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EXTRINSIC UPPER BOUNDS THE FIRST EIGENVALUE OF

THE p-STEKLOV PROBLEM ON SUBMANIFOLDS

JULIEN ROTH

Abstract. We prove Reilly-type upper bounds for the first non-zero eigen-

value of the Steklov problem associated with the p-Laplace operator on sub-
manifolds with boundary of Euclidean spaces as well as for Riemannian prod-

ucts R×M where M is a complete Riemannian manifold.

1. Introduction

Let (Mn, g) be a compact Riemannian manifold with a possibly non-empty bound-
ary ∂M . For p ∈ (1,+∞), we consider the so-called p-Laplacian defined by

∆pu = −div(‖∇u‖p−2∇u)

for any C2 function. For p = 2, ∆2 is nothing else than the Laplace-Beltrami oper-
ator of (Mn, g).
Other the past years, this operator ∆p, and especially its spectrum, has been inten-
sively studied, mainly for Euclidean domains with Dirichlet or Neumann boundary
conditions (see for instance [5] and references therein) but also on Riemannian man-
ifolds [2, 6].
In the present paper, we will consider the Steklov problem associated with the
p-Laplacian on submanifolds with boundary of the Euclidean space. Namely, we
consider the following boundary value problem

(S)


∆pu = 0 in M,

‖∇u‖p−2 ∂u
∂ν = λ|u|p−2u on ∂M,

where ∂u
∂ν is the derivative of the function u with respect to the outward unit normal

ν to the boundary ∂M . Note that for p = 2, (S) is the usual Steklov problem. Little
is known about the spectrum of this problem. If M is a domain of RN , there exists
a sequence of positive eigenvalues λ0 = 0 < λ1 6 λ2 6 · · · 6 λk 6 · · · consisting
in the variational spectrum and obtained by the Ljusternik-Schnirelmann theory
(see [5, 10] for instance). One can refer to [1] for details about the Ljusternik-
Schnirelmann principle. Note that, as mentionned in [6, Remark 1.1], the arguments
used in [5] can be extended to domains on Riemannian manifolds and we have
that there exists a non-decreasing sequence of variational eigenvalues obtained by
the Ljusternik–Schnirelman principle. Moreover, the eigenvalue 0 is simple with
constant eigenfunctions and is isolated, that is there is no eigenvalue between 0
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and λ1. Then, the first positive eigenvalue of the Steklov problem λ1 satisfies the
following variational characterization

λ1 = inf


∫
M

‖∇u‖pdvg∫
∂M

|u|pdvh

∣∣∣∣∣u ∈W 1,p(M) \ {0},
∫
∂M

|u|p−2udvh = 0

 ,

where dvg and dvh are the Riemannian volume forms respectively associated with
the metric g on M and the induced metric h on ∂M .
Note that all the other eigenvalues λk of this sequence has also a variational
characterization but we don’t know if all the spectrum is contained in this sequence.

The aim of the present note is to obtain upper bounds for the first non-zero eigen-
value λ1 of the p-Steklov problem, depending on the geometry of the boundary in
the spirit of the classical Reilly upper bounds for the Laplacian on closed hypersur-
faces. Reilly [7] showed that if (Mn, g) is a closed connected and oriented Riemann-
ian manifold isometrically immersed into Rn+1, then the first positive eigenvalue of
the Laplacian on M satisfies

λ1(∆) 6
n

V (M)

∫
M

H2dvg,

where H is the mean curvature of the immersion. Note that M is not supposed to
be embedded and so does not necessarily bounds a domain of Rn+1. More generally,
Reilly obtained the following inequalities for r ∈ {0, · · · , n}

λ1(∆)

(∫
M

Hrdvg

)2

6 V (M)

∫
M

H2
r+1dvg,

where Hr and Hr+1 stands for the higher order mean curvatures (that we will define
in Section 3). For r = 0, we recover the first mentioned inequality. In addition,
if equality holds in one these inequality, then M is immersed in a geodesic sphere

of radius
√

n
λ1(∆) . Note that, always in [7], Reilly also obtained similar estimates

for higher codimension submanifolds. Namely, if (Mn, g) is isometrically immersed
into RN , N > n+ 1, then

λ1(∆)

(∫
M

Hrdvg

)2

6 V (M)

∫
M

‖Hr+1‖2dvg,

for any even r ∈ {0, · · · , n} with equality if and only if M is minimally immersed
in a geodesic sphere of RN . Note that, in the case of codimension greater that 1,
Hr is a function and Hr+1 is a normal vector field, contrary to the hypersurface
case where both are functions (see again Section 3 for details).

Recently, Du and Mao [2] proved Reilly type upper bounds for the first
eigenvalue λ1(∆p) of the p-Laplace operator on closed submanifolds of RN .
Namely, they proved that

λ1(∆p) 6
np/2

V (M)p−1

(∫
M

‖H‖
p

p−1 dvg

)p−1
{

N
p−2
2 if p > 2

N
2−p
2 if 1 < p 6 2

Moreover, equality occurs if and only if p = 2 and M is minimally immersed into
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a geodesic hypersphere. In particular, if N = n + 1, M is a geodesic hypersphere.
In addition, the authors proved analogous estimates with higher order mean
curvatures.

On the other hand, Ilias and Makhoul [4] proved Reilly-type inequalities for
the first eigenvalue σ1 of the Steklov problem on submanifolds of RN . Namely,
they proved the following estimate

σ1V (∂M)2 6 nV (M)

∫
∂M

‖H‖2dvg,

where (Mn, g) is a compact submanifold of RN with boundary ∂M and H denote
the mean curvature of ∂M . We denote by X the isometric immersion.
The limitting case is also characterized¿ Namely, they proved that equality occurs

if and only if M is minimally immersed into BN
(

1
λ1

)
so that X(∂M) ⊂ ∂BN

(
1
λ1

)
minimally and orthogonally. In particular, if n = N , equality occurs if and only if

p = 2 and X(M) = BN
(

1
λ1

)
. Here again, analogous estimates with higher order

mean curvatures were proven.

The main result of this note is the following estimate for the first non-zero
eigenvalue of the Steklov problem associated with the p-Laplacian. Namely, we
prove

Theorem 1.1. Let (Mn, g) be a compact connected and oriented Riemannian man-
ifold with nonempty boundary ∂M and p ∈ (1,+∞). Assume that (Mn, g) is iso-
metrically immersed into the Euclidean space RN by X. Let λ1 the first eigenvalue
of the p-Steklov problem

∆pu = 0 in M,

‖∇u‖p−2 ∂u
∂ν = σ|u|p−2u on ∂M

If p > 2, then λ1 satisifes

λ1 6 N
p−2
2 n

p
2

(∫
∂M

‖H‖
p

p−1 dvh

)p−1
V (M)

V (∂M)p
.

If 1 < p 6 2, then λ1 satisifes

λ1 6 N
2−p
2 n

p
2

(∫
∂M

‖H‖
p

p−1 dvh

)p−1
V (M)

V (∂M)p
.

Moreover, equality occurs in both inequality if and only if p = 2 and X is a min-

imal immersion of M into BN
(

1
λ1

)
so that X(∂M) ⊂ ∂BN

(
1
λ1

)
minimally and

orthogonally. In particular, if n = N , equality occurs if and only if p = 2 and

φ(M) = BN
(

1
λ1

)
.

After giving the proof of Theorem 1.1 in Section 2, we obtain more general inequal-
ities involving higher order mean curvatures (Theorem 3.1 and Corollary 3.2) as
well as an estimate for domains of products manifolds of the type M ×R (Theorem
4.1).
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2. Proof of Theorem 1.1

First, we recall the variational characterization of λ1:

λ1 = inf


∫
M

|∇u|pdvg∫
∂M

|u|pdvh

∣∣∣∣∣u ∈W 1,p(M) \ {0}},
∫
∂M

|u|p−2udvh = 0

 .

Replacing if needed, |Xi|p−2Xi by |Xi|p−2Xi−

∫
∂M

|Xi|p−2Xidvh

V (∂M)
, we may assume

without loss of generality that∫
∂M

|Xi|p−2Xidvh = 0

for all i ∈ {1, · · · , N}, so that we can use the coordinate functions as test functions.
From this point, we will consider separately the cases p > 2 and 1 < p 6 2.

The case p > 2.
Using the coordinates Xi, 1 6 i 6 N , as test functions and summing for i from 1
to N , we get

λ1

∫
∂M

N∑
i=1

|Xi|p 6
∫
M

N∑
i=1

‖∇Xi‖p.

First, since p > 2, we have

(1)

N∑
i=1

‖∇Xi‖p 6

(
N∑
i=1

‖∇Xi‖2
) p

2

= n
p
2 ,

since we have

N∑
i=1

‖∇Xi‖2 = n (see [8, Lemma 2.1] for instance).

Hence, we obtain

λ1

∫
∂M

N∑
i=1

|Xi|pdvh 6 n
p
2 V (M).

Moreover, by the Hölder inequality, we have

(2) ‖X‖2 6

(
N∑
i=1

|Xi|p
) 2

p

N
p−2
p ,

which gives
N∑
i=1

|Xi|p > 1

N
p−2
2

‖X‖p

and so

λ1

∫
∂M

‖X‖pdvh 6 n
p
2N

p−2
2 V (M).
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We mulitply by

(∫
∂M

‖H‖
p

p−1 dvh

)p−1

and use the integral Hölder inequality to

get

(3) λ1

∣∣∣∣∫
∂M

〈X,H〉dvh
∣∣∣∣p 6 n p

2N
p−2
2

(∫
∂M

‖H‖
p

p−1 dvh

)p−1

V (M).

Thus, using the Hsiung-Minkoswki formula

(4)

∫
∂M

(
〈H,X〉+ 1

)
dvh = 0,

we get

λ1V (∂M)p 6 n
p
2N

p−2
2

(∫
∂M

‖H‖
p

p−1 dvh

)p−1

V (M).

which gives the desired upper bound for λ1.
Moreover, if equality occurs, then equality holds in all the above inequalities and
in particular in the inequality (1), which implies that p = 2. Therefore, the end
of the proof is similar to the proof of Ilias and Makhoul for the classical Steklov

problem and we have that X is a minimal immersion of M into BN
(

1
λ1

)
so that

X(∂M) ⊂ ∂BN
(

1
λ1

)
minimally and orthogonally. In particular, if if n = N , then

X(M) = BN
(

1
λ1

)
.

The case 1 < p 6 2. First, since p 6 2, we have

(5) ‖X‖p =

(
N∑
i=1

|Xi|2
) 2

p

6
N∑
i=1

|Xi|p.

On the other hand, by the Hölder inequality, we have

N∑
i=1

‖∇Xi‖p > N
2−p
p

(
N∑
i=1

‖∇Xi‖2
) 2

p

= N
2−p
p n

2
p .

Hence, using the last two inequalities in the variational characterization of λ1, we
obtain

λ1

∫
∂M

‖X‖pdvh 6 n
2
pN

2−p
p V (M).

The end of the proof is the same that in the case p 6 2, we mulitply by(∫
∂M

‖H‖
p

p−1 dvh

)p−1

, use the integral Hölder inequality and the Hsiung-

Minkowski formula (4).
If equality holds, then equality occurs in (5). Thus, here again p = 2 and we
conclude as previously.
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3. Inequalities with higher order mean curvatures

In this section, we extend Theorem 1.1 to estimates with higher order mean curva-
tures. It will appear as a particular space of a more general result. Before stating
the result, we briefly give some recalls.

First of all, let T be a divergence-free symmetric (1, 1)-tensor. We associate with
T the second order differential operator LT defined by LTu := −div(T∇u), for any
C2 function u on ∂M . We also associate with T the following normal vector field:

HT =

n∑
i,j=1

〈Tei, ej〉B(ei, ej),(6)

where B is the second fundamental form of the immersion of M into RN and
{e1, · · · , en} is a local orthonormal frame of T∂M . Moreover, we recall the following
generalized Hsiung-Minkowski formula (see [3, 8] for instance)

(7)

∫
∂M

(
〈X,HT 〉+ tr (T )

)
dvh = 0.

Now, we can state the following

Theorem 3.1. Let (Mn, g) be a compact connected and oriented Riemannian man-
ifold with nonempty boundary ∂M and p ∈ (1,+∞). Assume that (Mn, g) is iso-
metrically immersed into the Euclidean space RN by X and let T be a symmetric
and divergence-free (2, 0)-tensor on ∂M . Let λ1 the first eigenvalue of the p-Steklov
problem 

∆pu = 0 in M,

‖∇u‖p−2 ∂u
∂ν = σ|u|p−2u on ∂M

Then, the following holds

(1) If p > 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

tr (T )

∣∣∣∣p 6 N p−2
2 n

p
2

(∫
∂M

‖HT ‖
p

p−1

)p−1

V (M).

(2) If 1 < p 6 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

tr (T )

∣∣∣∣p 6 N 2−p
2 n

p
2

(∫
∂M

‖HT ‖
p

p−1

)p−1

V (M).

Moreover, if HT does not vanish identically, then equality occurs in one of both
inequalities if and only if p = 2 and

(a) if N > n, X is a minimal immersion of M into BN
(

1
λ1

)
so that X(∂M) ⊂

∂BN
(

1
λ1

)
minimally and orthogonally and HT is proportional to X|∂M .

(b) if N = n, M is a ball and tr (T ) is constant.

Proof: The proof is similar to the proof of Theorem 1.1 with the difference that we
use the generalized Hsiung-Minkowski formula (7) instead of the classical one. In
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case of equality, we also get that p = 2 by equality in (1) or (5). Then, we conclude
as in Theorem 1.1 by the argument of Ilias and Makhoul. �

Now, let us consider higher order mean curvatures. For r ∈ {1, · · · , n}, we set

Tr =
1

r!

∑
i, i1, · · · , ir
j, j1, · · · , jr

ε

(
i, i1, · · · , ir
j, j1, · · · , jr

)
〈Bi1j1Bi2j2〉 · · · 〈Bir−1jr−1

Birjr 〉e∗i ⊗ e∗j ,

if r is even and

Tr =
1

r!

∑
i, i1, · · · , ir
j, j1, · · · , jr

ε

(
i, i1, · · · , ir
j, j1, · · · , jr

)
〈Bi1j1Bi2j2〉 · · · 〈Bir−1jr−1

Birjr 〉Bir,jr⊗e∗i⊗e∗j ,

where the Bij ’s are the coefficients of the second fundamental form B in a local
orthonormal frame {e1, · · · , en} and ε is the standard signature for permutations.
Here, {e∗1, · · · , e∗n} is the dual coframe of {e1, · · · , en}. By definition, the r-th
mean curvature is Hr = 1

c(r) tr (Tr), where c(r) = (n − r)
(
r
n

)
. Note that Hr is a

real function if r is even and a normal vector field if r is odd, in this case, we will
denote it by Hr. By convention, we set H0 = 1. Moreover, always if r is even, we
show easily that HTr

= c(r)Hr+1, where HTr
is given by the relation (6).

In the case of hypersurfaces, we can consider the higher order mean curvatures as
scalar functions also for odd indices by taking B as the real-valued second funda-
mental form.

By the symmetry of B, these tensors are clearly symmetric and it is also a classical
fact that there are divergence-free (see [3] for instance). Hence, in this case, the
Hsiung-Minkowski formula (7) becomes∫

∂M

(
〈X,Hr+1〉+Hr

)
dvh = 0

for any even r ∈ {0, · · · , n} if N > n+ 1, and∫
∂M

(
〈X, ν〉Hr+1 +Hr

)
dvh = 0

for any r ∈ {0, · · · , n} if N = n+ 1, where ν is the normal unit vector field on ∂M
choosen to define the shape operator.

We obtain directly from Theorem 3.1 the following corollary:

Corollary 3.2. Let (Mn, g) be a compact connected and oriented Riemannian man-
ifold with nonempty boundary ∂M and p ∈ (1,+∞). Assume that (Mn, g) is iso-
metrically immersed into the Euclidean space RN by X. Let λ1 the first eigenvalue
of the p-Steklov problem

∆pu = 0 in M,

‖∇u‖p−2 ∂u
∂ν = σ|u|p−2u on ∂M

(1) If N > n+ 1, and r ∈ {0, · · · , n− 1} is an even integer then we have
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(a) If p > 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

Hr

∣∣∣∣p 6 N p−2
2 n

p
2

(∫
∂M

‖Hr+1‖
p

p−1

)p−1

V (M).

(b) If 1 < p 6 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

Hr

∣∣∣∣p 6 N 2−p
2 n

p
2

(∫
∂M

‖Hr+1‖
p

p−1

)p−1

V (M).

Moreover, if Hr+1 does not vanish identically, then equality occurs in
one of both inequalities if and only if p = 2 and X is a minimal im-

mersion of M into BN
(

1
λ1

)
so that X(∂M) ⊂ ∂BN

(
1
λ1

)
minimally

and orthogonally.
(2) If N = n+ 1 and ∈ {0, · · · , n− 1} is any integer, then we have

(a) If p > 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

Hr

∣∣∣∣p 6 N p−2
2 n

p
2

(∫
∂M

|Hr+1|
p

p−1

)p−1

V (M).

(b) If 1 < p 6 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

Hr

∣∣∣∣p 6 N 2−p
2 n

p
2

(∫
∂M

|Hr+1|
p

p−1

)p−1

V (M).

Moreover, if Hr+1 does not vanish identically, then equality occurs in one

of both inequalities if and only if p = 2 and X(M) = BN
(

1
λ1

)
.

4. An equality for product spaces

We finish the paper by a last result for hypersurfaces of product spaces for the
p-Steklov problem, p > 2, in the spirit of those obtained in [11] and [9]. Namely,
we prove the following

Theorem 4.1. Let p > 2 and (Mn, g) be a complete Riemannian manifold. Con-
sider (Σn, g) a closed oriented Riemannian manifold isometrically immersed into
the Riemannian product (R×M, g̃ = dt2 ⊕ g). Moreover, assume that Σ is mean-
convex and bounds a domain Ω in R ×M . Let λ1 be the first eigenvalue of the
p-Steklov problem on Ω

∆pu = 0 in Ω,

‖∇u‖p−2 ∂u
∂ν = σ|u|p−2u on ∂Ω

Then, λ1 satisfies

λ1 6

κ+(Σ)‖H‖∞
inf
Σ
H

p/2(
V (Ω)

V (Σ)

)1− p
2

.

Remark 4.2. Note that for p = 2, we recover the result of Xiong [11].



EXTRINSIC UPPER BOUNDS THE FIRST EIGENVALUE OF THE p-STEKLOV PROBLEM ON SUBMANIFOLDS9

Proof: We will use as test function the function t which is the coordinate in the
factor R of the product R×M . First, obviously, up to a possible translation in the

direction of R, we can assume that

∫
Σ

tdvg = 0. Second, since Σ is mean-convex, we

deduce that t does not vanish identically. Indeed, if t vanishes identically over Σ,
then Σ is included in the slice {0} ×M and thus is totally geodesic in the product
R×M . This is a contradiction with the fact that Σ is mean-convex. Hence, t does
not vanish identically and can be used as a test function. Thus, from the variational
characterization of λ1, we have

(8) λ1

∫
Σ

|t|pdvg 6
∫

Ω

‖∇̃t‖pdvg̃.

First, since ‖∇̃t‖ = 1, we have

(9)

∫
Ω

‖∇̃t‖pdvg̃ = V (Ω) =

(∫
Ω

‖∇̃t‖2dvg̃
) p

2

V (Ω)1− p
2 .

In addition, we have∫
Ω

‖∇̃t‖2dvg̃ = −
∫

Ω

t∆̃tdvg̃ +

∫
Ω

divg̃(t∇̃t)dvg̃

Since ∆̃t = 0, using the Stokes theorem, we get∫
Ω

‖∇̃t‖2dvg̃ =

∫
Σ

〈t∇̃t, ν〉dvg =

∫
Σ

tudvg,

where u is defined by u = 〈∂t, ν〉 = 〈∇̃t, ν〉. Hence, by the Hölder inequality, we
obtain

(10)

∫
Ω

‖∇̃t‖2dvg̃ 6
(∫

Σ

|t|pdvg
) 1

p
(∫

Σ

|u|
p

p−1 dvg

) p−1
p

.

Hence, using (9) and (10), (8) becomes

(11) λ1 6

(∫
Σ

|u|
p

p−1 dvg̃

) p−1
2

(∫
Σ

|t|pdvg
) 1

2

V (Ω)1− p
2 .

On the other hand, we have

∆t = −divΣ(∇t)

= −
n∑
i=1

〈∇ei(∇t), ei〉

= −
n∑
i=1

〈∇̃ei(∂t− 〈∂t, ν〉ν)), ei〉
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where ν is a unit normal vector field. Moreover, since ∂t is parallel for ∇̃ and

−∇̃(·)ν is the shape operator S, we get

∆t = −
n∑
i=1

〈∂t, ν〉〈Sei, ei〉

= −nHu.

Hence, multilying respectively by t and u, we get immediately t∆t = −nHut and
u∆t = −nHu2 which after integration over Σ gives

(12)

∫
Σ

‖∇t‖2dvg =

∫
Σ

nHutdvg

(13)

∫
Σ

〈S∇t,∇t〉dvg =

∫
Σ

nHu2.

Note that for the second one, we have used the fact that ∇u = −S∇t. Indeed, we
have

∇u =

n∑
i=1

ei(u)ei =

n∑
i=1

ei(〈ν, ∂t〉)ei = −
n∑
i=1

〈Sei, ∂t〉ei = −S(∇t).

Moreover, we have, using (13),

n inf
Σ

(H)

∫
M

u2dvg 6
∫
M

nHu2dvg

6
∫

Σ

〈S∇t,∇t〉dvg

6 κ+(Σ)

∫
Σ

‖∇t‖2dvg,

where κ+(Σ) = max{κ+(x)|x ∈ M} with κ+(x) the biggest principal curvature of
Σ at the point x. Now, we use (12) and the Hölder inequality to get

n inf
Σ

(H)

∫
Σ

u2dvg 6 κ+(Σ)

∫
Σ

nHutdvg

6 nκ+(Σ)‖H‖∞
∫

Σ

utdvg

6 nκ+(Σ)‖H‖∞
(∫

Σ

|t|pdvg
) 1

p
(∫

Σ

|u|
p

p−1 dvg

) p−1
p

.

Finally, using the Hölder inequality a last time, we have

inf
Σ

(H)

(∫
Σ

|u|
p

p−1 dvg

) 2(p−1)
p

V (Σ)
2−p
p 6 κ+(Σ)‖H‖∞

(∫
M

|t|pdvg
) 1

p
(∫

M

|u|
p

p−1 dvg

) p−1
p

.

and so (∫
Σ

|u|
p

p−1 dvg

) p−1
p

(∫
M

|t|pdvg
) 1

p

6
κ+Σ‖H‖∞

infΣ(H)
V (Σ)

p−2
p .
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Reporting this in (11), we get the desired inequality:

λ1 6

κ+(Σ)‖H‖∞
inf
Σ
H

p/2(
V (Ω)

V (Σ)

)1− p
2

.

�
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[10] O. Torné, Steklov problem with an indefinite weight for the p-Laplacian, Elect. J. Diff. Eq.

Vol. 2005 (2005), No. 87, pp. 1-8.
[11] C. Xiong, Eigenvalue estimates of Reilly type in product manifolds and eigenvalue comparison

for strip domains, Diff. Geom. Appl. 60 (2018), 104-115.
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