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Abstract 28 

Stressors experience early in life by animals may have carry over impacts on life-traits over the life 29 

cycle. Accelerated telomere attrition induced by stress during development and growth could play a 30 

role in such delayed effects. Among stressors, exposure to chemicals may modify telomere dynamic 31 

but, to date, the trends evidenced between exposure and telomere shortening remains inconsistent. 32 

Moreover, the role of corticosterone as a possible mediator of chemical impact on telomere is not 33 

yet clearly established. Here, we investigated in wild populations of Red kite whether nestling 34 

exposure to metals and pesticides was related to corticosterone concentrations in feathers and 35 

telomere length measured in 47 individuals. Lead and mercury concentrations in blood ranged from 36 

2.3 to 59.0 µg L-1 and to 1.4 to 115.7 µg L-1, respectively, and were below the toxicity thresholds 37 

proposed for wildlife. Rodenticides were detected in 30% of the chicks. Corticosterone increased 38 

with mercury and lead in interaction, showing a synergistic effect of these 2 non-essential metals on 39 

this stress hormone. Telomere length was not linked to metals and/or rodenticide exposure while it 40 

was related negatively to corticosterone. The relationship between telomere and corticosterone was 41 

modulated by nestling’s age, which suggests that the rate of telomere shortening is higher when 42 

corticosterone increases. Our findings propose an effect of low exposure of Red Kite nestlings to 43 

mercury and lead mixture to raise baseline corticosterone in feathers. The relationships established 44 

suggest the hypothesis that telomere attrition could be an indirect consequence of metal exposure 45 

mediated by corticosterone. 46 

  47 
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1. INTRODUCTION 48 

Stressors experienced during the early stages of an animal’s life may impact upon its development 49 

and growth but can also have carry over consequences on other life-history traits, such as 50 

reproduction and/or longevity, and thus, fitness (Monaghan, 2008). Recently, interest has been 51 

growing as to whether environmental stressors, including exposure to pollutants, accelerate 52 

telomere attrition (Angelier et al., 2018; Blévin et al., 2016). Telomeres are sequences of non-coding 53 

DNA located at the end of chromosomes that shorten naturally at each cell division (Monaghan and 54 

Haussmann, 2006). When telomeres are shortened, coding DNA may be damage during replication 55 

which leads to cell senescence and telomere shortening has been related to health status, individual 56 

quality and lifespan in mammals and birds (Bize et al., 2009; Boonekamp et al., 2014; Angelier, et al., 57 

2019). Telomere attrition may be accelerated when individuals are exposed to pollutants as 58 

demonstrated for humans (Hoxha et al., 2009). The few studies dealing with telomere shortening 59 

related to pollutant exposure in birds did not reveal any consistent trend (Blévin et al., 2016; Sletten 60 

et al., 2016; Stauffer et al., 2017). For instance, in female kittiwakes, telomere length is shorter with 61 

oxychlordane exposure (Blévin et al., 2016) while it is longer in birds exposed to perfluoroalkylated 62 

substances and mercury (Angelier et al., 2018). No relationship was found with some chemicals 63 

including PCBs and other persistent organic pollutants (Blévin et al., 2016). This discrepancy led 64 

Angelier et al. (2018) to conclude that “further experimental and correlative studies linking telomere 65 

dynamics and contamination are necessary to better understand the impact of anthropogenic 66 

pollution on wild vertebrates”. Furthermore, telomere attrition is much higher in embryos and 67 

nestlings compared to adults, when cell proliferation accompanies growth and development 68 

(Angelier et al., 2018). Because stress experienced in early life will shape the phenotype of the future 69 

adult, telomere loss during growth could be the mechanism linking stress and ageing across 70 

generations (Haussmann and Heidinger, 2015). This also suggests that nestling exposure to chemicals 71 

could impact life-history traits later in life through accelerated telomere attrition.  72 
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A common pathway that lead to various cellular and physiological changes and disorders, including 73 

possibly telomere attrition, is corticosterone (CORT) release due to activation of the hypothalamic-74 

pituitary-adrenal axis (HPA) (Strong et al., 2015). Following exposure to endocrine disrupting 75 

chemicals, CORT, the main hormonal mediator of allostasis in birds, may increase (Franceschini et al., 76 

2009; Herring et al., 2012; Meillère et al., 2016; Tartu et al., 2015) in order adapt life-trait expression 77 

to environmental conditions. Chronic stress may generate an elevation in baseline CORT levels that 78 

can entail important physiological consequences, such as suppression of somatic growth, 79 

reproduction and, ultimately reduce long term survival (Quirici et al., 2016). In birds, high CORT level 80 

in plasma have been related to shorter telomere, either experimentally (Haussmann et al., 2012) or 81 

in wild populations (Quirici et al., 2016). Those findings have led to assume that CORT could mediate 82 

the link between telomere dynamic and stressful environmental conditions like contamination 83 

(Angelier et al., 2018).  84 

To date, no study has focused on whether non-lethal exposure to chemicals may cause CORT release 85 

in wild nestling birds and, whether CORT level may mediate the ageing cost of pollutants via 86 

telomere shortening. In the present study, we investigated the relationship between exposure to 87 

metals (both non-essentials: cadmium Cd, mercury Hg and lead Pb and essential: selenium Se) and 88 

pesticides (anticoagulant rodenticides; ARs), and CORT levels in feathers and telomere length in 89 

nestlings of Red Kites Milvus milvus in Eastern France. According to their feeding habits, the Red kite 90 

is commonly exposed to ARs (Coeurdassier et al., 2014) or metals (Berny et al., 2015) and poisoning 91 

is deemed to be one of the main threats for this species (International Union for the Conservation of 92 

Nature, 2018). Here, we hypothesize that high levels of toxicants in the blood will cause an increase 93 

of CORT concentrations in feathers, and could lead to a decrease of telomere length.  94 

2. MATERIAL AND METHODS 95 

2.1. Study areas and sample collection 96 

Fieldwork was carried out in 2015 from 4th to 25th June in Franche-Comté region, Eastern France. 97 

Three breeding populations of Red Kite, from three areas were monitored: Sundgau Belfortain 98 
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(47°38’17’’N, 6°51’46’’E), Drugeon & Remoray basin (46°54’22’’N, 6°21’17’’E) and Besançon plateau 99 

(47°14’35’’N, 6°01’19’’E). Forty-seven chicks (23 males and 24 females) corresponding to 24 nests 100 

were retained for the study. The sampling was implemented ~15 days prior to the expected fledging 101 

date, when the chicks were approximately 30-35 days old. The nestlings were removed from the 102 

nests by an experienced arborist climber and carried to the ground for data collection. First, the body 103 

mass (g) and the length of the primary wing feathers (mm) were measured. Between 4 and 8 breast 104 

feathers were cut and blood samples (2 ml) were taken from the brachial vein using lithium-heparin 105 

coated syringes. As recommended (Fair et al., 2010), the volume of blood collected was less than 106 

0.5% of the chick’s body mass. Blood samples were kept in the dark at 4°C and feathers were stored 107 

at -20°C until processed in the laboratory. At the end of each sampling day, 300 µL of blood were 108 

centrifuged at 500 g for 10 min. Red blood cells were stored at −80 °C to assess telomere length and 109 

determine the chicks’ sex according to a PCR method (Griffiths et al., 1998). The rest of the whole 110 

blood was frozen at -20°C until analysis. All the manipulations were performed with governmental 111 

authorizations no. 2015093-0007 and 2015093-0023 in the framework of the Red Kite national 112 

conservation plan. 113 

2.2. Metals and ARs analysis in blood 114 

Blood concentrations of Cd, Hg, Pb and Se were measured by ICP-MS analysis (XSeries 2, Thermo 115 

Scientific). 300 µL of whole blood were digested in a DigiPrep unit (MS SCP Science) after addition of 116 

1 mL HNO3 (Optima® quality, Fisher Chemical). Then, the volume was completed to 50 mL with ultra-117 

pure water. A certified reference material (TORT-2, NRC, Canada) was used to ensure the validity of 118 

the obtained results. The limits of detection were 0.7 10-3, 0.7 10-2, 1.9 10-3 and 3.0 10-3 µg L-1 for Cd, 119 

Hg, Pb and Se, respectively and the limits of quantification were 2.3 10-3, 2.3 10-2, 5.8 10-3 and 9.0 10-3 120 

µg L-1.  121 

The concentrations of 8 ARs (bromadiolone, chlorophacinone, difenacoum, difethialone, warfarin, 122 

coumatetralyl, brodifacoum and flocoumafen) were determined in whole blood by LC-ion trap 123 

according to a method adapted from Fourel et al. (2010). The LOD and LOQ were respectively 0.1/0.2 124 
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µg L-1 for flocoumafen, 0.2/0.5 µg L-1 for chlorophacinone, bromadiolone, brodifacoum and warfarin, 125 

0.5/1.0 µg L-1 for difenacoum, difethialone and coumatetralyl. 126 

  2.3. Telomere length measurement 127 

Telomere length was measured in DNA extracted from red blood cells using Quiagen Puregene® 128 

Blood Core Kit B with a quantitative real-time amplification (qPCR) previously used in birds (Criscuolo 129 

et al., 2009). Relative telomere length is expressed as the (T/S) ratio of telomere repeat copy number 130 

(T) to a control single copy number gene (S), which was calculated using the exact amplification 131 

efficiencies of each run (for T and S) and the Cq values corresponding to number of amplification 132 

cycles allowing the detection of T or S amplification by fluorescence. We used the Zebra finch 133 

Taeniopygia guttata Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence as a control 134 

gene, with the primers GAPDH-F (5’-AACCAGCCAAGTACGATGACAT-3’) and GAPDH-R (5’-135 

CCATCAGCAGCAGCCTTCA-3’). The primers used for the telomere sequence amplification were: Tel1b 136 

(5’-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3’) and Tel2b (5’-137 

GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3’). Both qPCR (control gene and telomere) was 138 

performed in a total volume of 10 µL, including 0.8 × Brilliant SYBR Green QPCR Master Mix 139 

(Stratagene), 50 mM of GAPDH-F/GAPDH-R, 50 mM of Tel1b /Tel2b, and 2.5 ng µL-1  of DNA. Each 140 

sample was run in duplicate. Samples were measured using two runs, each of them containing one 141 

plate for S amplification and one plate of T amplification. In each plate, a serial dilution using an 142 

identical DNA sample (identity 613) was carried out on triplicate to evaluate the efficiency of the 143 

qPCR reaction. The control gene qPCR conditions were 10 min at 95°C followed by 40 cycles (1 min at 144 

56°C and 1 min at 95°C), while the telomere sequence amplification was done following: 2 min at 145 

95°C and 30 cycles (30 sec at 56°C, 30 sec at 72°C and 1 min at 95°C). All amplifications ended by a 146 

dissociation curve analysis to check for unspecific signals. Amplification efficiencies were 101 and 147 

102% (S), and 98 and 99% (T). Intra-run coefficients of variation were 0.47 ± 0.09 % (Cq S), 1.09 ± 148 

0.09 % (Cq T) and 10.27 ± 1.38% (T/S ratio). Inter-run coefficients of variation were 0.58 ± 0.17% (Cq 149 

S), 1.35 ± 0.16% (Cq T) and 10.37 ± 0.93% (T/S ratio).  150 
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2.4 Corticosterone analyses in feathers  151 

Corticosterone was extracted from feathers as described by (Strong et al., 2015). Corticosterone 152 

content was determined in 100 µL aliquots of each extract using the radioimmunoassay protocol 153 

described by (Pottinger and Carrick, 2001) for cortisol but substituting [1,2,6,7-3H]-corticosterone 154 

(2.4 TBq mmol-1; GE Healthcare) as tracer with an anti-corticosterone antibody (Abcam ab1022, 155 

1:2000 dilution; cross-reactivity: 11-dehydrocorticosterone 0.67%, Deoxycorticosterone 1.5%, 18-156 

OH-DOC <0.01%, Cortisone <0.01%, Cortisol <0.01% and Aldosterone 0.2%). Corticosterone 157 

concentrations were expressed in pg cm-1.  158 

2.5 Data analysis 159 

First, relationships linking metal concentrations to individual relative variables (area, age, sex, rank of 160 

the chicks in the brood) as fixed factors were checked using general linear models (LM) or mixed-161 

effect LM (LMER). Rodenticide blood concentrations were linked to individual relative variables (age, 162 

sex, rank of the chicks in the brood) with non-parametric tests. Wing length was used as a proxy of 163 

age according to Mougeot and Bretagnolle (2006). In addition, relationships between CORT in 164 

feathers as response and chemical concentrations and individual parameters as fixed factors were 165 

tested with LM or LMER. Then, telomere length was fitted against CORT, chemical concentrations 166 

and individual parameters with LM or LMER.  The cross-sectional rate of TL shortening was estimated 167 

by comparing the difference between the TL lengths measured in chicks of two different ages 168 

according to the CORT in feathers. Response variables were log-transformed when necessary to fit 169 

residual normality and homoscedasticity. The variable named ‘Nest’ was introduced as random 170 

factor when checking differences of concentrations between areas while Nest nested into Area 171 

(Area/Nest) were used in others models (Zuur et al.,  2009). For each response variable, the null 172 

model was also tested. The most parsimonious model with the lowest Akaike information criterion 173 

(AICc) was selected, a difference of AIC > 2 was retained to evidence differences between 2 models 174 

(Burnham and Anderson, 2010). For each model selected, Cook distances were computed to 175 

estimate the influence of the data points. When one (or several) data point exhibited Cook distance > 176 
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1, it was deleted from the dataset and the model was fitted again to check the robustness of the 177 

relationship without any strongly influential data. All statistical analyses were performed using R 178 

3.4.2. with the packages lme4 and lmerTest. The concentrations measured in kite blood for Hg and 179 

Pb were compared to toxicity reference values (TRVs) previously published, i.e., 200 µg L-1 (Ackerman 180 

et al., 2016) and 710 µg L-1 in birds (Buekers et al., 2009), respectively. 181 

3. RESULTS 182 

3.1. Nestling exposure to chemicals 183 

3.1.1 Metal concentrations in blood 184 

For non-essential metals, Pb and Hg were detected in the blood of all chicks monitored while Cd was 185 

> LOD in only 3 individuals (Table 1) and thus was not subsequently analysed. Blood [Pb] ranged from 186 

2.3 to 59.0 µg L-1 (Table 1) and remained at least 12 times lower than the Pb TRV (710 µg L-1). No 187 

differences in [Pb] were detected between areas (LM, p = 0.39). Moreover, [Hg] and [Pb] in blood 188 

were not influenced by sex (LM, p = 0.22 for Pb and LMER, random factors: Area/Nest, p = 0.28 for 189 

Hg), age (LMER, p = 0.45 for Pb and p = 0.11 for Hg, random factors: Area/Nest) or the rank of chicks 190 

in the brood (LM, p = 0.20 for Pb and LMER, random factors: Area/Nest, p = 0.15 for Hg). Blood [Hg] 191 

ranged from 1.4 to 115.7 µg L-1 (Table 1) and were 3 times lower in nestlings from Besancon than in 192 

Drugeon-Remoray and Belfort chicks (medians of 4.2, 13.4 and 11.8 µg L-1, respectively). Among the 193 

47 individuals sampled, none had blood [Hg] higher than the TRV (i.e. 200 µg L-1). Concentrations of 194 

Se, an essential element involved in Hg detoxification, ranged from 131.4 to 521.3 µg L-1 (Table 1). 195 

Nestlings from Drugeon-Remoray and Belfort exhibited higher concentrations than those from 196 

Besancon (medians = 357.7, 328.3 and 248.5 µg L-1, respectively). Blood [Se] also increased with the 197 

age of the chicks only (LMER, random factors: Area/Nest, p < 0.0001) and were positively correlated 198 

to [Hg] (LMER, random factors: Area/Nest, p < 0.0001; Fig. 2) with a mean Se/Hg molar ratio of 102.3 199 

± 62.9 (mean ± SD) 200 

3.1.2 Concentrations of ARs in blood  201 
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Nearly a third (30%) of the chicks (N=14) were exposed to 4 ARs, bromadiolone, difenacoum, 202 

brodifacoum and/or difethialone. Bromadiolone was the most frequently detected and exhibited the 203 

highest blood concentrations among ARs (Table 1). Brodifacoum residues were detected in 4 kites 204 

and difethialone in 2 individuals, median concentrations of positive chicks being 10 and 2.4 times 205 

lower than that of bromadiolone (Table 1). Four chicks were exposed to difenacoum at 206 

concentrations up to 2.5 µg L-1 (Table 1) and three of them exhibited residues of 2 ARs (difenacoum + 207 

brodifacoum or bromadiolone). As the number of nestlings with AR residues was low, we summed all 208 

AR concentrations measured in a single chick (variable called ∑ARs, Table 1) to check for further 209 

relationships. No difference between areas was found for the proportion of exposed individuals 210 

(binomial GLM, p = 0.29) or ∑ARs concentrations (LM, p = 0.29). Moreover, any of the chick or brood 211 

characteristics influenced the ∑ARs concentrations in blood (Wilcoxon test for sex, p = 0.10; 212 

Spearman correlation test for age, p = 0.78; Kruskal-Wallis test for rank, p = 0.77).   213 

3.2. Influence of pollutant levels on corticosterone in feathers 214 

Concentrations of corticosterone in feathers (CORT) ranged from 4.3 to 59.9 pg cm-1 (median: 9.3 215 

pg/cm) with no differences between areas (LME, random factor: Nest, p = 0.58). Among factors 216 

related to individual or brood, CORT levels was positively influenced by the age (LME, random 217 

factors: Area/Nest, p = 0.027). CORT concentrations in feathers increased with chick exposure to Hg 218 

in interaction with Pb while age was not retained in the model with the lowest AICc (LM, R2 = 0.17, p 219 

= 0.013, Fig. 1). Indeed, the effect of Hg on CORT concentrations was more pronounced when [Pb] in 220 

blood increased. As one data point had a Cook distance > 1, CORT was fitted against Hg and/or Pb 221 

without this data and the best model remained that with Hg and Pb in interaction as fixed factors 222 

(LM, R2 = 0.14, p = 0.025).  223 

3.3. Modulation of telomere length by CORT levels  224 

Telomere lengths (T/S ratio) ranged from 0.509 to 1.170 and were higher in Drugeon-Remoray and 225 

Besancon than in Belfort with means (± SD) of 0.92 ± 0.11, 0.92 ± 0.13 and 0.71 ± 0.17, respectively 226 

(LM, R2 = 0.12, p = 0.025). Telomere shortening was related to high CORT in feathers in interaction 227 
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with the age of individuals. Telomeres were shorter when CORT increased, this effect being 228 

heightened in older chicks (LM, R2 = 0.16, p = 0.017; Fig. 2). Using the relationship established here, 229 

we present the telomere length predicted from the CORT levels in feathers for 2 ages of chicks (Fig. 230 

2). We also evidence that the cross-sectional rate of TL shortening is modulated by CORT. Indeed, the 231 

difference of TL length measured in chicks of 2 different ages is larger for elevated CORT level in 232 

feathers compared to low ones (Fig. 2).  233 

 234 

4. DISCUSSION 235 

Nestling Red Kites (30-35 day-old) are exposed to non-essential metals and/or pesticides early in 236 

their development. Blood Hg and Pb concentrations remain relatively low compared to those 237 

reported in other studies on raptors (Ackerman et al., 2016; Gómez-Ramírez et al., 2010) and are 238 

below the toxic reference values proposed for wildlife (Ackerman et al., 2016; Buekers et al., 2009). 239 

However, we found a positive relationship between CORT in feathers and Hg and Pb concentrations 240 

in Red Kite, despite Se/Hg ratios well above 1, which are commonly considered as protective against 241 

Hg toxicity (Scheuhammer, 1987). Our findings suggest that these metals may impair chicks even at 242 

low exposure level. In humans, it is even considered that there is no known safe level of exposure for 243 

these elements as they provide no physiological benefit and thresholds of concern, notably for 244 

children, and are far lower than those retained for wildlife (Brodkin et al., 2007). The high sensitivity 245 

of foetuses and early stages of animals to Hg and Pb has been previously reported for mammals and 246 

birds. The survival rates assessed for embryos of 26 bird species exposed to methyl-Hg show that 247 

raptors could be among the avian groups most sensitive to Hg (Heinz et al., 2009). However, another 248 

study suggests that Bald eagles Haliaeetus leucocephalus may be less vulnerable to Methyl-Hg 249 

toxicity than Common loons Gavia immer because of higher ability to detoxify Hg in the brain 250 

(Scheuhammer et al., 2007), making it challenging to draw any clear conclusion on the relative Hg 251 

susceptibility between bird species. Furthermore, the behaviour of Golden eagles Aquila chrysaetos 252 

(in terms of flight height and movement rate) was negatively affected in individuals exhibiting  blood 253 
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[Pb]  from 25 µg L-1 (Ecke et al., 2017), which suggests that subtle effects may occur at low exposure, 254 

close to those measured in the Red Kite and well below TRVs.  255 

Although the impact of metals has been widely studied in birds (Kekkonen, 2017), only a dozen 256 

studies have checked whether CORT concentrations were related to exposure levels. When 257 

considered individually, effects of Hg on CORT remain inconsistent in many avian species and depend 258 

strongly on whether baseline or stress-induced CORT is considered (Franceschini et al., 2017). The 259 

trends reported between Hg exposure and baseline CORT, as measured here in Kites, were either 260 

positive (Meillère et al., 2016; Herring et al., 2012), or negative (Franceschini et al., 2009), or null 261 

(Tartu et al., 2015). For Pb, biomedical studies have shown that long-term exposure to low doses can 262 

affect the HPA axis in mammals (Virgolini et al., 2005). Although Pb exposure has been associated 263 

with alteration of behaviour and physiological functions in wild vertebrates (Burger and Gochfeld, 264 

2005; Geens et al., 2009), few studies have examined its impact on CORT level in birds. In white stork 265 

(Ciconia ciconia) and black birds (Turdus merula), Pb exposure was associated with elevated CORT 266 

levels (Baos et al. 2006; Meillère et al. 2016), supporting the hypothesis that Pb may affect the HPA 267 

axis and CORT regulation and/or secretion. However, CORT did not change in nestling Great tits 268 

(Parus major) experimentally fed with different doses of Pb spiked food (Eeva et al., 2014) or in tits 269 

living in Pb-contaminated or unpolluted sites (Eeva et al., 2003). These discrepancies could be partly 270 

due to differences in sampling methods measurements. Indeed, most studies have focused on 271 

instantaneous measures of baseline and/or stress-induced CORT in blood that represent short-term 272 

measures. Here, we analysed CORT in feathers, which provides a more integrated measure of its 273 

secretion (Bortolotti et al., 2008) and thus probably better represents the stressful events 274 

experienced by the chicks at least during the period of feather growth. Other factors such as inter-275 

species differences in gastro-intestinal metal absorption level (Scheuhammer, 1987), interspecies 276 

variations of sensitivity to toxicants (Heinz et al., 2009), or the specific constraints of a given habitat 277 

(Bonier, 2012) may influence the relationship between metals and CORT. Finally, the concomitant 278 

presence of several toxic compounds within an organism may scramble the link between CORT and a 279 
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single metal because of co-variation and/or interactions between chemicals. Despite their relatively 280 

high occurrence in Kites, ARs did not influence CORT concentration in feathers. This supports 281 

previous studies that did not identify any potential for endocrine disruption by compounds of the 282 

hydroxycoumarin family (Biocidal Products Commitee, 2016).  283 

Ecosystems are often contaminated by mixtures of chemicals, which may interact in almost 284 

unpredictable ways on exposed individuals. Reported interactions include additivity (i.e., mixture 285 

toxicity = ∑ toxicity of each chemical), antagonism (i.e., mixture < ∑ each chemical) or synergy (i.e., 286 

mixture > ∑ each chemical) (European Commission & Directorate General for Health & Consumers, 287 

2012). Thus, chemicals may have different effects, depending if they act individually or combined. 288 

Our findings suggest that Hg and Pb interact synergistically and at low concentrations on CORT 289 

synthesis and/or regulation in Red Kite chicks. According to Andrade et al. (2017), Hg and Pb are 290 

relevant candidates to produce synergic effects because they share similar target organs such as 291 

brain and also similar modes (e.g. neurotoxicity), and mechanisms of actions (i.e., ROS production, 292 

antioxidant decrease, interactions with essential metals) (Karri et al., 2016). Furthermore, in 293 

mammals, Pb concentrations in the brain increased in the presence of other metals including Hg 294 

(Andrade et al., 2017). Such synergistic interaction between Pb and Hg was noticed in mammals (Lin 295 

et al., 2016) and invertebrates (Fernandez and Beiras, 2001) but, to our knowledge, metals 296 

interaction related to CORT concentration has rarely been studied in birds. In black bird, CORT in 297 

feathers were positively related to feather concentrations of Hg, Pb or Cd along an urbanization 298 

gradient but possible interactions between metals on CORT were not explored (Meillère et al., 2016). 299 

Pollock and Machin (2009) showed that the relationship between Hg and CORT was modulated by Cd 300 

concentrations in greater and lesser scaup (Aythya marila and A. affinis). Both the Pollock and 301 

Machin study and ours show that metal mixtures may also impair CORT metabolism in birds. 302 

Interactions occurring in organisms following exposure to complex mixtures may lead to potentiate 303 

the effects of metals even at concentrations far below commonly accepted toxicity thresholds for 304 

single metal. Because these findings are correlative, it is obviously challenging to assess the exact 305 
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impact of metals on CORT regulation. Such interactions operate through cellular and physiological 306 

mechanisms that currently remain under question. Hg and Pb could act as endocrine disruptors 307 

(Bergman et al., 2013) and affect the HPA axis in the Red Kite, explaining therefore the higher feather 308 

CORT levels. Such questions should motivate future experimental studies to understand to what 309 

extent Hg, Pb and other contaminants may disrupt CORT secretion, and more generally, the 310 

physiological mechanisms involved notably on sensitive early life stages of birds (Jackson et al., 311 

2015).  312 

We did not find evidence to support any direct link between exposure to pollutants and telomere 313 

length in nestling Red Kites. Only a few correlative studies have investigated whether telomere 314 

length is influenced by toxicants in birds and most of them have dealt with organic chemicals 315 

(Angelier et al., 2018). Overall, no obvious pattern was observed with metals. Stauffer et al. (2017) 316 

reported shorter telomeres in nestling Great tits living in metal polluted sites while no difference was 317 

measured in adult tits or in nestlings or adults of Pied flycatchers. In sea birds, telomere length was 318 

positively correlated to Hg exposure in adult females of Black-legged kittiwake whereas no similar 319 

relationships were found for males in the same population (Angelier et al., 2018). In their recent 320 

review, Angelier et al. (2018) questioned whether CORT could be the link between environmental 321 

constraints, including pollutants, and telomere dynamics in wild vertebrates. If they emphasized the 322 

scarcity of empirical data for strong conclusions, they raised a hypothetical pathway by which CORT 323 

secretion would contribute to telomere attrition by inducing oxidative stress and/or modulating 324 

telomerase activity (Choi et al., 2008). Here, we show that telomere length is shorter in chicks with 325 

the highest CORT levels in feathers. This suggests two different possibilities. Firstly, the existence of a 326 

possible link between CORT and telomere length that has been previously examined in birds, mainly 327 

in adults, in both field and experimental studies (Angelier et al., 2018). Field correlative studies 328 

disclosed inconsistent trends even if 50% of them (5/10) reported negative correlations, including 329 

the only study on raptor. Interestingly, negative relationships were found in all experimental studies 330 

available, notably in those where CORT was administrated to nestlings (Angelier et al., 2018; Pegan 331 
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et al., 2018). Secondly, CORT and telomere dynamics may covary in response to metals on 332 

metabolism. If exposure to pollutants drives the organisms to shift into an emergency physiological 333 

status (as it is suggested by increased CORT), it is likely that cellular pathways sensitive to the energy 334 

balance are activated, in particular during growth at juvenile stages. Cell signalling such as the 335 

“Target Of Rapamycin” pathway (TOR) or changes in mitochondrial functioning may be triggered, 336 

with potential consequences on telomere erosion (Sahin and DePinho, 2012). In Kite, the relationship 337 

between CORT and telomere length is modulated by the age, telomere being shorter in older chicks. 338 

The growth-aging trade-off on telomere attrition is well-documented and it is commonly considered 339 

that telomeres shorten naturally and faster early in life in most wild vertebrates (Angelier et al., 340 

2018). This higher rate of telomere erosion is either attributed to the higher rate of cell division 341 

enabling somatic growth or to the higher metabolism and concomitant oxidative stress of growing 342 

chicks (Monaghan and Ozanne, 2018). We also point out that the rate of telomeres shortening is 343 

accelerated by CORT as the differences in telomere length for two given ages of Kites is higher for 344 

high CORT concentrations. Thus, consistent with previous studies, our finding suggests the 345 

hypothesis that CORT could mediate telomeres attrition under stressful situations like chemical 346 

exposure during growth. It moreover underlines important implications for fitness since the rate of 347 

telomere loss may have a more accurate value as a proxy of future survival than telomere length 348 

(Boonekamp et al., 2014). 349 

 350 

5. CONCLUSION 351 

For more than 50 years, scientists have highlighted evidence that chemicals threaten wildlife. From 352 

the first statements showing direct toxic effects on life-history traits such as survival or reproduction, 353 

we know that low levels of exposure to chemicals may have subtle impact on animals and sometimes 354 

delayed consequences later in the life-cycle. Mixture effects are often discussed but rarely 355 

demonstrated. The findings of the present study suggest that Hg and Pb interact synergistically to 356 

raise baseline CORT in the feather of Red Kite. Such interaction could result in a stress response 357 
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being induced in nestlings even when blood concentrations of the metals remain below the toxicity 358 

threshold benchmarks proposed for wildlife. As telomere length decreased with high CORT level, we 359 

can assume that telomere erosion is an indirect consequence of metal exposure mediated by CORT 360 

but further experimental studies will be needed to confirm such a link and identify both the cellular 361 

and physiological processes involved in this potential adverse outcome pathway. What the 362 

consequences of an early shortening of telomeres might be remains under question but this may 363 

impair the bird during their whole life by increasing disease occurrence, and reducing individual 364 

fitness and/or survival (Angelier et al., 2018). Moreover, increased CORT levels can have other effects 365 

that persist after the stressful event has ceased such as changes in nestling behaviour, immune 366 

function or an altered corticosterone response to future stressors with possible impact on the ability 367 

of the bird to adapt its life-traits to changing environmental conditions. 368 
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TABLES and FIGURES Legends 557 

Figure 1: Relationship between corticosterone concentrations (pg cm-1) in feathers and 558 

concentrations of Hg in blood (µg L-1) of nestling Red kite modulated by the blood concentrations of 559 

Pb. The predicted values of CORT as a function of [Hg] in blood were presented for 3 concentrations 560 

of Pb (3.7 (dashed line), 5.8 (thick solid line) and 25.4 (dotted line) µg L-1 corresponding to the 5th, 561 

median and 95th percentiles of [Pb] measured in chicks. 562 

 563 

Figure 2: Relationship between telomere length (T/S ratio) and corticosterone concentrations (CORT 564 

in pg cm-1) in feathers of nestling Red kite modulated by the age of the chicks. Two ages of chicks, 565 

i.e., 32 (solid line) and 36 (dashed line) days old (corresponding to wing lengths of 245.3 and 285.0 566 

mm, respectively) were retained to predict telomere length from CORT. The cross-sectional rate of TL 567 

shortening in chicks between the ages of 32 to 35 days old is figured by a double-headed arrow for 2 568 

CORT, 20 and 40 pg cm-1 (ΔTL20 and  ΔTL40, respectively).  569 

 570 

Table 1: Occurrence frequency and concentrations of metals and anticoagulant rodenticides (ARs) in 571 

the whole blood of Red kite chicks (in µg L-1).  572 

  573 
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TABLES and FIGURES 574 

Table 1  575 

Chemicals % detected* Median (min-max)** 

Metals   

   Pb 100% 5.8 (2.3 – 59.0) 

   Hg 100% 6.1 (1.4 - 115.7) 

   Se 100% 298.3 (131.4 – 521.3) 

   Cd 6% 1.4 (0.7 – 3.0) 

ARs    

   Bromadiolone 15% 16.9 (0.2 - 29.4) 

   Difenacoum 9% 0.7 (0.5 - 2.5) 

   Difethialone 4% 6.9 (4.3 - 9.5) 

   Brodifacoum 9% 1.6 (0.6 - 3.0) 

   ∑ARs 30% 6.1 (0.2 - 29.4) 

*corresponds to the percentage of individuals with blood residues higher than the limits of detection (LOD).   576 

**Median, minimum and maximum concentrations reported for individuals with blood concentrations >LOD 577 

only. 578 
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Fig. 1  580 
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Fig. 2  587 
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