
∫
RN

Â(θ)β0,ν(θ − µ) dθ

= −Ent(βµ,ν)−
∫
RN

Â(θ)β̌0,ν(µ− θ) dθ

= −Ent(β0,ν)− (Â ∗ β̌0,ν)(µ),

since the convolution between Â ∈ S ′(RN) and β̌0,ν ∈ S(RN) is well-defined ([23], Theorem
3.13), and Ent(βµ,ν) = Ent(β0,ν).

Then, we can apply the Fourier transform:

Frν = −2πEnt(β0,ν)δ −F(Â ∗ β̌0,ν)

= −2πEnt(β0,ν)δ − (FÂ) · (F β̌0,ν),

by applying Proposition 3. Since Fβ0,ν is supposed to be nonzero everywhere, then:

FÂ =
−2πEnt(β0,ν)δ −Frν

F β̌0,ν

.

From now, we just have to compute the inverse Fourier transform of FÂ to get Â:

Â = F−1

[
−2πEnt(β0,ν)δ −Frν

F β̌0,ν

]
= −F−1

[
2πEnt(β0,ν)δ

F β̌0,ν

]
−F−1

[
Frν
F β̌0,ν

]
= −2πEnt(β0,ν)F−1

[
δ

F β̌0,ν

]
−F−1

[
Frν
F β̌0,ν

]
.

We compute the first term, which is a tempered distribution. For all ϕ ∈ S(RN), we have:〈
δ

F β̌0,ν

, ϕ

〉
=

〈
δ,

ϕ

F β̌0,ν

〉
=

ϕ(0)

(F β̌0,ν)(0)

= ϕ(0),

since (F β̌0,ν)(0) is equal to
∫
β̌0,ν =

∫
β0,ν = 1. Thus, δ

F β̌0,ν
= δ.

20

Therefore:

Â = −2πEnt(β0,ν)F−1δ −F−1

[
Frν
F β̌0,ν

]
= −Ent(β0,ν)1−F−1

[
Frν
F β̌0,ν

]
= Aν .

Recalling that Â(θ) := ln(α(θ))− nK, we have:

ln(α(θ))−K = Aν(θ),

thus Aν does not depend on ν, from which we deduce that r fulfills Condition (?) and α ∝
exp ◦A.

E Note on Remark 1

We show that, for all r ∈ S ′(RN), there exists a sequence (rn)n ∈ S ′(RN) converging to r in
S ′(RN) such that Frn ∈ E ′(RN) for all n.

For all r ∈ S ′(RN), Fr ∈ S ′(RN). Let us build the sequence of distributions :

qn = (Fr)1[−n,n]N .

The sequence (qn)n ∈ E ′(RN) converges to Fr in S ′(RN). Since F−1 is continuous, we have:

F−1qn → r in S ′(RN).

Therefore, we can pose rn = F−1qn, which is appropriate.

F Proof of Corollary 1

Proof. We apply Formula (3):

A = −Ent(β0)1−F−1

[
Fr
Fβ0

]
.

Thus:

exp(A(θ)) = e−Ent(β0) exp

(
−F−1

[
Fr
Fβ0

]
(θ)

)
.

Assuming there exists a > 0, b > 0 and k ∈ R such that:

F−1

[
Fr
Fβ0

]
(θ) ≥ a|θ|b + k,

we can write:

0 ≤ exp(A(θ))eEnt(β0) = exp

(
−F−1

[
Fr
Fβ0

]
(θ)

)
≤ exp

(
−
[
a|θ|b + k

])
.

Since
∫

exp
(
−
[
a|θ|b + k

])
dθ converges, then

∫
exp(A(θ)) dθ converges. Thus, according to

Theorem 1, there exists κ > 0 such that α = 1
κ exp ◦A verifies:

KL(βµ‖α) = r(µ),

up to a constant.

21

G Proof of Corollary 2

We want to apply Theorem 1 in this case. We assume that α is a solution to Equation (4) with
ra,b(µk, σ

2
k) = a(σ2

k) + b(σ2
k)µ2

k, such that α ∈ T (R). That is, for some constant K:

ra,b(µk, σ
2
k) = KL(βµk,σ2

k
‖α) +K.

We check the hypotheses:

• for all (µ, σ2) ∈ R× R+, βµ,σ2(·) = β0,σ2(· − µ) and β0,σ2 = β̌0,σ2 ;

• βµ,σ2 ∈ S(R) and Fβµ,σ2 is nonzero everywhere;

• Fra,b,σ2 = 2π
[
a(σ2)δ − b(σ2)δ′′

]
∈ E ′(R).

Then, we apply Theorem 1, which ensures that r fulfills (?), that is Aa,b,σ2 does not depend
on σ2. First, we compute Aa,b,σ2 by using its definition, given in Equation (3). A first calculus
(see Appendix G.1) leads to:

Fra,b,σ2

Fβ0,σ2

= 2π
[(
a(σ2)− σ2b(σ2)

)
δ − b(σ2)δ′′

]
, (16)

and, according to the calculus made in Appendix G.2, we have:

Aa,b,σ2(θ) = − ln(2πeσ2) +
[
−a(σ2) + σ2b(σ2)− b(σ2)θ2

]
. (17)

Second, we prove in Appendix G.3 that Aa,b,σ2 does not depend on σ2 if, and only if:

a(σ2) = σ2b0 − a0 −
ln(2πeσ2)

2
(18)

b(σ2) = b0, (19)

where a0 and b0 are real constants. Thus, the loss ra,b takes the following form:

ra,b(µ, σ
2) = σ2b0 − a0 −

ln(2πeσ2)

2
+ b0µ

2 +K.

In that case, Aa,b,σ2(θ) = Aa,b(θ) = a0 − b0θ
2. Thus αa,b = 1

κ exp ◦Aa,b is a probability
distribution, where:

κ = ea0
√

2π

2b0

αa,b(θ) =
1√

2π 1
2b0

exp

(
− θ2

2 1
2b0

)
.

Thus, αa,b can be seen as the density of the Gaussian distribution N (0, 1
2b0

).
Therefore αa,b is Gaussian and the penalty is necessarily the Kullback–Leibler divergence

between two Gaussian distributions βµ,σ2 ∼ N (µ, σ2) and αa,b = ασ2
0
∼ N (0, σ2

0):

rσ2
0
(µ, σ2) =

σ2

2σ2
0

+
ln(2πσ2

0)

2
− ln(2πeσ2)

2
+

1

2σ0
µ2 +K

=
1

2

[
σ2 + µ2

σ2
0

+ ln

(
σ2

0

σ2

)
− 1

]
+K.

22

G.1 Proof of Equation (16)

We compute
Fra,b,σ2
Fβ0,σ2

. We recall that Fra,b,σ2 = 2π
[
a(σ2)δ − b(σ2)δ′′

]
. Thus we have, for each

ϕ ∈ S(R):〈
Fra,b,σ2

Fβ0,σ2

, ϕ

〉
=

〈
2π
[
a(σ2)δ − b(σ2)δ′′

]
Fβ0,σ2

, ϕ

〉

= 2π

〈
a(σ2)δ − b(σ2)δ′′,

ϕ

Fβ0,σ2

〉
= 2πa(σ2)ϕ(0)− 2πb(σ2)

〈
δ′′, ϕ(x) exp

(
σ2x2

2

)〉
x

= 2πa(σ2)ϕ(0) + 2πb(σ2)

〈
δ′,
(
ϕ′(x) + ϕ(x)σ2x

)
exp

(
σ2x2

2

)〉
x

= 2πa(σ2)ϕ(0)

− 2πb(σ2)

〈
δ,
(
ϕ′′(x) + 2ϕ′(x)σ2x+ ϕ(x)σ2(1 + σ2x2)

)
exp

(
σ2x2

2

)〉
x

= 2π
[
a(σ2)ϕ(0)− b(σ2)

(
ϕ′′(0) + σ2ϕ(0)

)]
Thus,

Fra,b,σ2
Fβ0,σ2

= 2π
[(
a(σ2)− σ2b(σ2)

)
δ − b(σ2)δ′′

]
.

G.2 Proof of Equation (17)

Theorem 1 defines the following distribution:

Aa,b,σ2 = −Ent(β0,σ2)1−F−1

[
Fra,b,σ2

Fβ0,σ2

]
We have: {

Ent(β0,σ2) = 1
2 ln(2πeσ2)

Fra,bσ2
Fβ0,σ2

= 2π
[(
a(σ2)− σ2b(σ2)

)
δ − b(σ2)δ′′

]
Besides, 2πF−1δ = 1 and 2π(F−1δ′′)(θ) = −θ2.

Thus:

Aa,b,σ2(θ) = −1

2
ln(2πeσ2)−

[
a(σ2)− σ2b(σ2) + b(σ2)θ2

]
= −1

2
ln(2πeσ2) +

[
−a(σ2) + σ2b(σ2)− b(σ2)θ2

]
G.3 Proof of Conditions (18) and (19)

We have:

Aa,b,σ2(θ) = −1

2
ln(2πeσ2) +

[
−a(σ2) + σ2b(σ2)− b(σ2)θ2

]
.

23

The polynomial Aa,b,σ2 does not depend on σ2 if, and only if, its coefficients do not depend
on σ2. That is: {

b(σ2) = b0
− 1

2 ln(2πeσ2)− a(σ2) + σ2b(σ2) = a0
,

that is: {
b(σ2) = b0

a(σ2) = σ2b0 − a0 − ln(2πeσ2)
2

.

24

	1 Introduction
	2 Related Work
	3 Variational Inference
	4 Bayesian Interpretation of Penalties
	4.1 When Can a Penalty Be Interpreted as a Prior?
	4.2 Example ??: Gaussian Distributions with L2 Penalty
	4.3 Example ??: Deterministic Posteriors and the MAP

	5 Application to Neural Networks: Choosing the Penalty Factor
	5.1 A Reasonable Condition over the Prior
	5.2 Examples: L2, L1, and Group-Lasso Penalties

	6 Experiments
	7 Conclusion
	A Training and Pruning: Details
	B Experimental Procedure
	C Reminder of Distribution Theory
	D Proof of Theorem ??
	D.1 Proof of Equation (??)
	D.2 Proof of Equation (??)
	D.3 Uniqueness of the Solution

	E Note on Remark ??
	F Proof of Corollary ??
	G Proof of Corollary ??
	G.1 Proof of Equation (??)
	G.2 Proof of Equation (??)
	G.3 Proof of Conditions (??) and (??)

