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ARTICLE INFO ABSTRACT 

Keywords: 
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Shirt-Invariance 

Spacecraft he.alth monitoring and failure prevention are major issues in space operations. ln recent years, 
machine le.aming techniques have received an increasing interest in many fields and have been applied 
to housekeeping telemetiy data via semi-supervised leaming. The idea is to use past telemetry describing 
normal spacecraft behaviour in order to learn a reference mode( to which can be compared most recent 
data in order to detect potential anomalies. This paper introduces a new machine learning method for 
anomaly detection in telemetry time series based on a sparse representation and dictionary Jearning. The 
main advantage of the proposed method is the possibility to handle multivariate telemetry time series 
described by mixed continuous and discrete parameters, taking into account the potential correlations be
tween these parameters. The proposed method is evaluated on a representative anomaly dataset obtained 
from real satellite telemetry with an available ground-truth and compared to state-of-the-art algorithrns. 
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. Introduction 

Spacecraft health monitoring and failure prevention are major 
ssues in space operations. By monitoring housekeeping telemetry 
ata, an anomaly affecting an equipment, a system or a sub-system 
an be detected from the abnormal behaviour of one or several 
elemetry parameters. A simple method for detecting anomalies in 
elemetry is the well-known out-of-limits (OOL) checking, which 
onsists of defining an upper and a lower bound for each param
ter and checking whether the values of this parameter exceed 
hese bounds. This method is very simple and useful but has also 

some limits. lndeed, the determination of bounds for each param
ter can be difficult and costly given the number of spacecraft sen

sors. Moreover, ail anomalies are not detected by the OOL checking, 
.g, when the parameter affected by an anomaly does not exceed
he predefined bounds. An example of anomaly not detected by
OL checking is displayed in Fig. 1 (box #2).

Anomaly detection (AD) is a huge area of research given its di
erse applications. Recent years have witnessed a growing inter
st for data-driven or machine Ieaming (ML) techniques that have 
een used as effective tool for AD (1-5). Motivated by this success, 

some ML methods have been applied to housekeeping telemetry 
• Corresponding author. 
E-mail address: barbara.pilastre@resa.prd.fr (B. Pilastre). 
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fter an appropriate preprocessing step (6-10). These methods usu
lly consider a semi-supervised learning that can be outlined in 
wo steps: 1) learning from past telemetry describing only nomi
al spacecraft events and 2) detecting abnormal behaviour in the 
ifferent parameters by an appropriate comparison to the mode( 

earned in step 1 ). 
ML-based algorithms for AD in telemetry can be divided in two

ategories depending on their application to univariate or multi
ariate data. Univariate AD strategies process the different teleme
ry parameters independently, which is the most widely used ap
roach. Popular ML methods that have been investigated in this 

ramework include the one-class support vector machine (7), near
st neighbour techniques (8-10) or neural networks [11.12). These 
olutions showed competitive results and improved significantly 
pacecraft heath monitoring. However, in order to improve AD in 
elemetry, it is important to formulate the problem in a multivari
te framework and take into account possible correlations between 
he different parameters, allowing contextual anomalies to be de
ected. An example of contextual anomaly is shown in Fig. 1 (box 
7). The detection of this kind of abnormal behaviour requires a 
ultivariate detection rule. Sorne recent multivariate AD are based 

n feature extraction and dimensionality reduction (13) or on a 
robabilistic model for mixed discrete and continuous telemetry 
arameters (14). 

This paper studies a new AD method based on a sparse data 
epresentation for spacecraft housekeeping telemetry. This method 



Fig. 1. Examples of univariate and multivariate anomalies (highlighted in red boxes) that are considered in this work. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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is inspired by the works conducted in [15] . However, it has the

advantage of handling mixed continuous and discrete data, and

taking into account possible correlations between the different

telemetry parameters thanks to an appropriate multivariate frame-

work. The proposed algorithm requires to build a dictionary of

normal patterns. New telemetry signals can then be decomposed

into this dictionary using a sparse representation allowing poten-

tial anomalies to be detected by analyzing the residuals resulting

from this sparse decomposition. 

The paper is organized as follow. Section 2 introduces the

context of AD in mixed telemetry data considered in this work.

Section 3 briefly summarizes the theory of sparse representations

and dictionary learning. Section 4 introduces the proposed AD

method adapted to mixed continuous and discrete telemetry pa-

rameters. Section 5 evaluates the performance of the proposed

method using a heterogeneous anomaly dataset with a controlled

ground-truth. A comparison to other state-of-art techniques shows

the potential of using a sparse representation on a dictionary of

normal patterns for detecting abnormal behaviour in telemetry.

Conclusions and future work are reported in Section 6 . 

2. Anomaly detection for telemetry

2.1. Characteristics of spacecraft telemetry 

Spacecraft telemetry consists of hundred to thousand house-

keeping parameters. All these parameters are quantized and take

their values in a discrete set. However, it makes sense to make a

distinction between parameters taking few distinct values (such as

equipment operating modes or status), which can be considered

as observations of discrete random variables, and parameters that

can be considered as observations of continuous random variables

(such as temperature, voltage, pressure etc.). Detecting anomalies

in telemetry requires to consider these discrete and continuous

random variables jointly leading to what we will call mixed vec-

tors, in the sense that they contain discrete and continuous ran-

dom variables. 

In order to take into account relationships between the dif-

ferent parameters, it is necessary to learn their behaviour jointly,

which requires to consider vectors belonging to a possibly high

dimensional subspace. Considering high-dimensional data leads
o major issues such as the well known curse of dimensional-

ty [16,17] . Note also that this high-dimensionality has been con-

idered in many recent works such as those devoted to big data

18,19] . 

Another important characteristics of telemetry data is that they

re generally subjected to several preprocessings. As an example,

t is quite classical to remove trivial outliers caused by errors in

he data conversion and transmission using simple outlier detec-

ion methods [14] . Some telemetry parameters can have been re-

ampled to account for the fact the data have been acquired at

ifferent sampling frequencies. In addition, some reconstruction

ethods may have been applied to compensate for missing data

14,20] . Finally, it is interesting to note that additional preprocess-

ng is necessary for the learning phase to select telemetry which

escribes only usual normal behavior of the spacecraft. Indeed, be-

aviors representing rare operations, e.g., destocking or equipment

alibration operations (abnormal in an other context) are not se-

ected for learning. 

.2. Anomalies in telemetry 

Anomalies that occur in housekeeping telemetry data can be di-

ided in two categories that can be referred to as univariate and

ultivariate anomalies. Univariate anomalies correspond to an un-

sual individual behaviour (never seen before) affecting one spe-

ific parameter. Univariate anomalies can be classified in three

ain categories [1] summarized below 

• Collective anomalies: a collection of consecutive data instances

or time series considered as anomalous with respect to the en-

tire signal. Two examples of collective anomalies are displayed

in Fig. 1 (boxes #1 and #4 ).
• Point anomalies: an individual data instance considered as

anomalous with respect to the rest of the data. A point anomaly

is the easiest to detect because it corresponds to an excessive

value of individual samples. It is not necessary to observe a col-

lection of time samples to detect this kind of anomaly. Point

anomalies can be generally detected by simple thresholding,

e.g., using the OOL AD method. Two examples of consecutive

point anomalies are displayed in Fig. 1 (boxes #3 and #5 ).



a  

d  

c

 

t  

h  

t  

a  

v  

a  

p  

m  

p  

u  

t  

a  

l  

w  

a

3

 

m  

i  

n  

o  

p  

[

s

T

s

3

 

i  

�
c

w

f

d

t

x̂  

w

n

o

 

s  

(  

�  

i  

a  

e

3

 

c  

m  

n  

a  

f  

w  

[

t

a

d  

n  

f  

a  

t  

i

x̂  

 

(  

o  

b  

(  

a  

a  

i  

b  

n  

p  

u

 

s  

u  

c  

e  

s  

t  

b  

D  

s

4

 

D  

d  

t  

a

4

 

c  

o  

l  

m  

w  

c  

s  

d  

d  

r  

y  

e  

t  

o  

s  
• Univariate contextual anomalies: an individual data instance or

a time series considered as anomalous in a specific context, but

not otherwise. Fig. 1 displays examples of contextual anomalies

for consecutive data instances (box #2 ) or time series (box #6 ).

Note that collective anomalies and some individual contextual

nomalies may not be detected if data instances are processed in-

ependently. The detection of these anomalies requires to consider

ollections of data instances or time series. 

A multivariate or contextual anomaly results from a parame-

er whose behaviour has never been observed jointly with the be-

aviour of one or several other parameters recorded at the same

ime. Fig. 1 (boxes #4 and #7 ) shows examples of contextual

nomalies. Note that the anomaly of Fig. 1 in box #7 is a multi-

ariate contextual anomaly that affects a set of two related discrete

nd continuous parameters. Note also that the top signal is sup-

osed to evolve differently depending on the status of an equip-

ent (that can be ON or OFF) associated with the binary bottom

arameter. In this example, the expected behaviour of the contin-

ous parameter is not observed in the red box, which corresponds

o a multivariate contextual anomaly. The detection of this kind of

nomaly requires to work in a multivariate framework in order to

earn the behaviour of multiple parameters. The objective of this

ork is to propose a flexible AD method able to detect univariate

s well as multivariate anomalies affecting telemetry. 

. Sparse representations and dictionary learning

Sparse representations have received an increasing attention in

any signal and image processing applications. These applications

nclude denoising [21–23] , classification [24–26] or pattern recog-

ition [27–29] . The use of sparse representations for AD is more

riginal and has been considered in less applications such as hy-

erspectral imaging [30] , detection of abnormal motions in videos

31] , irregular heartbeat detection in electrocardiograms (ECG) or

pecular reflectance and shadow removal in natural images [15] .

he next part of this section recalls some basic elements about

parse representations and dictionary learning.

.1. Sparse representations 

Building a sparse representation (also referred to as sparse cod-

ng ) consists in approximating a signal y ∈ R 

N as y ≈�x , where

∈ R 

N×L is an overcomplete dictionary composed of L columns

alled atoms , and x ∈ R 

L is a sparse coefficient vector. In others

ords, the signal y is expressed as a sparse linear combination of

ew atoms of the dictionary �. Once the dictionary � has been

etermined, the sparse representation problem reduces to estimate

he sparse coefficient vector x by solving the following problem

 

 = arg min 

x
‖ y − �x ‖ 

2
2 s.t. ‖ x ‖ 0 ≤ T (1)

here ‖ . ‖ 0 is the � 0 pseudo-norm which counts the number of

on-zero entries of x , ‖ . ‖ 2 is the � 2 norm, T is the allowed number

f non-zeros entries of x and “s.t.” means “subject to”. 

Problem (1) is NP-hard and can be solved by greedy algorithms

uch as matching pursuit (MP) [32] , orthogonal matching pursuit

OMP) [33] , or by convex relaxation. Convex relaxation replaces the

 0 pseudo-norm by the � 1 norm defined by ‖ x ‖ 1 = ∑ L 
l=1 | x l | , lead-

ng to a convex problem whose solution can be computed using

lgorithms such as the least absolute shrinkage and selection op-

rator (LASSO) [34] . 

.2. Dictionary learning 

The quality of the approximation y ≈�x strongly relies on the

hoice of the dictionary �. Dictionaries can be divided in two
ain classes corresponding to parametric and data-driven dictio-

aries. Parametric dictionaries are composed of fixed atoms such

s wavelets, curvelets, contourlets or short-time Fourier trans-

orms. Data-driven dictionaries learn the dictionary from the data,

hich has shown to be interesting in many practical applications

35] . This paper focuses on a semi-supervised framework in which

he dictionary is learned from clean data which do not contain any

nomaly. A classic way to learn a dictionary from the data is to use

ata analysis methods such as the well known principal compo-

ent analysis (PCA). However, more efficient data-driven methods

or dictionary learning (DL), often referred to as DL methods, have

ttracted many attention in recent years. These methods learn dic-

ionaries tailored for sparse representations by solving the follow-

ng problem 

 

 , ̂  � = arg min 

x , �
‖ y − �x ‖ 

2
F s.t. ‖ x ‖ 0 ≤ T . (2)

Classical DL algorithms alternate between the estimation of x

in a first step of sparse coding) and the estimation of � (in a sec-

nd step of dictionary update). Many efficient DL algorithms have

een proposed in the literature including K-SVD [36] or online DL

ODL) [37] . In K-SVD, the sparse coding step is done using a greedy

lgorithm. In the second step, the dictionary and the sparse vector

re estimated using a singular value decomposition (SVD), allow-

ng the columns of � as well as the associated coefficients of x to

e updated. The ODL algorithm has been designed to learn dictio-

aries from large and dynamic datasets, using a sparse coding step

erformed by the LARS-LASSO algorithm [38,39] and a dictionary

pdate using block-coordinate descent with warm restarts. 

Unfortunately K-SVD and ODL algorithms have not been de-

igned for mixed discrete and continuous data and thus cannot be

sed for telemetry data. Learning a dictionary with discrete and

ontinuous atoms is an interesting and challenging problem. How-

ver, the dictionary can also be built from representative training

ignals that are not affected by anomalies. In this work, the dic-

ionary has been built from “normal” vectors (that are not affected

y anomalies) belonging to a training database. Extending standard

L methods (such as K-SVD and ODL) to mixed data will be con-

idered in future work. 

. Proposed anomaly detection method for mixed telemetry

This section describes the proposed Anomaly Detection using

ICTionary (ADDICT) algorithm which is an AD method for mixed

ata. We focus here on the detection step and assume that the dic-

ionary has been learned in a previous step using telemetry signals

ssociated with a normal spacecraft behaviour. 

.1. Preprocessing 

Telemetry times series acquired at the same time instant and

onsidered as part of the same context are first segmented into

verlapping windows of fixed size w with a shift δ (with an over-

apping area equal to w − δ) as illustrated in Fig. 2 . The resulting

atrices are then concatenated into vectors yielding mixed vectors

hose components are discrete or continuous depending on the

onsidered parameter. One concatenated vector thus represents a

pecific context containing information from both continuous and

iscrete signals on a duration w . Given this preprocessing, input

ata for AD are mixed signals composed of telemetry time se-

ies formed by the different parameters, i.e., y = [ y T 
1 
, . . . , y T 

K 
] T with

 k ∈ R 

w , k = 1 , . . . , K, where K is the number of telemetry param-

ters and w is the size of the time window. To simplify notations,

he N D first components of the mixed signal y ∈ R 

N are composed

f the discrete parameters whereas the last N C components are as-

ociated with the continuous times series (with N = N + N ). In
D C 



Fig. 2. Segmentation of telemetry into overlapping windows.
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other words, the mixed signal is partitioned into discrete and con-

tinuous counterparts denoted as y D = [ y (1) , . . . , y (N D )] T and y C =
[ y (N D + 1) , . . . , y (N D + N C )] T such that y = ( y T 

D 
, y T 

C 
) T . 

4.2. Anomaly detection using a sparse representation 

A mixed dictionary � ∈ R 

N×2 L composed of discrete and contin-

uous atoms is defined as 

� =
[
�D 0 

0 �C

]
where �D and �C contain the discrete and continuous dictionary

atoms, respectively. The two dictionaries �D ∈ R 

N D ×L and �C ∈
R 

N C ×L have been extracted from a dictionary composed of L mixed

atoms taking into account possible correlation between the differ-

ent parameters, especially between discrete and continuous ones.

In other words, the l th discrete atom of the discrete dictionary �D 

and the l th continuous atom of the continuous dictionary �C are

composed of discrete and continuous behaviours observed in the

same mixed atom, which are potentially correlated The proposed

AD strategy decomposes the mixed signal as follows 

y = �x + e + b (3)

where �x is the nominal part of y , e = [ e T 
D 
, e T 

C 
] T is a possible

anomaly signal ( e = 0 in absence of anomaly), x = [ x T 
D 
, x T 

C 
] T is a

sparse vector and b ∈ R 

N is an additive noise. The proposed algo-

rithm applies two distinct strategies to estimate the nominal part

of y processing x D and x C differently.The anomaly signal e is esti-

mated by analyzing residuals resulting from this sparse decompo-

sition. The proposed detector assumes that the anomalies affecting

telemetry data are additive, which is generally the case. Note that

the proposed model (3) provides a specific structure of the residue
 , which allows its non zero values to be identified. These non-zero

alues correspond to the parameters affected by the anomalies. 

The nominal component of y is approximated by linear combi-

ations of atoms describing only nominal behaviours of the differ-

nt parameters, which can be written as 

x =
[
�D x D
�C x C

]
.

ith x D ∈ R 

N D and x C ∈ R 

N C The discrete and continuous counter-

arts of the test signals will be approximated by two distinct

trategies. However, it is important to preserve existing relation-

hips between the signal parameters to allow for the detection of

ontextual anomalies. To this end, we propose to estimate the dis-

rete approximation �D x D and the anomaly signal e D in a first step

leading to estimators denoted as ̂  e D and 

̂ x D ) and the continuous

pproximation �C x C and the anomaly signal e C in a second step

ased on ̂

 e D and ̂

 x D . Given the proposed preprocessing, the signals

 D and e C are divided into K D and K C discrete and continuous pa-

ameters, i.e., e D = [ e T 
D , 1 

, . . . , e T 
D , K D

] T and e C = [ e T 
C , 1 

, . . . , e T 
C , K C

] T . 

.2.1. Sparse coding for discrete atoms 

In order to solve the sparse coding for discrete atoms, we pro-

ose to solve the following problem 

rg min 

x D ∈B, e D ∈ R N D 
‖ y D − �D x D − e D ‖ 

2
2 + b D

K D ∑ 

k =1

‖ e D,k ‖ 2 (4)

here ‖ e D ,k ‖ 2 , k = 1 , . . . , K D is the Euclidean norm, e D,k corre-

ponds to the k th time-series of e D associated with the k th param-

ter and b D is a regularization parameter that controls the level of

parsity of e D . The sparsity constraint for the anomaly signal re-

ects the fact that anomalies are rare and affect few parameters

t the same time. Note that the discrete vector x D is constrained

o belong to B, where B is the canonical or natural basis of R 

L ,

.e., B = { εl , l = 1 , · · · , L } , where εl is a vector whose l th component

equals 1 and whose other components equal 0. In other words,

only one atom of the discrete dictionary �D is chosen to repre-

ent the discrete signal, this amounts to looking for the nearest

eighbour of y D in the dictionary. This strategy has proved to be

n effective method to reconstruct discrete signals (compared to

 representation using a linear combination of atoms), which ex-

lains this choice. Since x D belongs to a finite set, its estimation is

ombinatorial and can be solved for each atom φD, l (where φD, l is

he l th column of �D ) as follows 

 

 D , l = arg min 

e D ,l
‖ y D − φD ,l − e D ,l ‖ 

2
2 + b D

K D ∑ 

k =1

‖ e D,k ‖ 2 . (5)

The solution of the optimization problem (5) is classically ob-

ained using a shrinkage operator ̂  e D , l = T b D (h ) , with h = y D − φD ,l

T b D (h ) 
]

k
= 

{ ‖ h k ‖ 2 − b D 
‖ h k ‖ 2 

h k if ‖ h k ‖ 2 > b D

0 otherwise 
(6)

here h k is the k th part of h associated with the k th parameter for

 = 1 , . . . , K D . All the atoms φD, l yielding an anomaly signal equal

o zero are selected and the corresponding values of l are stored in

 subset M defined as 

 = { l ∈ { 1 , · · · , L }| ‖ ̂

 e D ,l ‖ 2 = 0 } . (7)

ote that M contains the values of l associated with the discrete

toms of �D that are the closest to y D . The regularization param-

ter b D plays an important role in the atom selection step because

t fixes the level of authorized deviation from a discrete parame-

er and an atom of the dictionary. The lower the value of b D , the

ower the number of selected atoms that will be used to estimate
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he continuous nominal signal y C . Conversely, the higher the value

f b D , the better the nominal estimation of y C , with a higher risk to

reak the links between discrete and continuous parameters by se-

ecting non-representative atoms and miss multivariate contextual

nomalies. 

.2.2. Sparse coding for continuous atoms 

The nominal continuous signal is approximated using a sparse

inear combination of atoms contained in a dictionary denoted as

M 

, composed of the continuous atoms φC , l , l = 1 , · · · , L whose

iscrete parts φD, l have been selected in the discrete atom selec-

ion (i.e., l ∈ M ). More precisely, when M = ∅ , a discrete anomaly

s detected and no sparse coding is performed for continuous

toms. When M � = ∅ , the continuous atoms corresponding to the

lements of M � = ∅ are selected and a continuous sparse decom-

osition is performed using the resulting representative continu-

us atoms (in view of the discrete test signal y D ). These continu-

us atoms are used to detect anomalies in multivariate correlated

ixed data by preserving the relationships between discrete and

ontinuous parameters. As a consequence, the sparse representa-

ion model used for the continuous parameters is defined as 

in 

x C , e C 

1 

2 

‖ y C − �M 

x C − e C ‖ 

2
2 + a C ‖ x C ‖ 1 + b C

K C ∑ 

k =1

‖ e C,k ‖ 2 (8)

here ‖ x ‖ 1 = ∑ 

n | x n | is the � 1 norm of x , e C, k corresponds to

he k th time series of e C associated with the k th parameter with

 = 1 , . . . , K C , a C and b C are regularization parameters that control

he level of sparsity of the coefficient vector x C and the anomaly

ignal e C , respectively. Note that (8) considers two distinct sparsity

onstraints for the coefficient vector x C and the anomaly signal e C .

his formulation reflects the fact that a nominal continuous signal

an be well approximated by a linear combination of few atoms

f the dictionary (sparsity of x C ) and that anomalies are rare and

ffect f ew parameters at the same time (sparsity of e C ). 

Problem (8) can be solved with the alternating direction

ethod of multipliers (ADMM) [40] by adding an auxiliary vari-

ble z 

min 

 C , e C , z 

1 

2 

‖ y C − �M 

x C − e C ‖ 

2
2 + a C ‖ z ‖ 1 + b C

K C ∑ 

k =1

‖ e C,k ‖ 2 (9)

nd the constraint z = x C . Note that, contrary to Problem (8) , the

rst and second terms of (9) are decoupled, which allows an easier

stimation of the vector x C . The ADMM algorithm associated with

9) minimizes the following augmented Lagrangian

 A ( x C , z , e C , m , μ) = 

1 

2 

‖ y C − �M 

x C − e C ‖ 

2
2 + a C ‖ z ‖ 1

 b C

K C ∑ 

k =1

‖ e C,k ‖ 2 + m 

T 
C (z − x C ) + 

μC 

2 

‖ z − x C ‖ 

2
F (10)

here m C is a Lagrange multiplier vector and μC is a regulariza-

ion parameter controlling the level of deviation between z and x C .

he ADMM algorithm is iterative and alternatively estimates x C , z ,

 C and m C . More details about the update equations of the differ-

nt variables at the k th iteration are provided below. 

Updating x C 
x C is classically updated as follows 

 

k +1 
C = arg min 

x C

1 

2 

‖ y C − �M 

x C − e k C‖ 

2 
2 + m 

k 
C (z k − x C ) 

+ 

μk 
C 

2 

‖ z k − x C ‖ 

2 
2 . (11) 
imple algebra leads to 

 

k +1
C = ( �M 

�T 
M 

+ μk 
C I) 

−1 ( �T 
M 

r k C + m 

k 
C + μk 

C z 
k ) (12)

here r k 
C 

= y C − e k 
C 

. 

Updating z 

The update of z is defined as 

 

 

k +1 = arg min 

z
a C ‖ z ‖ 1 + (m 

k 
C ) 

T (z − x k +1 
C 

) + 

μk 
C 

2 

‖ z − x k +1 
C 

‖ 

2 
2 . (13)

he solution of (13) is given by the element-wise soft thresholding

perator 

 

 

k +1 = S γ k

[
x k +1 

C 
− 1

μk 
C 

m 

k
C

]
ith γ k = 

a C 
μk 

C 

, where the thresholding operator S γ ( u ) is defined

y 

 γ (u ) = 

{ 

u (n ) − γ if u (n ) > γ
0 if | u (n ) | ≤ γ
u (n ) + γ if u (n ) < −γ

(14) 

here u ( n ) is the n th component of u . 

Updating e C 
The error vector e is also updated using the shrinkage opera-

or already defined in (6) for the sparse coding of discrete atoms,

.e., as ̂  e C = T b C [ y C − �M 

x C ] The ADMM resolution of (9) is detailed

n [15] and summarized in Algorithm 1 (theoretical convergence

roperties are detailed in [41] ).

lgorithm 1 x , e , z , m = ADMM( y , �, μ, ρ, a, b ) . 

Initialisation: k = 1, z 0 , e 0 , m 

0 , μ0 , ρ, ε, a, b

repeat 

x k +1 = ( �T � + μk I) −1 [ �T ( y − e k ) + m 

k + μk z k ] 

z k +1 = S γ ( x k +1 − 1 
μk 

m 

k ) , γ = 

a 
μ

k 

e k +1 = T b ( y − �x )

m 

k +1 = m 

k + μk (z k +1 − x k +1 ) 

μk +1 = ρμk 

k = k + 1 

until stop criteria 

.2.3. Proposed anomaly detection strategy 

The estimated anomaly signal ̂ e associated with the test sig-

al y is built by the concatenation of its discrete and continuous

ounterparts ̂  e = ( ̂  e T 
D 
, ̂  e T 

C 
) T . The proposed anomaly detection rule is

escribed below: 

A discrete anomaly is detected if ‖ e D ‖ 2 > 0 (i.e M = ∅ ). More-

ver, a continuous or contextual anomaly is detected when

 e C ‖ 2 > S PFA .

where S PFA is a threshold depending on the probability of false

larm of the detector. This threshold can be adjusted by the user

r determined using receiver operating characteristic (ROC) curves

f a ground-truth is available (which will be the case in this pa-

er). Note that the set M is used to detect anomalies in discrete

ata when it reduces to the empty set, i.e., when M = ∅ , and to

xtract the continuous atoms corresponding to the elements of M
hen M � = ∅ . These continuous atoms are used to detect anomalies

n multivariate correlated mixed data using the decision rule (8),

hich preserves the relationships between the discrete and con-

inuous parameters. More precisely, the first step of the algorithm

detailed in Section 4.2.1 ) considers the discrete part of y , namely

 D , and detects potential anomalies affecting the discrete parame-

ers. In the second part of the algorithm (detailed in Section 4.2.2),

8) is used to detect univariate continuous anomalies and contex-

ual discrete/continuous anomalies using the continuous part of



Algorithm 2 Anomaly detection rule in mixed telemetry using a 

sparse representation ( y , �C 
M 

, τmax ). 

Discrete Model and Atom Selection 

for l = 1 to L do ̂ e D ,l = T b D 

[
y D − φD ,l 

]
end for 

M = { l ∈ { 1 , . . . , L }|‖ ̂  e D ,l ‖ 2 = 0 }
Discrete Anomaly: if M = ∅ , a discrete anomaly is declared 

If M � = ∅ , the algorithm considers a continous model 

Continuous Model 

�M 

= { �C ,l | l ∈ M}
Anomaly Detection̂ e = ( ̂  e T 

D 
, ̂  e T 

C 
) T 

Joint Anomaly: if M � = ∅ and ‖ ̂  e C ‖ 2 > S PFA , a joint discrete/

continuous anomaly is detected 
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the atoms selected in the first step (denoted as �M 

). The two steps

of the algorithms are summarized below and in Algorithm 2 . 

• First step : the discrete anomaly detection looks for the

anomaly vectors ̂ e D , l , l = 1 , . . . , L resulting from the discrete

sparse decomposition that are equal to 0 and builds a subset

M defined as

M = { l ∈ { 1 , · · · , L }| ‖ ̂

 e D ,l ‖ 2 = 0 } . (15)

When the set M is empty, a discrete anomaly is detected.
• Second step : The set M is used to build a dictionary of con-

tinuous atoms (denoted as �M 

= { φC , l , l = 1 , · · · , L } ) associated

with the discrete atoms selected in the first step, i.e., { φD ,l , l =
1 , · · · , L } . This atom selection allows the continuous sparse de-

composition to be performed using only representative contin-

uous atoms (in view of the discrete test signal y D ). As a conse-

quence, contextual anomalies between discrete and continuous

parameters can be detected.

4.3. Shift-Invariant option 

The proposed method has a shift-invariance (SI) optional step

that can be activated for the discrete model and for continuous

atom selection. This SI option allows a possible shift between the

data of interest and the atoms of the discrete dictionary to be

mitigated. Note that this option could also be applied to continu-

ous data. However, since it increases the computational complexity

significantly, it has only been considered for discrete data in this

work. The SI option consists of building an overcomplete discrete

dictionary by applying shifts to all the discrete atoms of the dic-

tionary. In other words, each discrete atom φD, l is shifted of τ lags

to create a new discrete atom φD ,l−τ , with τ ∈ {−τmax , −(τmax −
1) , . . . , −1 , 0 , 1 , . . . , τmax − 1 , τmax } . Note that the maximum shift

τmax has to be fixed by the user. By activating the SI option, the

size of the discrete dictionary increases from L to 2 Lτmax + L atoms.

This option is potentially interesting since it allows more represen-

tative atoms to be considered for the estimation of the nominal

signal and for atom selection. 

5. Experimental results

5.1. Overview 

The first experiment considers a simple dataset composed

of K D = 3 discrete and K C = 7 continuous parameters with an

available ground-truth. The dictionary was constructed using two

months of nominal telemetry (without anomalies), which repre-

sents approximately 30 0 0 0 mixed training signals obtained after
pplying the preprocessing described in Section 4 with the param-

ters δ = 5 and w = 50 (i.e., the signal length is N = 500 ). As ex-

lained before, the existing dictionary learning methods such as

-SVD or ODL have not been designed for mixed discrete and con-

inuous data. In this work, we built the dictionary of mixed dis-

rete and continuous parameters as follows: 1) the dictionary is

nitialized with L = 20 0 0 training signals selected randomly in the

training database (the choice of L will be discussed later), 2) the

roposed sparse coding algorithm is applied to the training data to

etermine the sparse representation �x and select the L training

ignals having the highest residuals ‖ y − �x ‖ . This process is re-

eated 100 times and the L signals most often selected among the

terations are selected as the columns of the mixed dictionary. 

The performance of the different AD methods is evaluated using

 test database associated with 18 days of telemetry, i.e., composed

f 10 0 0 signals including 90 affected by anomalies. Note that the

0 anomaly signals of the dataset are divided in 7 anomaly pe-

iods with various durations displayed in Fig. 1 . Note also that a

pecific attention was devoted to the construction of a heteroge-

eous test database containing all kinds of anomalies, i.e., univari-

te discrete and continuous anomalies and two multivariate con-

extual anomalies. Finally, it is important to note that the major-

ty of these anomalies are actual anomalies observed in operated

atellites. This work investigates four AD methods whose princi-

les are summarized below 

• The one-class support vector machine (OC-SVM) method [42] :

the OC-SVM algorithm was investigated in a multivariate

framework by using input vectors composed of mixed contin-

uous and discrete parameters. The input vectors were obtained

using the preprocessing step described in Section 4 . A. Denote

as y ∈ R 

N one of these input vectors obtained by concatenating

time series of the different telemetry parameters. The strategy

adopted by OC-SVM is to map the training data in a higher-

dimensional subspace H using a transformation ϕ, and to find

a linear separator in this subspace, separating the training data

(considered as mostly nominal) from the origin with the max-

imum margin. The separator is found by solving the following

problem

min 

w ,ρ, E i 

1 

2 

‖ w ‖ 2 + 

1

νN 

N ∑ 

i =1

E i − ρ

s.t. 〈 w , ϕ(y ) 〉 H 

≥ ρ − E i , E i ≥ 0 (16)

where w is the normal vector to the linear separator, < ., . > H 

is the Hilbert inner product for H where H is equiped with re-

producing kernel ρ is the so-called bias, E i , i = 1 , . . . , N are slack

variables (which are equal to 0 when y satisfies the constraint

and are strictly positive when the constraint is not satisfied)

and ν is a relaxation factor that can be interpreted as the frac-

tion of training data allowed to be outside of the nominal class.

Note that the parameter ν has to be fixed by the user. The ker-

nel used in this work is the Gaussian kernel defined as 

k ( y , y ′ ) = exp 

(
−γ ‖ y − y ′ ‖ 

2
)

(17)

where γ is a parameter (also adjusted by the user) controlling

the regularity of the separator. Once the separator has been

found, determining whether a new data vector is nominal or

abnormal is an easy task as it only consists of testing whether

this vector falls inside or outside the separating curve. In other

terms, the decision rule can be formulated as follows 

f ( y ) = sign [ k (w , y ) − ρ] (18)

where sign is the function defined by 

sign ( y ) = 

{ −1 if y < 0 

0 if y = 0 

1 if y > 0 

. (19)
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Note that an anomaly score can be defined as the distance be-

tween the test vector y and the separator with a positive score

if f ( y ) < 0 and a score equal to zero if f ( y ) > 0. This anomaly

score in the first case is defined by 

a ( y ) = 

ρ − k (w , y )

‖ w ‖ 

. (20)

Finally, we would like to mention that the parameters ν and γ
have been tuned by cross validation in this study. 

• Mixture of probabilistic principal component analyzers and cat-

egorical distributions (MPPCAD) [14] : this is a multivariate AD

method based on probabilistic clustering and dimensionality re-

duction. The input data vector y is divided into two parts as-

sociated with continuous and discrete vectors denoted as y C ∈
R 

K C (containing one data instance of each continuous param-

eter) and y D ∈ R 

K D (containing one data instance of each dis-

crete parameter) acquired at the same time instant. Each dis-

crete parameter y D ( j)( j = 1 , . . . , K D ) takes its values in the set

{ 1 , . . . , M j } containing M j different values. MPPCAD assumes

that the vector of continuous variables is distributed according

to a mixture of Gaussian distributions and that the vector of

discrete variables is distributed according to a mixture of cat-

egorical distributions. This assumption leads to the following

probability density distribution for the continuous data y C

p( y C | �C ) = 

G ∑ 

g=1

πg N ( y C | μg , C g ) (21)

where the g th Gaussian distribution has mean vector μg and

covariance matrix C g = W g W 

T 
g + σ 2 

g I K C with W g the factor load-

ing matrix, σ 2 
g the noise variance, I K C is the identity matrix of

size K C × K C and π g the prior probability of the g th cluster. The

distribution of the discrete data based on a mixture of categor-

ical distributions is defined as 

p( y D | �D ) =
G ∑ 

g=1

πg 

K D ∏ 

j=1

Cat ( y D ( j) | θg, j ) (22)

where Cat(.) is the categorical distribution, y D ( j ) is the j th com-

ponent of y D and θg, j = [ θg, j, 1 , . . . , θg, j,M j 
] denotes the parame-

ter vectors of the categorical distributions, i.e., P ( y D ( j) = l| g) =
θg, j,l . Finally the joint distribution of the mixed data is obtained

assuming independence between y C and y D 

p( y C , y D | �) = p( y C | �C ) p( y D | �D ) (23)

where � = { �T 
C , �

T 
D } T , �C = { πg , μg , W g , σ 2 

g , g = 1 , . . . , G } and

�D = { θg, j , g = 1 , . . . , G, j = 1 , . . . , M j } . The unknown parameter

vector � can be classically estimated using the Expectation-

Minimization (EM) algorithm [43] yielding an estimator de-

noted as ̂ �. The EM algorithm was initialized using k -means

clustering following Ding’s method [44] . The authors of Yairi

et al. [14] proposed to estimate the number of cluster K and the

dimensionality of the continuous latent space L using heuristic

rules. More precisely, the value of L was tuned using the so-

called “elbow-law” after applying a principal component analy-

sis to the continuous data. The number of clusters K was man-

ually estimated based on the scatter plot of the principal com-

ponent scores. Finally, it is interesting to note that an anomaly

score a ( y C , y D | ̂  �) can be defined as the minus log likelihood of

the mixed data 

a ( y C , y D | ̂  �) = −ln p( y C , y D | ̂  �) . (24)

• New Operational SofTwaRe for Automatic Detection of Anoma-

lies based on Machine-learning and Unsupervised feature Se-

lection (NOSTRADAMUS): this is a univariate method developed

by the french space agency CNES based on the OC-SVM method

applied to each telemetry parameter individually [7] . The input
data are vectors of features (mean, median, minimum, maxi-

mum, standard deviation...) computed on time windows result-

ing from a segmentation for these parameters on a fixed pe-

riod of time. Different features are computed depending on the

discrete or continuous nature of the parameter. The OC-SVM

method requires to define an appropriate kernel, which was

chosen as the Gaussian kernel in [7] . An anomaly score was

also defined in order to quantify the “degree of abnormality”

of any test vector. This degree of abnormality corresponds to

the distance between this vector and the separator normalized

to [0,1] in order to provide a probability of anomaly. Given the

univariate framework of NOSTRADAMUS, a score is assigned to

each parameter and is denoted as a ( y k ) for the kth parame-

ter. In order to compare with multivariate AD methods studied

in this work, we define a multivariate score for NOSTRADAMUS

corresponding to the sum of the univariate scores 

a ( y ) = 

K ∑ 

k =1

a ( y k ) (25)

where K is the number of parameters. 
• ADDICT: the proposed strategy is a multivariate AD method

based on a sparse decomposition of any test vector y on a

DICTionary (ADDICT) of normal patterns. The dictionary is

learned from mixed training signals associated with a period

of time where no anomaly was detected. The input data of this

method are mixed vectors composed of telemetry parameters

acquired during the same period of time. The preprocessing

applied to the vector y and the AD algorithm were detailed

in Section 4 . An anomaly score can also be defined for this

method

a ( y ) = 

{
−1 if ‖ ̂

 e D ‖ 2 > 0 (i.e. M = ∅ )
‖ ̂

 e C ‖ 2 otherwise
. (26)

All the regularization parameters ( a, b C , b D ) were determined by

cross validation in this study. At this point, it is worth mention-

ing that it might be interesting to consider other approaches

such as Bayesian inference [45] to estimate these regularization

parameters. 

.2. Performance evaluation 

This section compares detection results obtained with the AD

ethods summarized in the previous section when they are ap-

lied on an anomaly dataset with available ground-truth. Fig. 3

hows the different anomaly scores with ground-truth marked by

ed backgrounds for OCSVM (a), MPPCAD (b), NOSTRADAMUS (c)

nd the proposed method ADDICT (d). The higher the score, the

igher the probability of anomaly. For each method, the detection

ule compares the anomaly score to a threshold and detects an

nomaly if this score exceeds an appropriate threshold. In an op-

rational context, the threshold can be set in order to obtain an

cceptable probability of detection by constraining the probability

f false alarm to be upper-bounded, since detecting too many false

larms is a problem for operational missions. In this paper, we de-

ermined the threshold associated with the value of the pair (prob-

bility of false alarm P FA , probability of detection P D ) located the

losest from the ideal point (0,1). Fig. 3 shows that point anoma-

ies located in boxes #3 and #5 of Fig. 1 ) are well detected by all

he methods. Indeed, the scores returned by all the methods dur-

ng this anomaly period are significantly higher than the average

core. The second anomaly (box #2 in Fig. 1 and indicated as 2

n Fig. 3 ) is a univariate anomaly that is also relatively well de-

ected by all the methods. The first collective anomaly (box #1 in

ig. 1 ), which corresponds to an abnormal duration of a discrete



Fig. 3. Anomaly scores for the dataset with ground-truth marked by red back- 

ground. OCSVM (a), MPPCAD (b), NOSTRADAMUS (c) and ADDICT (d). (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

Fig. 4. ROC curves of OC-SVM, NOSTRADAMUS, MPPCAD and ADDICT for the

anomaly dataset.

Table 1

Values of P D and P FA for OCSVM, MPPCAD, NOS- 

TRADAMUS and ADDICT.

Method Threshold P D P FA

OC-SVM 0.0016 89% 12.3%

MPPCAD 12 67% 25%

NOSTRADAMUS 29 77.26% 6%

ADDICT ( τmax = 0 ) 3.8 84.6% 9.8%

ADDICT ( τmax = 5 ) 3.7 89% 10.2%
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arameter, is only detected by NOSTRADAMUS. This non detec-

ion by MPPCAD can be partly explained by the fact that this ap-

roach processes time windows of length w = 1 whereas this kind

f anomaly clearly requires to consider longer time windows. The

ourth anomaly (box #4 in Fig. 1 ) can be classified as a collective

nomaly if we consider its abnormal duration, or as a multivariate

ontextual anomaly if we consider the abnormal joint behaviour

f the two discrete parameters. This anomaly is only detected by

OSTRADAMUS. This result is due to the fact that anomalies af-

ecting discrete data are poorly managed by the multivariate AD

ethods. Note that in this first experiment, the SI option of the

roposed method which aims at solving this problem was not ac-

ive. On the other hand, the sixth anomaly (box #6 in Fig 1 and

eferred to as 6 in Fig. 3 ), corresponding to a univariate contex-

ual anomaly that occurs on continuous data, is detected by the

roposed method but not by the others. The non detection of this

nomaly by MPPCAD can be explained by the same arguments

sed for the collective anomaly. Moreover, this anomaly is not de-

ected by NOSTRADAMUS since it does not affect significantly fea-

ures that form the input vector of this algorithm. Finally, the last

nomaly corresponding to a multivariate contextual anomaly for a

ontinuous parameter (labelled 7 in Fig. 3 and located in box #7 of

ig. 1 ), is perfectly detected by OCSVM and ADDICT. However, it is

ess significant for MPPCAD and is not detected by NOSTRADAMUS,

hich is not able to handle anomalies due to correlations between

he different parameters. 

Quantitative results in terms of probability of detection and

robability of false alarm are given in Fig. 4 which displays ROC

urves of the four methods for the anomaly dataset. ROC curves

ere built using ground-truth. The performances corresponding to

he pair (probability of false alarm P FA , probability of detection

 D ) located the closest from the ideal point (0,1) are reported in

able 1 . Our comments are summarized below 

• Few false alarms are generated by the MPPCAD algorithm but

an important proportion of anomalies from the database is not

detected.



Fig. 5. Anomaly scores obtained with ADDICT for the dataset with ground-truth

marked by red background and the shift-invariance option enabled with τmax = 5 . 

(For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 6. ROC curves for ADDICT with different values of τ max ∈ {0, 1, 3, 5, 8}. 

Fig. 7. Values of P D (top) and P FA (bottom) versus the number of dictionary atoms L .
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• The OC-SVM method detects the most serious anomalies affect-

ing continuous parameters but is not able to detect anomalies

associated with discrete parameters.
• NOSTRADAMUS is able to detect the majority of the univariate

anomalies but fails for the multivariate ones. It would be inter-

esting to adapt NOSTRADAMUS to detect multivariate anoma-

lies in mixed data.
• The results obtained with ADDICT are very encouraging with a

high probability of detection P D = 0 . 846 and a small probabil-

ity of false alarm P FA = 0 . 098 . These results are improved with

the SI option leading to P D = 0 . 89 and P FA = 0 . 102 , which cor-

responds to the best performance for this dataset.

.3. Shift invariant option 

This section investigates the usefulness of the SI option for the

roposed method. Fig. 5 displays the anomaly scores of the pro-

osed method with a maximum allowed shift τmax = 5 . By com-

aring these results with those in Fig. 3 (d) obtained without us-

ng the SI option (i.e., with τmax = 0 ), we observe that the SI op-

ion allows anomalies affecting discrete parameters to be detected

anomalies #1 and #4 in Fig. 1 ). In addition, the activation of the

I option decreases scores of nominal signals, which is an interest-

ng property. More precisely, 70% of nominal signals yield a lower

nomaly score when the SI option is enabled. Reducing this score

llows the number of false alarms to be decreased, improving the

erformance of the proposed method. 

The maximum allowed shift τmax was determined using ROCs

hat express the probability of detection P D as a function of the

robability of false alarm P FA . Fig. 6 shows ROCs for different val-

es of τmax showing that τmax = 5 leads to a good compromise in

erms of performance and computational complexity (the higher

max the higher the execution time). These results confirm the im-

ortance of the SI option for the proposed method. 

.4. Selecting the number of atoms in the dictionary 

This section explains how the proposed method ADDICT selects

he number of atoms in the dictionary. Intuitively, the more atoms

n the dictionary, the better the sparse representation of nominal

ignals and the lower the probability of false alarms. Our experi-

ents have shown that the anomalies are also better approximated

hen the number of atoms in the dictionary increases. 

Fig. 7 shows the values of P D and P FA returned by the proposed

ethod ADDICT versus the number of atoms in the dictionary. The

erformance starts by improving when the number of atoms in-

reases. For instance, moving from 100 to 20 0 0 atoms allows P 
D 
o increase from 77.78% to 88.89% and P FA to decrease from 26%

o 5.72%, which is a significant improvement. Beyond 20 0 0 atoms,

he detection performance does not improve, which explains the

hoice L = 20 0 0 in our experiments. This analysis emphasizes that

hoosing the number of atoms in the dictionary is important for

D using ADDICT. 
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6. Conclusion

This paper investigated a new data-driven method for anomaly

detection in mixed housekeeping telemetry data based on a sparse

representation and dictionary learning. The proposed method can

handle mixed discrete and continuous parameters that are pro-

cessed jointly allowing possible correlations between these param-

eters to be captured. The approach was evaluated on a heteroge-

neous anomaly dataset with available ground-truth. The first re-

sults demonstrated the competitiveness of this approach with re-

spect to the state-of-the-art. Our experiments showed the useful-

ness of a shift invariant option for the detection of anomalies af-

fecting discrete parameters, leading to a significant reduction in

the probability of false alarm. 

For future work, different issues might be investigated. The

most challenging task is the dictionary learning step, which should

be adapted to mixed discrete and continuous data. Another re-

search prospect is the potential use of sparse codes or anomaly

signals to identify the causes of the anomaly. Finally, we think that

integrating the feedback of users in the algorithm might improve

the future detection of anomalies, e.g., by reducing the number of

false alarms. This opens the way for many works related to online

or sequential anomaly detection, which could be useful for space-

craft health monitoring. 

Declaration of Competing Interest 

None. 

Acknowledgements 

The authors would like to thank Pierre-Baptiste Lambert from

CNES and Clémentine Barreyre from Airbus Defence and Space for

fruitful discussions about anomaly detection in spacecraft teleme-

try. This work was supported by CNES and Airbus Defence and

Space. 

References 

[1] V. Chandola , A. Banerjee , V. Kumar , Anomaly detection: a survey, ACM Comput.

Surv. 43 (3) (2009) .
[2] V. Chandola , A. Banerjee , V. Kumar , Anomaly detection for discrete sequences:

a survey, ACM Comput. Surv. 24 (5) (2012) .
[3] M. Pimentel , D. Clifton , L. Clifton , L. Tarassenko , A review of novelty detection,

Signal Process. 99 (2014) 215–249 .
[4] M. Markou , S. Singh , Novelty detection: a review - part 2: neural network

based approaches, Signal Process. 83 (12) (2003) 2499–2521 .

[5] M. Markou , S. Singh , Novelty detection: a review - part 1: statistical ap-
proaches, Signal Process. 83 (12) (2003) 2481–2497 .

[6] C. Barreyre , B. Laurent , J.-M. Loubes , B. Cabon , L. Boussouf , Statistical methods
for outlier detection in space telemetries, in: Proc. Int. Conf. Space Operations

(SpaceOps’2018), Marseille, France, 2018 .
[7] S. Fuertes , G. Picard , J.-Y. Tourneret , L. Chaari , A. Ferrari , C. Richard , Improving

spacecraft health monitoring with automatic anomaly detection techniques, in:

Proc. Int. Conf. Space Operations (SpaceOps’2016), Daejeon, South Korea, 2016 .
[8] J.-A . Martínez-Heras , A . Donati , M. Kirksch , F. Schmidt , New telemetry moni-

toring paradigm with novelty detection, in: Proc. Int. Conf. Space Operations
(SpaceOps’2012), Stockholm, Sweden, 2012 .

[9] I. Verzola , A. Donati , J.-A. M. Heras , M. Schubert , L. Somodi , Project sybil: a
novelty detection system for human spaceflight operations, in: Proc. Int. Conf.

Space Operations (SpaceOps’2016), Daejeon, South Korea, 2016 .

[10] C. O’Meara , L. Schlag , L. Faltenbacher , M. Wickler , ATHMoS: automated teleme-
try health monitoring system at GSOC using outlier detection and supervised

machine learning, in: Proc. Int. Conf. Space Operations (SpaceOps’2016), Dae-
jeon, South Korea, 2016 .

[11] K. Hundman , V. Constantinou , C. Laporte , I. Colwell , T. Soderstrom , Detecting
spacecraft anomalies using LSTMs and nonparametric dynamic thresholding,

in: Proc. Int. Conf. Knowledge Data Mining (KDD’2018), London, United King-

dom, 2018, pp. 387–395 .
[12] C. O’Meara , L. Schlag , M. Wickler , Applications of deep learning neural net-

works to satellite telemetry monitoring, in: Proc. Int. Conf. Space Operations
(SpaceOps’2018), Marseille, France, 2018 .
[13] N. Takeishi , T. Yairi , Anomaly detection from multivariate times-series with
sparse representation, in: Proc. IEEE Int. Conf. Syst. Man and Cybernetics, San

Siego, CA, USA, 2014 .
[14] T. Yairi , N. Takeishi , T. Oda , Y. Nakajima , N. Nishimura , N. Takata , A data-driven

health monitoring method for satellite housekeeping data based on pobabilis-
tic clustering and dimensionality reduction, IEEE Trans. Aerosp. Electron. Syst.

53 (3) (2017) 1384–1401 .
[15] A. Adler , M. Elad , Y. Hel-Or , E. Rivlin , Sparse coding with anomaly detection, J.

Signal Process. Syst. 79 (2) (2015) 179–188 .

[16] R.O. Duda , Pattern Classification and Scene Analysis, Wiley, New-York, 1973 .
[17] D. Dohono , High-dimensional data analysis: the curses and blessings of dimen-

sionality, AMS Math Challenges Lecture, 20 0 0 .
[18] A. Tajer , V. Veeravalli , H.V.Poor , Outlying sequence detection in large data sets:

a data-driven approach, IEEE Signal Process. Mag. 31 (5) (2014) 44–56 .
[19] A. Gilbert , P. Indyk , M. Iwen , L. Schmidt , Recent developments in the sparse

fourier transform: a compressed fourier transform for big data, IEEE Signal

Process. Mag. 31 (5) (2014) 91–100 .
[20] N. Li , Y. Yang , Robust fault detection with missing data via sparse decomposi-

tion, in: Proc. Int. Fed. Automatic Control (IFAC’2013), Shanghai, China, 2013 .
[21] M. Elad , A. Aharon , Image denoising via sparse and redundant representa-

tion over learned dictionaries, IEEE Trans. Image Process. 14 (12) (2006) 3736–
3745 .

[22] W. Dong , B. Li , Sparsity-based image denoising via dictionary learning and

structural clustering, in: Proc. IEEE conf. Comput. Vis. Pattern Recogni.
(CVPR’2010), San Siego, CA, USA, 2010 .

[23] S. Xu , X. Yang , S. Jiang , A fast nonlocally centralized sparse representation al-
gorithm for image denoising, Signal Process. 131 (2017) 99–112 .

[24] K. Huang , S. Aviyente , Sparse representation for signal classification, in: Proc.
Neur. Inf. Process. Syst. (NIPS’2006), Whistler, B C, Canada, 2006 .

[25] X. Mei , H. Ling , Robust visual tracking and vehicle classification via sparse rep-

resentation, IEEE Trans. Patt. Anal. Mach. intell. 33 (11) (2011) 2259–2272–18 .
[26] Y. Oktar , M. Turkan , A review of sparsity-based clustering methods, Signal Pro-

cess. 148 (2018) 20–30 .
[27] J. Wright , A.Y. Yang , A. Ganesh , S.S. Sastry , Y. Ma , Robust face recognition via

sparse representation, IEEE Trans. Patt. Anal. Mach. intell. 31 (3) (2009) 1–18 .
[28] Q. Zhang , B. Li , Discriminative K-SVD for dictionary learning in face recogni-

tion, in: Proc. IEEE conf. Comput. Vis. Pattern Recogni., San Francisco, CA, USA,

2010 .
[29] H. Cheng , Z. Liu , L. Yang , X. Chen , Sparse representation and learning in vi-

sual recognition: theory and applications, Signal Process. 93 (6) (2013) 1408–
1425 .

[30] Y. Xu , Z. Wu , J. Li , A. Plaza , Z. Wei , Anomaly detection in hyperspectral images
based on low-rank and sparse representation, IEEE Trans. Geosci. Remote Sens.

54 (4) (2016) 1990–20 0 0 .

[31] S. Biswas , R. Venkatesh , Sparse representation based anomaly detection with
enhanced local dictionaries, in: Proc. IEEE Int. Conf. Image Process., Paris,

France, 2014 .
[32] S.G. Mallat , Z. Zhang , Matching pursuits with times-frequency dictionaries,

IEEE Trans. Signal Process. 41 (12) (1993) 3397–3415 .
[33] P.K.Y. Pati , R. Rezaiifar , Orthogonal matching pursuits: Recursive function ap-

proximation with application to wavelet decomposition, in: Proc. Asilomar
Conf. Signals, Syst. Comput. (ACSSC’1993), Pacific Grove, CA, USA, 1993 .

[34] R. Tibshirani , Regression shrinkage and selection via the LASSO, J. Roy. Statist.

Soc. Ser. B (Methodological) 58 (1) (1996) 267–288 .
[35] I. Tosic , P. Frossard , Dictionary learning, IEEE Signal Process. Mag. 28 (2011)

27–38 .
[36] M. Aharon , M. Elad , A. Bruckstein , K-SVD: an algorithm for designing overcom-

plete dictionaries for sparse decomposition, IEEE Trans. Signal. Process. 54 (11)
(2006) 4311–4322 .

[37] J. Mairal , F. Bach , J. Ponce , G. Sapiro , Online dictionary learning for sparse cod-

ing, in: Proc. Int. Conf. Mach. Learn. (ICML’2009), Montreal, QC, Canada, 2009,
pp. 689–696 .

[38] B. Efron , T. Hastie , I. Johnstone , R. Tibshirani , Least angle regression, Ann.
Statist. 32 (2) (2004) 407–499 .

[39] M. Osborne , B. Presnell , B. Turlach , A new approach to variable selection in
least squares problems, IMA J. Num. Anal. 20 (3) (20 0 0) 389–403 .

[40] S. Boyd , N. Parikh , E. Chu , B. Peleato , J. Eckstein , Distributed optimization

and statistical learning via alternating direction method of multipliers, Found.
Trends Mach. Learn. 3 (1) (2010) 1–222 .

[41] J. Eckstein , D. Bertsekas , On the Douglas-Rachford splitting method and the
proximal point algorithm for maximal monotone operators, Math. Program.

(Ser. A B) 55 (3) (1992) 293–318 .
[42] B. Schölkopf , J.C. Platt , J. Shawe-Taylor , A.J. Smola , R.C. Williamson , Estimating

the support of a high-dimensional distribution, Neural Comput. 3 (7) (2001)

1443–1471 .
[43] A.P. Dempster , N.M. Laird , D.B. Rubin , Maximum likelihood from incomplete

data via the EM algorithm, J. Roy. Statist. Soc. Ser. B (Methodological) 39 (1)
(1997) 1–38 .

44] C. Ding , X. He , K-means clustering via principal component analysis, in: Int.
Conf. Machine Learning (ICML’2004), Banff, Alberta, Canada, 2004 .

[45] M.E. Tipping , Bayesian Inference: an Introduction to Principles and Practice in

Machine Learning, Springer, 2004 .


