
HAL Id: hal-02466641
https://hal.science/hal-02466641

Submitted on 26 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active Diagnosis for Switched Systems Using Mealy
Machine Modeling

Jérémy van Gorp, Alessandro Giua, Michael Defoort, Mohamed Djemai

To cite this version:
Jérémy van Gorp, Alessandro Giua, Michael Defoort, Mohamed Djemai. Active Diagnosis for Switched
Systems Using Mealy Machine Modeling. Diagnosability, Security and Safety of Hybrid Dynamic and
Cyber-Physical Systems, Springer International Publishing, pp.147-173, 2018, �10.1007/978-3-319-
74962-4_6�. �hal-02466641�

https://hal.science/hal-02466641
https://hal.archives-ouvertes.fr


Active diagnosis for switched systems using
Mealy machine modeling

Jeremy Van Gorp, Alessandro Giua, Michael Defoort, Mohamed Djemaı̈

Abstract Generally, fault diagnosis schemes play an important role in ensuring
the safety of physical or engineering systems. The study of diagnosis problem for
switched systems is interesting and allows considering a more wide range of sys-
tems. This chapter deals with the active diagnosis for a class of switched systems
which may not satisfy the classical diagnosability conditions usually considered
in the Discrete-Event-Systems setting. In the first part, the modeling approach we
propose is introduced. We propose to use an abstract representation of a switched
system using a Mealy Machine where discrete faults may occur. An appropriate
diagnoser is designed in order to reduce the uncertain state subset. In the second
part, some diagnosability conditions are deduced. Based on the Mealy Machine, a
new active diagnosis strategy is designed in order to ensure the fault detection and
isolation for a class of switched systems. An algorithm combining the proposed di-
agnoser and a testing procedure is introduced in order to solve the fault identification
problem. A study on the cascade multicellular converter is carried out to detect and
isolate faulty cells. Illustrative simulation results, on a two cells converter, show the
details of the algorithm and experimental results, on a three cells converter, present
the effectiveness, in real time, of the proposed scheme.
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1 Introduction

Switched systems are systems involving both continuous and discrete dynamics.
They can describe a wide range of physical and man-made systems (i.e., power
converters, multi-tank systems, transmission systems, etc.). They have been widely
studied during the last decade (see for instance [15]). Most of the attention has been
focused on stability and stabilization problems [2, 14, 15, 18]. In the power elec-
tronic field, since the 1950s, power converters are used in traction systems, power
supplies, or numerical amplifiers. Among these systems, multicellular converters,
which appeared at the beginning of the 1990s are based on the association in se-
ries of elementary commutation cells. The multicellular converter is an interesting
switched system widely studied in the literature on control, observation and diag-
nosis. Its structure enables the reduction of the losses due to the commutations of
power semiconductors while allowing low cost components. A blocked cell or a
blocked switch or the internal components ageing can lead to critical situations for
the system if the control law is not broken off or adapted (tolerant control).

Occurrence of faults can be extremely detrimental, not only to the equipment and
surroundings but also to the human operator if they are not detected and isolated in
time. Moreover, usually, a fault tolerant controller [16, 23] cannot be applied if the
fault is not isolated, i.e., if the exact nature of the fault that has occurred is not
identified. Fault detection and isolation (FDI) have been widely investigated using
various methods [8, 11, 12]. Observer-based FDI techniques rely on the estimation
of outputs from measurements with the observer in order to detect the fault. The
observability and observer design problems for hybrid systems have been studied
using different approaches. The Z−observability concept was introduced in [13]
to study the observability of some particular classes of hybrid systems. Using a
similar approach in [24], it is provided a generalization of observability concepts.
Analytical redundancy, i.e., mathematical relationship between measured and esti-
mated variables in order to detect possible faults, can be computed by the analysis
of the parity space [9, 29] or using a Bond Graph [17] for instance. However, due to
the particular structure of the multicellular converter, the state components are only
partially observable for every fixed configuration of the switches. Hybrid observers
have been proposed for this system [7, 25, 26, 27] but they cannot be easily applied
in real-time to solve the fault observation problem.

Several contributions have also been presented in the discrete event systems
(DES) framework. Necessary and sufficient conditions for diagnosability, in the
case of multiple failures, are developed both for automata [21] (I-diagnosability)
and Petri nets [4, 5]. For DES, the diagnosability analysis and the online diagnosis
are computed by a diagnoser where the available measurements are considered as
inputs of the diagnoser. It leads to an estimated state which could be either “normal”
or “faulty” or “uncertain” after the occurrence of every observable event.

The classical model used in DES diagnosis is finite state machine (FSM) and
a system is seen as a spontaneous generator of events. However, in many physical
systems, the system evolution is driven by the control input and the diagnosability
conditions depend both on the system structure and on the control strategy. Hence,
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some studies proposed an active diagnosis, using a supervisor, to simultaneously
ensure the control and the diagnosability of the system. It is proposed, in [1], an al-
gorithm that controls the system toward diagnosable states when a fault is detected.
However, following this approach, the system may cross nondiagnosable regions
in order to isolate the fault. In [6, 20], a diagnoser was used to block controllable
events that drive the system into nondiagnosable regions. For the multicellular con-
verter, the control law design, satisfying the stability conditions associated with the
diagnosability, is complex. Indeed, the unobservable events, related to the system,
define uncertain states in the diagnoser and the diagnosability conditions cannot be
satisfied. In our approach, the algorithm of [1] is extended. The set of uncertain
states, associated to the diagnoser, is partitioned in order to distinguish uncertain
states, which may be explained by a fault but consistent with the evolution of the
nominal model, from uncertain fault state where the occurrence of a fault has been
detected and a suitable control input can be applied to identify it.

In this chapter, an active diagnosis algorithm for switched systems is proposed.
The introduced algorithm in [28] is extended and an experimental validation is de-
veloped. Here, we assume that the only control input that drives the evolution of the
system is represented by the switching function. This function specifies the active
mode. Furthermore, discrete outputs are also available, as a result of each transition
between modes, in order to detect and isolate the fault. Under these assumptions, a
Mealy Machine (MM), i.e., an automaton with inputs and outputs, may be used to
represent the system. Indeed, if suitably selected, an input applied to the MM may
be used to steer the diagnoser out of the set of uncertain states, thus improving the
detection procedure. In this context, the diagnoser, presented in [20], is re-defined
in order to introduce the uncertain states and the uncertain fault states. Some tran-
sitions of the automaton, including those corresponding to faults, may occur in the
absence of a control input and may be unobservable.

In the nominal situation, the control input is selected by the controller according
to a given specification and a diagnoser observes the evolution. Although the state
of the diagnoser may be uncertain, (i.e., a fault may have or may have not occurred),
as long as the observed evolution can be explained by the nominal model, no alarm
is generated by the diagnoser. Hence, such a system may be nondiagnosable in the
sense of [21]. However, as soon as the diagnoser detects an abnormal behavior, i.e.,
an evolution that cannot be explained without the occurrence of a fault, an alarm is
generated and the control objective becomes to isolate the fault if necessary. A fault
isolating sequence can be determined based on the well-known notion of homing
sequences defined in testing theory [3].

The study of testing procedure for FSM has been first motivated as fundamen-
tal research in computer science [3]. In [10], a fault diagnosis algorithm based on
testing was investigated. In [22] the testing theory was applied for diagnosis using
Input/Output automata. They consider state faults contrary to our approach where a
fault is modeled by an unobservable event on transitions and thus is more general.
The problem of determining a synchronizing sequence for interpreted Petri nets, i.e.,
an input sequence that drives the system to a known state is considered in [19]. In
this paper, an adapted algorithm to compute the fault isolating sequences for MMs,
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and a generic algorithm, for the active diagnosis, are presented. If a corresponding
isolating sequence can be computed for each uncertain fault state of the diagnoser,
using interconnection between a diagnoser and an online testing algorithm we are
able to isolate every fault for switched systems.

The chapter is organized as follows. Section II deals with the problem formu-
lation and introduces the system and diagnoser modeling. In Section III, a testing
condition is defined. An algorithm is presented in order to compute the fault isolat-
ing sequences. An algorithm combining a MM diagnoser and a testing procedure
is also proposed in order to solve the fault diagnosis problem. Simulation results,
on the 2-cells converter, and experimentation results, on the 3-cells converter, are
presented in Section IV to highlight the efficiency of the proposed approach.

2 Problem statement and modeling

2.1 Preliminaries on DES diagnosis

Hereafter, some definitions from [20] and the diagnoser modeling are reformulated
to account for faulty uncertain states. The classical DES approach for diagnosis
[20, 21], considers a system modeled by a deterministic finite automaton (DFA):

G = (X ,Σ ,δ ,x0) (1)

where X is the state set, Σ is the set of events, δ : X×Σ→X is the (partial) transition
function and x0 is the initial state of the system. The state x0 is assumed to be known.

The model G accounts for the normal and faulty behavior of the system, de-
scribed by the prefix-closed language L(G) generated by G, i.e., a subset of Σ ∗

where Σ ∗ denotes the Kleene closure of Σ . The event set Σ is partitioned as
Σ = Σo ∪Σuo where Σo represents the set of the observable events and Σuo the un-
observable events. The fault event set is defined as Σ f ⊆ Σuo and may be partitioned
into m different fault classes Σ f = Σ f1 ∪Σ f2 ∪ . . .∪Σ fm .

Let us re-define ([20]) the projection operator P : Σ ∗→ Σ ∗o such that:

P(ε) = ε

P(σ) = σ i f σ ∈ Σo
P(σ) = ε i f σ ∈ Σuo

P(sσ) = P(s)P(σ) i f s ∈ Σ ∗, σ ∈ Σ

where ε is the empty word. Therefore, P simply erases the unobservable events
from a trace. The inverse projection operator with codomain in L(G) is the relation
P−1 : Σ ∗o → 2L(G) that associates to each word of observable events w the set of
traces that may have generated it, i.e., P−1(w) = {s ∈ L(G) | P(s) = w}. In the
following, we will denote by s ∈ Σ ∗ a trace of events generated by the DFA and
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by w = P(s) ∈ Σ ∗o an observed word, i.e., the observable projection of a generated
trace.

The diagnosis problem for a DFA G consists in determining if, given an observed
word w∈ Σ ∗o , a fault has occurred or not, i.e., if a transition labeled with a fault event
in Σ f ⊆ Σuo has been fired or not and find the fault class. This may be done using a
diagnoser, i.e., a DFA on the alphabet of observable events.

Definition 1. Given a DFA G with set of events Σ = Σo∪Σuo and set of fault events
Σ f = Σ f1 ∪Σ f2 ∪ . . .∪Σ fm . Let F = {F1,F2, . . . ,Fm} be the set of labels associated
to the fault classes. A diagnoser for the DFA defined by Eq. (1) is a DFA

Diag(G) = (Y,Σo,δy,y0)

such that

• Y ⊆ (X×{N})∪ (X×2F ), i.e., each state of the diagnoser is a set of pairs

y = {(x1,γ1),(x2,γ2), . . . ,(xk,γk)},

where xi ∈ X and γi = N or γi ⊆F (with γi 6= /0), for i = 1,2, . . . ,k. Here N is
interpreted as meaning Normal (no fault has occurred), while Fi as meaning that
a failure of class Fi has occurred.

• The initial state y0 of the diagnoser is defined to be {(x0,N),(x1,γ1), . . . ,(xk,γk)},
i.e., from a known initial state x0, if there exist unobservable traces si, for i =
1, . . . ,k, whose projections are ε , the initial state y0 also contains all pairs (xi,γi)
such that xi ∈ X is reachable with an unobservable trace si and γi denotes the fault
classes that may have occurred in si or N if no fault has occurred in si.

• δy(y0,w) = yw if and only if

yw =

{(x,N) | (∃s ∈ P−1(w)) δ (x0,s) = x∧ s∩Σ f = /0}
∪{(x,γi) | (∃s ∈ P−1(w)) δ (x0,s) = x ∧ i ∈ {1,2, . . . ,m},s∩Σ fi 6= /0∧ γi = Fi},

i.e., the execution in Diag(G) of a word w yields a state yw containing:

- all pairs (x,N) where x can be reached in G executing a string in P−1(w) that
does not contain a fault event;

- all pairs (x,γi) where x can be reached in G executing a string in P−1(w) that
contains, for each γi ⊆F , a fault event of class Σ fi .

For each state, y = {(x1,γ1),(x2,γ2), . . .(xk,γk)} of Diag(G), a diagnosis value
ϕ(y) is associated such that:

• ϕ(y) = N (no fault state): if γi = N for all i = 1,2, . . . ,k,
• ϕ(y) =U (uncertain state): if there exist i, j ∈ {1,2, . . . ,k} such that γi = N and

γ j ⊆F ,
• ϕ(y) = F (isolated fault state): if γi 6= N and γi = γ j for all i, j = 1,2, . . . ,k,



6 Jeremy Van Gorp, Alessandro Giua, Michael Defoort, Mohamed Djemaı̈

• ϕ(y) = UF (uncertain fault state): if γi 6= N for all i = 1,2, . . . ,k and there exist
i, j = 1,2, . . . ,k such that γi 6= γ j.

Thus, a diagnoser allows one to associate to each observed word w a diagnosis state
ϕ(yw) where yw = δy(y0,w) is the state reached in Diag(G) by executing word w
from the diagnoser initial state y0.

Remark 1. Following Definition 1, if the diagnosis value is ϕ(y) = UF , it means
that the detection of the fault is ensured whereas its isolation is only possible when
ϕ(y) = F . A fault is not diagnosable if there does no exist a corresponding state in
the diagnoser with ϕ(y) = F .

The objective of this chapter is to design an algorithm which solves the fault
diagnosis problem for a large class of switched systems.

2.2 Switched system modeling

In this chapter, the proposed approach can address the diagnosis problem of a class
of switched systems which is generally represented by the following model:

ẋ(t) = Aη(t)(x(t), f(t))
O(t) = Cη(t)(x(t), f(t))

(2)

where x(t) is the continuous state, O(t) is the continuous output, f(t) is the fault
vector and η(t) represents the switching function which is piecewise constant and
η(t) : [0,∞)→ {1,2, . . . ,N}. N denotes the known number of discrete modes or
subsystems. In general, function η(t) could depend on an external control input
and/or the state x(t) and/or the fault vector f(t). The measured variables are the out-
put signal O(t) and eventually the continuous state x(t) if it is observable. Here, a
fault can be considered on the system parameters, actuators or sensors. The multi-
ple fault occurrences are not considered. Hereafter, we assume that all continuous
variables of system (2) can be represented by sets of discrete variables.

In most of the existing studies on the diagnosis in the DES framework, the set of
events is only based on one information from the system (input or output signal).
The hybrid models allow representing the complex dynamics (continuous and dis-
crete) of a system. It can appear that this class of systems needs a more accurate
method for the diagnosis. In order to design a new approach of diagnosis using the
formalism of DFA for the class of switched systems, it is interesting to consider the
system as a MM. Using this particular modeling, the set of discrete events can be
enriched with the combination of input and output signals. An event will be defined
by a pair input/output. The idea is to highlight the equivalence between DFA and
MM in order to deduce a MM diagnoser using the formalism of DFA previously
redefined.

The switched systems can be modeled as MMs, where the input event corre-
sponds to the active mode of the system and the output event to the sensor readings.
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Formally a Mealy Machine is a structure:

M = (X , I,O,ζ ,λ ,x0) (3)

where X is the set of discrete states, I and O are the set of input and output events,
ζ : X× I→ X is the transition function, λ : X× I→O is the output function and x0
is the initial state of the system.

Here, we consider that the set of input events can be partitioned as I = Ic ∪ Iuc.
Events in Ic are controllable events, i.e., they denote controlled transitions that are
triggered by an external control input. Events in Iuc are uncontrollable events, i.e.,
they denote autonomous transitions that may occur without being triggered by an
external control input. The set of fault events I f = I f1 ∪ . . .∪ I fm is a subset of Iuc.
Note that the transition function of a MM is total on the set of controllable input
events, i.e., for all x ∈ X and for all i ∈ Ic, ζ (x, i) is defined. This means that a
controllable input may be applied regardless of the state of the machine. We also
assume that the set of output events O may contain the special symbol /0 that denotes
transitions whose occurrence does not generate as output a measurable event.

One can easily convert, for the purpose of diagnosis, a MM to an equivalent DFA
with the same state set and alphabet Σ = I×O. A transition of the MM ζ (x, i) =
x̄ with output function λ (x, i) = o can be represented in the DFA by a transition
δ (x,(i,o)) = x̄. The set of unobservable events of the DFA is Σuo = Iuc×{ /0}, the
set of fault events can be redefined as Σ f = {I f ×{ /0}} and Σo = Σ \ Σuo. Once
a MM has been converted into an equivalent DFA, a diagnoser can be designed to
solve the diagnosis problem. Below, an example is given in order to highlight the
equivalence between MM and DFA. The corresponding MM diagnoser is illustrated.

Example 1. Consider the MM M =(X , I,O,ζ ,λ ,x0) with X = {1,2,3}, I = {a,b,ε1,
ε f }, Ic = {a,b}, Iuc = {ε1}, I f = {ε f }, O = {o1,o2,o3, /0}, x0 = {1}, transition and
output function:

ζ a b ε1 ε f

1 3 2
2 1 2 1
3 2 3 1

λ a b ε1 ε f

1 o1 o2
2 o3 o2 /0
3 o2 o1 /0

Using the first line of the left table, one can see that, in the MM M, there exist
transitions from the state 1 to states 2 and 3 using input events noted b and a with
ζ (1,a) = 3, ζ (1,b) = 2. Associated to the second table, the corresponding output
event is represented with λ (1,a) = o1, λ (1,b) = o2. Using the proposed modeling,
an equivalent DFA of this MM can be deduced. Couples (a,o1) and (b,o2) are two
events of Σo in the new representation using the formalism of DFA.

The equivalent DFA is shown in Fig. 1(left) where the set of observable events
is Σo = {(a,o1), (a,o2), (a,o3), (b,o1), (b,o2)}, the set of unobservable events is
Σuo = {(ε1, /0),(ε f , /0)} and the set of fault events is Σ f1 = {(ε f , /0)} (here we have a
single fault class). The diagnoser for this DFA is shown in Fig. 1(right), where each
state y of Diag(G) is labelled with its corresponding diagnosis value ϕ(y) in square
brackets.
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Fig. 1 On the left, a DFA G. On the right, its diagnoser automaton Diag(G).

The objective of the following section is to design an algorithm in order to detect
and isolate faults in spite of the presence of uncertain fault states (i.e., ϕ(y) = UF )
in the diagnoser.

3 Active diagnosis

It is assumed that in normal conditions the control inputs of the MM (i.e., the switch-
ing sequence of the system) are selected by a controller to satisfy a given objective.
In parallel to the controller, a diagnoser is used to detect the evolution of the system.
There is no interaction between the diagnoser and the controller when no fault has
been detected, i.e., while the diagnoser is in a state with diagnosis value N or U .
In such a condition, in fact, the diagnoser behavior may be explained by a nominal
evolution and no alarm is generated. However, when a fault has been detected (when
ϕ(y) = UF or F), the control objective is suspended for safety reasons and a fault
isolation procedure is applied. Here, the trade-off between the control objective and
the active diagnosis is not studied.

In particular, if the diagnoser is in a state F , the fault has been isolated because
it is known exactly which fault classes have occurred. On the contrary, when the
diagnoser is in one of the uncertain fault states UF , the control input sequence will
be selected on the basis of a testing procedure to design an active diagnoser [20] that
isolates the fault identifying the class of the fault that has occurred.

3.1 Testing condition

In this subsection, the active diagnosis procedure for the MM defined in Eq. (3) is
described. It consists in finding a control input sequence which isolates the fault.

In order to design the proposed algorithm, we need to define a function which
specifies, for each state y ∈ Y of the diagnoser and for each control input sequence
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α ∈ Ic, the set of pairs (y′,β ) where y′ ∈ Y is the state of the diagnoser reached if
β ∈ O has been observed.

Definition 2. Given the diagnoser (De f . 1) associated with the DFA equivalent to
the MM Eq. (3), we define the following function f : Y × I∗c → 2Y×O∗ as follows.
For all y ∈ Y and all α ∈ I∗c :

f (y,α) = {(y′,β ) | δy(y,σ) = y′,
σ = (i1,o1)(i2,o2) . . .(ik,ok),
α = i1i2 . . . ik, β = o1o2 . . .ok}.

(4)

Proposition 1. The input sequence α ∈ I∗c isolates the faults from uncertain fault
state yu ∈ Y such that ϕ(yu) =UF if and only if

f (yu,α)⊆ {(yi,βi) | ϕ(yi) = F}. (5)

Proof: Obviously, condition (5) is a necessary condition for sequence α to isolate
the fault. Since the diagnoser is a deterministic automaton, (y′,β ),(y′′,β ) ∈ f (y,α)
implies y′ = y′′, i.e., the state of the diagnoser, reached by applying a given control
input sequence α , is perfectly known from the observed output sequence β . This
ensures that condition (5) is also sufficient.

From Proposition 1, an active diagnosability condition for the MM Eq. (3) can
be deduced.

Proposition 2. A switched system modeled by a MM Eq. (3) is actively diagnos-
able, using the MM diagnoser (corresponding to Def. 1), if there is at least one
control input sequence which verifies Proposition 1 for each uncertain fault state of
its diagnoser.

Remark 2. The above Proposition 2 is slightly different from the active diagnos-
ability definitions usually considered in the literature [1, 20]. In this study, a MM
modeling is used for the system and its diagnoser in order to highlight input/output
transitions and to design an adapted algorithm which solves the active diagnosis
problem for the class of switched systems.

The proposed approach is inspired by the notion of homing sequence that is stud-
ied in testing theory [3]. A homing sequence is an input sequence that brings a MM
(with outputs) from an unknown state to a known state, i.e., after the input sequence
is applied by observing the output sequence, one can unambiguously determine the
current state of the MM (see [3] for further details). Indeed, our objective consists
in finding a control input sequence in the MM diagnoser which isolates the fault or
disambiguates the fault class by observing the output sequence.

For a system which satisfies Proposition 2, a sequence that isolates the fault can
be determined, using the following approach to compute all fault isolating sequences
corresponding to the set of uncertain fault states.
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3.2 Algorithm

Before introducing our proposed algorithm, let us consider the following example.

Example 2. Consider the MM given in Fig. 2. There are three different fault classes,
i.e., Σ f1 = F1, Σ f2 = F2 and Σ f3 = F3. X = {1,2,3,4,5,6,7}, I = {a,b,c,d,F1,F2,
F3} with I f 1 = {F1}, I f 2 = {F2} and I f 3 = {F3}, Iuc = I f , Ic = {a,b,c,d}, O =
{1,2, /0} and x0 = {1}. The corresponding diagnoser contains 41 states and it is not
detailed here. Our approach consists in applying an algorithm which detects and
isolates the fault that has occurred. On the following figures, we have chosen to
decompose the diagnoser in steps in order to explain the algorithm. Figs. 3 and 4
illustrate two parts of the diagnoser during its construction in order to achieve the
fault detection and isolation. Fig. 3 presents the MM diagnoser o f detection in
the detection step. It has an unique nominal state (1 N,2 F1,3 F2,5 F3) since we
assume that an uncertain state U in the MM diagnoser is not a faulty situation. This
diagnoser shows transitions which allow the fault diagnosis or only detection. It has
four uncertain fault states UF and three isolated fault states F .

Considering the system in Fig. 2 with initial state 1, the sequence of observable
events (b, /0)(d,2), for instance, allows detecting a fault but not to isolate it. On the
diagnoser (Fig. 3), this sequence leads to the uncertain fault state (6 F1,7 F2) with
ϕ(y) =UF . When a fault is detected, the nominal control objective is suspended for
safety reason.

The proposed approach is to compute a fault isolating sequence from the MM
diagnoser. Fig. 4 presents the MM active diagnoser when a sequence α ∈ I∗c , de-
fined by k = 1 event, can be observed for the isolation step. It highlights the set
of reachable states from the detection step after observation of ‖α‖ = k = 1 event,
where ‖.‖ is the length of a string. Our off-line objective is to analyze this part of
the diagnoser in order to find a fault isolating sequence for each uncertain fault state
of the MM diagnoser o f detection (Fig. 3). The idea is to increment k while no
input sequence α ∈ I∗c with ‖α‖ = k verifying Proposition 1 can be found for an
uncertain fault state UF of the detection step.

Following this MM active diagnoser Fig. 4, all sequences of one event can be
tested from each uncertain fault state. Considering condition (5) on the diagnoser,
the control input event b can be applied as a fault isolating sequence for the states
(4 F1,7 F3) (blue state) and (6 F1,7 F2) (green state). Indeed, observing if the
corresponding output event is /0 or 1, we can isolate the fault F1 or F2 or F3. The
event b is not a valid isolating sequence for the uncertain fault states (4 F2,6 F3)
(magenta state) and (2 F1,3 F2,5 F3) (red state). This sequence does not verify
Proposition 1 because it leads to uncertain fault states (4 F2,6 F3) or (2 F2,2 F3).
The input event c can be taken as a fault isolating sequence for the state (4 F2,6 F3).
If the corresponding output event is /0, we can isolate the fault F3 and if the output
event is 1, then the fault F2 can be isolated. Following this strategy, the uncertain
fault state (2 F1,3 F2,5 F3) requires ‖α‖ = 2. Hereafter, the corresponding diag-
noser with k = 2 is not presented but from Fig. 4, we can propose the fault isolating
sequence bc whereas bb is not a valid isolating sequence.
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Fig. 2 Example of a MM with three fault classes.

Fig. 3 MM diagnoser for the detection step.

The proposed idea is to compute a minimal fault isolating sequence for each un-
certain fault states (UF ) of the MM diagnoser in the detection step using the testing
theory and based on homing sequences.

Function HomingSequence can be applied off-line to compute all fault isolating
sequences.

Function HomingSequence(Diag(G))

1. Input: The diagnoser Diag(G) = (Y,Σo,δy,y0)
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Fig. 4 MM active diagnoser for the isolation step, condition (5) is satisfied.

2. Create a set I ′ = /0
3. For all yui ∈ Y

3.1. If ϕ(yui) =UF and ∃σ ∈ Σo, ∃y ∈ Y with ϕ(y) = N or U s.t. δy(y,σ) = yui
3.1.1. Let αui = ε (ε is the empty word)
3.1.2. Let k=1
3.1.3. While αui = ε

• If ∃α ∈ I∗c s.t. ‖α‖= k and α verifies Proposition 1 for the state yui
αui← α

• Else
k← k+1

End if
End while

3.1.4. I ′ = I ′∪{(yui,αyui)}
End if

End for
4. Output: I ′ = {(yu1,αyu1),(yu2,αyu2), . . . ,(yui,αyui), . . .} → all pairs combining

an uncertain fault state yui with a minimal fault isolating sequence αyui .

For a system which satisfies Proposition 2, Function HomingSequence allows
finding the set of minimal fault isolating sequences in order to isolate the fault as
quickly as possible after its detection. Indeed, in Function HomingSequence, step
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3.1. verifies that there exists a transition between the uncertain fault state yui and a
state y such that ϕ(y) = N or U . This function is designed in order to increment the
size k of the sequence when no sequence can be found for an uncertain fault state
yui. A set of pairs can be proposed in order to combine each uncertain fault state with
a fault isolating sequence. If a fault is not diagnosable, this function could return an
empty set and the variable k goes to infinity.

According to the example (Fig. 2), the Function HomingSequence can be applied
on the MM diagnoser (Fig. 3) in order to find all minimal fault isolating sequences.
The following algorithm is an application of the proposed example. The function is
illustrated just for 2 uncertain fault states (steps between lines 3.1.4 and 4 correspond
to others uncertain fault states of the MM diagnoser, these are not detailed in this
chapter in order to simplify notations). The computed output in line 4 is for all
uncertain fault states.

Function HomingSequence(Diag(G)) applied on the MM diagnoser (Fig. 3)

1. Input: The diagnoser Diag(G) corresponding to the MM Fig. 2
2. Create a set I ′ = /0
3. For yui = (6 F1,7 F2) (or yui = (4 F1,7 F3))

3.1. ϕ(yui) = UF and ∃σ = (d,2) (or ∃σ = (c,2)), ∃y = (1 N,2 F1,3 F2,5 F3)
with ϕ(y) =U such that δy(y,σ) = yui

3.1.1. Let αui = ε

3.1.2. Let k=1
3.1.3. While αui = ε

• ∃α = b such that ‖b‖ = 1 and b verifies Proposition 1 for the state
(6 F1,7 F2) (or (4 F1,7 F3))

αui← b
End while

3.1.4. I ′ = I ′∪{((6 F1,7 F2),b)} (or ∪{((4 F1,7 F3),b)})
...

4. Output: I ′ = {((6 F1,7 F2),b),((4 F1,7 F3),b),((4 F2,6 F3),c),((2 F1,
3 F2,5 F3),bc)}

The proposed MM active diagnoser algorithm can be summarized by Algorithm 1.

Algorithm 1 Active Diagnoser

1. Compute I = HomingSequence(Diag(G))
2. Loop

2.1. Nominal control of the system (defined according to the control objective)
2.2. Follow the occurred events (i,o) in the MM active diagnoser
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2.3. If a fault is detected (ϕ(y) =UF or F)
2.3.1. Stop the control objective
2.3.2. If ϕ(y) = F

• The fault is isolated using the MM diagnoser
2.3.3. Else

• Apply the homing sequence αy corresponding to the pair (y,αy) ∈I
• Follow the occurred events (i,o) in the MM diagnoser in order to reach

a final state y f ∈ Y such that ϕ(y f ) = F and the fault is isolated
End if

2.3.4. STOP
End if

End loop

Following Algorithm 1, in the first step, all minimal fault isolating sequences are
computed off-line using Function Homing Sequence for each uncertain fault state of
the MM diagnoser computed for the detection step. In the second step, the nominal
control can be applied and the MM diagnoser follows the occurred events (i,o) (the
diagnosis value ϕ(y) can be equal to N, U , UF or F). If a fault is detected, the
control objective is broken off. If the diagnosis value ϕ(y) = F , the fault class is
isolated and the algorithm is ended. If the fault is only detected (i.e., ϕ(y) = UF ),
then corresponding fault isolating sequence can be applied in order to achieve the
diagnosis objective.

4 Application to the multicellular converter

In this section, the proposed diagnosis algorithm is applied to the multicellular con-
verter. The details of the algorithm are presented with simulation results using a
2 cells converter (4 modes). Experimental results on a 3 cells converter (8 modes)
highlight the effectiveness of the proposed approach and show that the algorithm
can be generalized for this class of switched system and applied in real time.

4.1 Multicellular converter modeling

The multicellular converter is based on the combination of p elementary cells of
commutation. The current flows from the source E toward the output through the
different switches. The converter shows, by its structure illustrated Fig. 5, a hybrid
behavior due to the discrete variables, i.e., switches. Note that because of the pres-
ence of (p−1) floating capacitors, there are also continuous variables, i.e., currents
and voltages.
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Fig. 5 Multicellular converter associated to an inductive load.

The dynamics of the converter, with a load consisting in a resistance R and an
inductance L, can be expressed by the following differential equations:

İ = −R
L I + E

L Sp−∑
p−1
j=1

Vc j
L (S j+1−S j)

V̇c j =
I
c j
(S j+1−S j), j = 1, . . . , p−1

(6)

where I is the load current, c j is the capacitance, Vc j is the voltage in the j−th
capacitor and E is the voltage of the source. Here, it is assumed that only the output
voltage Vs can be measured:

Vs = ESp−
p−1

∑
j=1

Vc j(S j+1−S j) (7)

Each commutation cell is controlled by the binary signal S j ∈ {0,1}. Signal S j =
1 means that the upper switch of the j−th cell is “on” and the lower switch is “off”
whereas S j = 0 means that the upper switch is “off” and the lower switch is “on”.

Remark 3. System defined by (6) and (7) is not observable in the classical sense.
Indeed, if ∀ j ∈ {1, . . . , p}, S j = 0 or S j = 1, then the internal voltages Vc j cannot be
estimated.

It is important to highlight that in order to standardize the industrial production,
the electrical switches constraints should be similar in each cell. This requirement
implies a unique voltage switch constraint of E

p . Thus, the discrete control laws,
which determine the evolution of the control signals S j, ensure the simultaneous
regulation of the load current and capacitor voltages such that:

Vc j ,re f = j
E
p
, ∀ j ∈ {1, . . . , p} (8)

A driver applies the control strategy on the switches of each cell (see Fig. 6(left)
for the 2-cells converter). [S1, . . . ,Sp]

T ∈ {0,1}p is a boolean vector describing the
configuration or mode of the system.
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Assuming that the control law is computed using a PWM module (Fig. 6(left)),
the switching sequence, which depends on the desired load current, is known. Since
the transient period is very short, one can only consider the steady state value for
each mode. Therefore, the hybrid control strategy is defined by 2p modes. It creates
a stairs behavior of the output voltage, i.e., Vs ∈ {0, E

p ,
2E
p , . . . ,E}. In order to re-

duce the harmonic contents and the switching losses of semiconductors during the
different commutations, the control limits the variation of the output voltage to E

p .
Indeed, the control operates one cell at once.

4.2 Active fault diagnosis for a 2-cells converter

Without loss of generality, we consider the case p = 2 in order to simplify notations.
Anyway, the proposed approach can be easily applied for any p.

4.2.1 2-cells converter modeling

Fig. 6 depicts the topology of the 2-cells converter associated to an inductive load
and its corresponding MM for the nominal modes where, the control signals S1S2
represent the input events and the discrete values, associated to Vs, are the output
set.

Fig. 6 Topology of a 2-cells converter with a PWM based control and the corresponding MM in
its nominal behavior.
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The model of the 2-cells converter involves that the reference voltage of the ca-
pacitor is such that Vc =

E
2 and the output voltage is defined as Vs ∈ {0, E

2 ,E} when
the transient is ignored.

In this work, only faults which occur on a commutation cell are considered. It
is possible that a commutation cell is blocked due to a faulty driver. For the 2-cells
converter, four faults can be defined. The fault event set is Σ f = f1 ∪ f2 ∪ f̄1 ∪ f̄2,
where f j (resp. f̄ j) indicates that the j-cell is blocked in S j = 1 (resp. S j = 0). The
fault states are denoted according to the corresponding nominal state. For instance,
the fault state 2 f̄2 is the equivalent state of 2 in the presence of fault f̄2.

Fig. 7 MM modeling for the 2-cells converter considering ((S2,S1),Vs variation) as the observable
quantity.

Fig. 7 shows the MM representation of the 2-cells converter. The output set is
O = { /0,0,1,2} and corresponds to Table 1. The output set represents the output
voltage variations. The input set is I = {ε f ,s1s2, s̄1s2,s1s̄2, s̄1s̄2} with Iuc = {ε f }.
s j (resp. s̄ j) indicates a control law S j = 1 (resp. S j = 0). Each transition edge is
labeled with the values of the input and output. The system has unobservable faults,
noted by pair (ε f , /0).

Remark 4. The MM of the converter (given in Fig. 7) contains observable faults
based on physical considerations of the system between the input and output (linked
to the output value Vs). An expert can associate these faults with the different
fault classes. Observable faults represented by the events associated with their fault
classes are given in Table 2.
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Table 1 Output voltage variations and the output set for the 2-cells converter.

O = { /0,0,1,2} Vs variation
/0 no variation
0 E/2 to 0
1 0 or E to E/2
2 E/2 to E

Table 2 Observable faults associated with the fault classes.

Fault events Classes
(s̄1s2,2) f1
(s1 s̄2,2) f2
(s̄1 s̄2,1) f1, f2
(s1s2,1) f̄1, f̄2
(s̄1s2,0) f̄2
(s1 s̄2,0) f̄1

The MM modeling allows taking into account the change in sensor readings when
a same control is applied. It improves the fault detection procedure.

4.2.2 Algorithm associated with the 2-cells converter

Fig. 8 shows the diagnoser corresponding to the 2-cells converter, modeled by
its equivalent DFA and assuming that the control is broken off if a fault is de-
tected. Each state of the diagnoser is a set of pairs (xi,γi) where xi ∈ X and
γi ∈ {N, f1, f̄1, f2, f̄2}. It should be pointed out that it has two uncertain fault states,
(2 f̄2,3 f̄1) and (2 f1,3 f2). Indeed, if the state of the system is, for instance 1 (or 4), a
fault event (s̄1s̄2,1) (or (s1s2,1)) enables to detect a fault but does not enable to iso-
late it. Using the proposed diagnoser, the states 4 f1, 4 f2, 1 f̄1 and 1 f̄2 can be directly
isolated using the observations (s̄1s2,0), (s1s̄2,0), (s̄1s2,2) and (s1s̄2,2) (see Fig. 8).
By a classical approach [20], from the state of the system 2 or 3, the observations
(s̄1s̄2, /0) and (s1s2, /0) also lead to the fault diagnosis. Therefore, a fault can always
be detected but may not directly be isolated.

Associated to the MM diagnoser, a fault isolating sequence can be computed, us-
ing Function HomingSequence, to eliminate the uncertainty between states (2 f̄2,3 f̄1)
and (2 f1,3 f2) (see Fig. 9). The input event (s̄1s2) ∈ I∗c satisfying condition (5) can
be a fault isolating sequence for the system (the input event (s1s̄2) ∈ I∗c can be also
used).

Remark 5. The diagnoser given in Fig. 8 cannot isolate a fault if the initial state
x0 is unknown. Here, it is considered that the initial conditions of the system are
known and the initial mode is without fault. The initial mode corresponds to the
mode without control (all S j = 0) (see Fig. 5) and will be defined with mode 1.
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Fig. 8 Part of the diagnoser associated to the 2-cells converter, considering that the control is
broken off if a fault can be detected.

Fig. 9 Homing sequences allowing faults isolation (i.e., (s1 s̄2) and (s̄1s2) with ‖α‖= 1).

4.2.3 Simulation results

In this section, some simulations are carried out to show the effectiveness of the
proposed approach. Equations (6)-(7) are written using Matlab/Simulink, a PWM
module controls the 2-cells converter and a Stateflow module is used to model the
DFA. The parameters used in the simulation are as follows:

E = 60V, c = 400µF, R = 200Ω , L = 0.1H
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Fig. 10(a) depicts the evolution of faults. In order to highlight the efficiency of the
diagnoser, the simulation takes into account all kind of faults { f1, f2, f̄1, f̄2}. Fig.
10(b) highlights the fault detection and Fig. 10(c) illustrates the fault diagnosis using
the proposed strategy. Indeed, a reset of the system is realized between each fault.
The state is re-initialized at x0 = [Vcre f , Ire f ]

t = [30,0.2]t and the mode is 1. Fig. 11
shows the evolution of the mode of the DFA.

Fig. 10 Fault detection and isolation, using the proposed active diagnosis algorithm. (a) Fault
evolution. (b) Fault detection using the proposed diagnoser. (c) Isolation using the diagnoser and
the homing sequences given in Figs. 8-9.

Fig. 11 Mode commutations (nominal and faulty).
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One can see, in Fig. 10, that the diagnoser, using the MM representation, fulfils
the objective, i.e., the faulty modes are well detected and isolated. In Fig. 11, one can
note that faults f̄1 and f̄2 are identified using the proposed fault isolating sequence.
Indeed, these faults generate an uncertain fault state in the diagnoser. Using the
testing theory, a sequence is applied, among the fault isolating sequences given in
Fig. 9, i.e., (s1s̄2) or (s̄1s2). This sequence depends on the uncertain state of the
diagnoser. It enables to eliminate the uncertain states and isolate the corresponding
fault.

4.3 Active fault diagnosis for a 3-cells converter

In order to highlight the performance of the proposed active diagnosis, we have also
performed some experimental validations.

4.3.1 Experimental setup

To demonstrate the effectiveness of the proposed strategy, experimental investiga-
tions have been realized on a test bench which consists of a 3-cells converter. The
schematic view of the overall platform is shown in Fig. 12(a). The experimental
setup (see Fig. 12(b)) is described as follows:

• The power block is composed of a 3-cells converter with three legs. The nomi-
nal bench characteristics, obtained after identification, are: c1 = 40.10−6F, c2 =
40.10−6F, E = 60V .

• The measurement part is composed of voltage sensors to measure the voltage
across the floating capacitors and a current transductor to measure the load cur-
rent. A low pass filter has been added.

• The computer is equipped with Mathworks softwares and an interface Dspace
card DSP1103, based on a floating point DSP (TMS320C31) with ControlDesk
software in order to visualize the state during the experiment. In order to ob-
tain the best resolution, the minimum sampling period for the Dspace has been
chosen, i.e. Tech = 7.10−5s.

• The three control inputs, designed by the proposed scheme, are computed and
delivered by the interface Dspace card. An interface card allows to protect, by
insulation, the DSP of the power electronics.

• The load is composed of an inductance and a resistance: R = 200Ω , L = 1H.

4.3.2 3-cells converter modeling

Fig. 13 depicts the MM of the 3-cells converter associated to an inductive load for
the nominal modes.



22 Jeremy Van Gorp, Alessandro Giua, Michael Defoort, Mohamed Djemaı̈
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Fig. 12 Schematic view of the overall platform (a.). A photography of the experimental setup (b.).

Fig. 13 Nominal MM of the 3-cells converter (without faults).

The model of the 3-cells converter involves that the reference voltages of the
capacitors are such that Vc1re f =

E
3 and Vc2re f =

2E
3 . The output voltage is defined

as Vs ∈ {0, E
3 ,

2E
3 ,E} (considering the system in the steady state). Similarly with

the model of the 2-cells converter, the fault event set may be defined with 6 fault
classes Σ f = f1 ∪ f2 ∪ f3 ∪ f̄1 ∪ f̄2 ∪ f̄3 (associated to each cells of the converter).
The output set is O = { /0,0,1,2,3} and corresponds to Table 3. The input set is
I = {ε f ,s1s2s3, s̄1s2s3,s1s̄2s3, s̄1s̄2s3,s1s2s̄3, s̄1s2s̄3,s1s̄2s̄3, s̄1s̄2s̄3}. The initial condi-
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tions of the system are defined by x0 = [Vc1 ,Vc2 , I]
T = [0,0,0]T and the initial mode

is 1.

Table 3 Output voltage variations and the output set for the 3-cells converter.

O = { /0,0,1,2,3} Vs variation
/0 no variation
0 E/3 to 0
1 0 or 2E/3 to E/3
2 E/3 or E to 2E/3
3 2E/3 to E

Remark 6. If the fault f̄1 or f̄2 or f̄3 occurs, then Vs ∈ {0, E
3 ,

2E
3 }. If the fault f1 or f2

or f3 occurs then Vs ∈ {E
3 ,

2E
3 ,E}. When a fault occurs (when a cell is blocked), the

system becomes similar to the 2-cells converter (4 modes).

Remark 7. This work considers the system in steady state. During the experimenta-
tion, there is a transient period to fulfil the control objective xre f = [Vc1re f ,Vc2re f , Ire f ]

T

= [20,40,0,17]T . Therefore, after each reset, the system is re-initialized at x0 and
a delay, corresponding to its transient time, is considered on the active diagnosis
procedure.

In this paper, the diagnoser, associated to the 3-cells converter, is not detailed
in order to simplify notations. The diagnosis algorithm follows the same procedure
than the 2-cells converter. Some experimental results are carried out to show that the
approach can be generalized for this class of systems and applied in real time.

4.3.3 Experimental results

Fig. 14(a) depicts the evolution of faults. In order to highlight the efficiency of
the approach in real time, the experimentation takes into account all kind of faults
{ f1, f2, f3, f̄1, f̄2, f̄3}. The faults are manually generated in order to interact with the
control. A reset of the system is realized between each fault (see Fig. 15(b)). Figs. 15
and 16 show respectively the evolution of the actual mode of the DFA and the state
evolution of the converter. For each fault class, the diagnoser is initialized and the
control ensures the state regulation. In Fig. 16, the nominal working of the converter
between each generated fault is illustrated. When a fault is detected, the control is
broken off and a fault isolating sequence can be applied in order to isolate it.

One can see, in Fig. 14, that the diagnoser, using the MM representation, fulfils
the objective, i.e., the faulty modes are well detected and isolated. In Fig. 15, one
can note that faults are identified by the same approach as the 2-cells converter and
using the fault isolating sequences.
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Fig. 14 Fault detection and isolation, using the proposed active diagnosis algorithm for the 3-cells
converter. (a) Fault evolution. (b) Fault detection using the proposed diagnoser. (c) Isolation using
the diagnoser and the homing sequences.
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Fig. 15 Mode commutations (nominal and faulty) for the 3-cells converter.

5 Conclusion

An active diagnosis for a class of switched systems which may not satisfy the diag-
nosability conditions is designed. A Mealy Machine modeling is used to define an
appropriate diagnoser which reduces the uncertain state subset. Some diagnosability
conditions of faults are deduced using this representation. If the MM diagnoser sat-
isfies these conditions, an algorithm combining the proposed diagnoser and a testing
procedure can be used in order to solve the fault diagnosis problem. A study on the
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Fig. 16 Evolution of the state and the reference for the 3-cells converter.

cascade multicellular converter is carried out to detect and isolate faulty cells. Sim-
ulation results, on the 2-cells converter, are detailed and highlight the effectiveness
of the proposed algorithm. Experimental results, on the 3-cells converter, show that
the approach can be generalized for this class of switched system and applied in real
time.
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