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Introduction 1.Setting

Let n ∈ N * and let M be a smooth connected compact manifold of dimension n with a non-empty boundary ∂M . Let µ be a smooth volume on M . We consider m 1 smooth vector fields X 1 , . . . , X m on M which are not necessarily independent, and we assume that the following Hörmander condition holds (see [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]):

The vector fields X 1 , . . . , X m and their iterated brackets [X i , X j ], [X i , [X j , X k ]], etc. span the tangent space T q M at every point q ∈ M .

We consider the sub-Laplacian ∆ defined by

∆ = - m i=1 X * i X i = m i=1 X 2 i + div µ (X i )X i
where the star designates the transpose in L 2 (M, µ) and the divergence with respect to µ is defined by L X µ = (div µ X)µ, where L X stands for the Lie derivative. Then ∆ is hypoelliptic (see [Hör67, Theorem 1.1]).

We consider ∆ with Dirichlet boundary conditions and the domain D(∆) which is the completion in L 2 (M, µ) of the set of all u ∈ C ∞ c (M ) for the norm (Id -∆)u L 2 . We also consider the operator (-∆) 1 2 with domain D((-∆) 1 2 ) which is the completion in L 2 (M, µ) of the set of all u ∈ C ∞ c (M ) for the norm (Id -∆)

1 2 u L 2 . Consider the wave equation    ∂ 2 tt u -∆u = 0 in (0, T ) × M u = 0 on (0, T ) × ∂M, (u |t=0 , ∂ t u |t=0 ) = (u 0 , u 1 ) (1) 
where T > 0. It is well-known (see for example [GR15, Theorem 2.1], [EN99, Chapter II, Section 6]) that for any (u 0 , u 1 ) ∈ D((-∆)

1 2 ) × L 2 (M ), there exists a unique solution u ∈ C 0 (0, T ; D((-∆)

1 2 )) ∩ C 1 (0, T ; L 2 (M )) (2) 
to (1) (in a mild sense).

We set

v H =   M m j=1 (X j v(x)) 2 dµ(x)   1 2 . ( 3 
)
Note that v H = (-∆)

1 2 v L 2 (M,µ
) . The natural energy of a solution is

E(u(t, •)) = 1 2 ( ∂ t u(t, •) 2 L 2 (M,µ) + u(t, •) 2 H ).
If u is a solution of (1), then d dt E(u(t, •)) = 0, and therefore the energy of u at any time is equal to

(u 0 , u 1 ) 2 H×L 2 = u 0 2 H + u 1 2 L 2 (M,µ) .
In this paper, we investigate exact observability for the wave equation (1).

Definition 1. Let T 0 > 0 and ω ⊂ M be a µ-measurable subset. The subelliptic wave equation (1) is exactly observable on ω in time T 0 if there exists a constant C T0 (ω) > 0 such that, for any (u 0 , u 1 ) ∈ D((-∆)

1 2 ) × L 2 (M ), the solution u of (1) satisfies T0 0 ω |∂ t u(t, x)| 2 dµ(x)dt C T0 (ω) (u 0 , u 1 ) 2 H×L 2 .

(4)

Main result

Our main result is the following.

Theorem 1. Let T 0 > 0 and let ω ⊂ M be a measurable subset. We assume that there exist 1 i, j m and q in the interior of M \ω such that [X i , X j ](q) / ∈ Span(X 1 (q), . . . , X m (q)). Then the subelliptic wave equation (1) is not exactly observable on ω in time T 0 .

Consequently, using a duality argument (see Section 4.2), we obtain that exact controllability does not hold either in any finite time.

Definition 2. Let T 0 > 0 and ω ⊂ M be a measurable subset. The subelliptic wave equation (1) is exactly controllable on ω in time T 0 if for any (u 0 , u 1 ) ∈ D((-∆) 1 2 ) × L 2 (M ), there exists g ∈ L 2 ((0, T 0 ) × M ) such that the solution u of

   ∂ 2 tt u -∆u = 1 ω g in (0, T 0 ) × M u = 0 on (0, T 0 ) × ∂M, (u |t=0 , ∂ t u |t=0 ) = (u 0 , u 1 ) (5) 
satisfies u(T 0 , •) = 0.

Corollary 3. Let T 0 > 0 and let ω ⊂ M be a measurable subset. We assume that there exist 1 i, j m and q in the interior of M \ω such that [X i , X j ](q) / ∈ Span(X 1 (q), . . . , X m (q)). Then the subelliptic wave equation (1) is not exactly controllable on ω in time T 0 .

In what follows, we denote by D the set of all vector fields that can be decomposed as linear combinations with smooth coefficients of the X i :

D = Span(X 1 , . . . , X m ) ⊂ T M.
D is called the distribution associated to the vector fields X 1 , . . . , X m . For q ∈ M , we denote by D q ⊂ T q M the distribution D taken at point q.

The assumptions of Theorem 1 are satisfied as soon as the interior U of M \ ω is nonempty and D has constant rank < n in U . Indeed, under these conditions, we can argue by contradiction: assume that for any q ∈ U and any 1 i, j m, there holds [X i , X j ](q) ∈ Span(X 1 (q), . . . , X m (q)) = D q . Then we have [D, D] ⊂ D in U , i.e., D is involutive. By Frobenius's theorem, D is then completely integrable, which contradicts Hörmander's condition.

The following examples show that the assumptions of Theorem 1 are also satisfied in some non-constant rank cases:

Example 4. In the Baouendi-Grushin case, for which X 1 = ∂ x1 and X 2 = x 1 ∂ x2 are vector fields on (-1, 1) x1 × T x2 where T = R/Z, the corresponding sub-Laplacian ∆ = X 2 1 + X 2 2 (here, µ = dx 1 dx 2 for simplicity) is elliptic outside of the singular submanifold S = {x 1 = 0}. Therefore, the corresponding subelliptic wave equation is observable on any open subset containing S (with some finite minimal time of observability, see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]), but according to Theorem 1, it is not observable in any finite time on any subset ω such that the interior of M \ ω has a non-empty intersection with S.

Remark 7. Theorem 1 remains true if M has no boundary. In this case, the equation (1) is well-posed in a space slightly smaller than (2): a condition of null average has to be added since non-zero constant functions on M are solutions of (1), see Section 1.5. The observability inequality of Theorem 1 remains true in this space of solutions: anticipating the proof, we notice that the spiraling normal geodesics of Proposition 15 still exist (since their construction is purely local), and we subtract to the initial datum u k 0 of the localized solutions constructed in Proposition 14 their spatial average M u k 0 dµ. Remark 8. Thanks to abstract results (see for example [START_REF] Miller | Resolvent conditions for the control of unitary groups and their approximations[END_REF]), Theorem 1 remains true when the subelliptic wave equation (1) is replaced by the subelliptic half-wave equation ∂ t u + i √ -∆u = 0 with Dirichlet boudary conditions.

Ideas of the proof

In the sequel, we call "normal geodesic"1 the projection on M of a bicharacteristic (parametrized by time) for the principal symbol of the wave equation (1). We will give a more detailed definition in Section 1.4. The proof of Theorem 1 mainly requires two ingredients:

1. There exist solutions of the free subelliptic wave equation (1) whose energy concentrates along any given normal geodesic;

2. There exist normal geodesics which "spiral" around curves transverse to D, and which therefore remain arbitrarily close to their starting point on arbitrarily large timeintervals.

Combining the two above facts, the proof of Theorem 1 is straightforward (see Section 4.1). Note that the first point follows from the general theory of propagation of complex Lagrangian spaces, while the second point is the main novelty of this paper. Since our construction is purely local (meaning that it does not "feel" the boundary and only relies on the local structure of the vector fields), we can focus on the case where there is a (small) open neighborhood V of the origin O such that V ⊂ M \ω, and [X i , X j ](O) / ∈ D O for some 1 i, j m. In the sequel, we assume it is the case. Let us give an example of vector fields where the spiraling normal geodesics used in the proof of Theorem 1 are particularly simple. We consider the three-dimensional manifold with boundary M 1 = (-1, 1) x1 × T x2 × T x3 , where T = R/Z ≈ (-1, 1) is the 1D torus. We endow M 1 with the vector fields X 1 = ∂ x1 and X 2 = ∂ x2 -x 1 ∂ x3 . This is the "Heisenberg manifold with boundary". We endow M 1 with an arbitrary smooth volume µ. The normal geodesics we consider are given by

x 1 (t) = ε sin(t/ε) x 2 (t) = ε cos(t/ε) -ε x 3 (t) = ε(t/2 -ε sin(2t/ε)/4). (6)
They spiral around the x 3 axis x 1 = x 2 = 0.

Here, one should think of ε as a small parameter. In the sequel, we denote by x ε the normal geodesic with parameter ε.

Clearly, given any T 0 > 0, for ε sufficiently small, we have x ε (t) ∈ V for every t ∈ (0, T 0 ). Our objective is to construct solutions u k of the subelliptic wave equation (1) such that (u k 0 , u k 1 ) H×L 2 = 1 and the energy of

u k (t, •) concentrates outside of an open set V t containing x ε (t), i.e., M1\Vt |∂ t u k (t, x)| 2 + (X 1 u k (t, x)) 2 + (X 2 u k (t, x)) 2 dµ(x)
tends to 0 as k → +∞ uniformly with respect to t ∈ (0, T 0 ). As a consequence, the observability inequality (4) fails.

The construction of solutions of the free wave equation whose energy concentrates on geodesics is classical in the elliptic (or Riemannian) case: these are the so-called Gaussian beams, for which a construction can be found for example in [START_REF] Ralston | Gaussian beams and the propagation of singularities[END_REF]. Here, we adapt this construction to our subelliptic (sub-Riemannian) setting, which does not raise any problem since the normal geodesics we consider stay in the elliptic part of the operator ∆. It may also be directly justified with the theory of propagation of complex Lagrangian spaces (see Section 2).

In the case of general vector fields X 1 , . . . , X m , the existence of spiraling normal geodesics also has to be justified. For that purpose, we first approximate X 1 , . . . , X m by their nilpotent approximations, and we then prove that for the latters, such a family of spiraling normal geodesics exists, as in the Heisenberg case.

Normal geodesics

In this section, we explain in more details what normal geodesics are. As said before, they are natural extensions of Riemannian geodesics since they are projections of bicharacteristics.

We denote by S m phg (T * ((0, T ) × M )) the set of polyhomogeneous symbols of order m with compact support and by Ψ m phg ((0, T ) × M ) the set of associated polyhomogeneous pseudodifferential operators of order m whose distribution kernel has compact support in (0, T ) × M (see Appendix A).

We set

P = ∂ 2 tt -∆ ∈ Ψ 2 phg ((0, T ) × M ), whose principal symbol is p 2 (t, τ, x, ξ) = -τ 2 + g * (x, ξ)
with τ the dual variable of t and g * the principal symbol of -∆. For ξ ∈ T * M , we have (see Appendix A)

g * = m i=1 h 2 Xi .
Here, given any smooth vector field X on M , we denoted by h X the Hamiltonian function (momentum map) on T * M associated with X defined in local (x, ξ)-coordinates by h X (x, ξ) = ξ(X(x)).

In T * (R×M ), the Hamiltonian vector field p 2 associated with p 2 is given by p 2 f = {p 2 , f } where {•, •} denotes the Poisson bracket (see Appendix A). Since p 2 p 2 = 0, we get that p 2 is constant along the integral curves of p 2 . Thus, the characteristic set C(p 2 ) = {p 2 = 0} is preserved by the flow of p 2 . Null-bicharacteristics are then defined as the maximal integral curves of p 2 which live in C(p 2 ). In other words, the null-bicharacteristics are the maximal solutions of

           ṫ(s) = -2τ (s) , ẋ(s) = ∇ ξ g * (x(s), ξ(s)) , τ (s) = 0 , ξ(s) = -∇ x g * (x(s), ξ(s)) , τ 2 (0) = g * (x(0), ξ(0)). (7) 
This definition needs to be adapted when the null-bicharacteristic meets the boundary ∂M , but in the sequel, we only consider solutions of (7) on time intervals where x(t) does not reach ∂M .

In the sequel, we take τ = -1/2, which gives g * (x(s), ξ(s)) = 1/4. This also implies that t(s) = s + t 0 and, taking t as a time parameter, we are led to solve

   ẋ(t) = ∇ ξ g * (x(t), ξ(t)) , ξ(t) = -∇ x g * (x(t), ξ(t)) , g * (x(0), ξ(0)) = 1 4 . (8) 
In other words, the t-variable parametrizes null-bicharacteristics in a way that they are traveled at speed 1.

Remark 9. In the subelliptic setting, the co-sphere bundle S * M can be decomposed as

S * M = U * M ∪ SΣ, where U * M = {g * = 1/4} is a cylinder bundle, Σ = {g * = 0}
is the characteristic cone and SΣ is the sphere bundle of Σ (see [CdVHT18, Section 1]).

We denote by φ t : S * M → S * M the (normal) geodesic flow defined by φ t (x 0 , ξ 0 ) = (x(t), ξ(t)), where (x(t), ξ(t)) is a solution of the system given by the first two lines of (8) and initial conditions (x 0 , ξ 0 ). Note that any point in SΣ is a fixed point of φ t , and that the other normal geodesics are traveled at speed 1 since we took g * = 1/4 in U * M (see Remark 9).

The curves x(t) which solve (8) are geodesics (i.e. local minimizers) for a sub-Riemannian metric g (see [Mon02, Theorem 1.14]).

Observability in some regions of phase-space

We have explained in Section 1.3 that the existence of solutions of the subelliptic wave equation (1) concentrated on spiraling normal geodesics is an obstruction to observability in Theorem 1. Our goal in this section is to state a result ensuring observability if one "removes" in some sense these normal geodesics.

For this result, we focus on a version of the Heisenberg manifold described in Section 1.3 which has no boundary. This technical assumption avoids us using boundary microlocal defect measures in the proof, which, in this sub-Riemannian setting, are difficult to handle. As a counterpart, we need to consider solutions of the wave equation with null initial average, in order to get well-posedness.

We consider the Heisenberg group G, that is R 3 with the composition law

(x 1 , x 2 , x 3 ) (x 1 , x 2 , x 3 ) = (x 1 + x 1 , x 2 + x 2 , x 3 + x 3 -x 1 x 2 ). Then X 1 = ∂ x1 and X 2 = ∂ x2 -x 1 ∂ x3 are left invariant vector fields on G. Since Γ = √ 2πZ × √ 2πZ
× 2πZ is a co-compact subgroup of G, the left quotient M H = Γ\G is a compact three dimensional manifold and, moreover, X 1 and X 2 are well-defined as vector fields on the quotient. We call M H endowed with the vector fields X 1 and X 2 the "Heisenberg manifold without boundary". Finally, we define the Heisenberg Laplacian ∆

H = X 2 1 + X 2 2 on M H . Since [X 1 , X 2 ] = -∂ x3 , it
is a hypoelliptic operator. We endow M H with an arbitrary smooth volume µ.

We introduce the space

L 2 0 = u 0 ∈ L 2 (M H ), M H u 0 dµ = 0
and we consider the operator ∆ H whose domain D(∆ H ) is the completion in L 2 0 of the set of all u ∈ C ∞ c (M H ) with null-average for the norm (Id -∆ H )u L 2 . Then, -∆ H is definite positive and we consider (-∆ H )

1 2 with domain D((-∆ H ) 1 2 ) = H 0 := L 2 0 ∩ H(M H ). The wave equation ∂ 2 tt u -∆ H u = 0 in R × M H (u |t=0 , ∂ t u |t=0 ) = (u 0 , u 1 ) ∈ D((-∆ H ) 1 2 ) × L 2 0 (9) admits a unique solution u ∈ C 0 (R; D((-∆ H ) 1 2 )) ∩ C 1 (R; L 2 0 ). We note that -∆ H is invertible in L 2 0 .
The space H 0 is endowed with the norm u H (defined in (3) and also equal to (-∆ H ) 1 2 u L 2 ), and its topological dual H 0 is endowed with the norm u

H 0 := (-∆ H ) -1 2 u L 2 .
We note that g * (x, ξ) = ξ 2 1 +(ξ 2 -x 1 ξ 3 ) 2 and hence the null-bicharacteristics are solutions of ẋ1

(t) = 2ξ 1 , ξ1 (t) = 2ξ 3 (ξ 2 -x 1 ξ 3 ), ẋ2 (t) = 2(ξ 2 -x 1 ξ 3 ), ξ2 (t) = 0, ẋ3 (t) = -2x 1 (ξ 2 -x 1 ξ 3 ), ξ3 (t) = 0. (10) 
The spiraling normal geodesics described in Section 1.3 correspond to ξ 1 = cos(t/ε)/2, ξ 2 = 0 and ξ 3 = 1/(2ε). In particular, the constant ξ 3 is a kind of rounding number reflecting the fact that the normal geodesic spirals at a certain speed around the x 3 axis. Moreover, ξ 3 is preserved under the flow (somehow, the Heisenberg flow is completely integrable), and this property plays a key role in the proof of Theorem 2 below and justifies that we state it only for the Heisenberg manifold (without boundary).

As said above, normal geodesics corresponding to a large momentum ξ 3 are precisely the ones used to contradict observability in Theorem 1. We expect to be able to establish observability if we consider only solutions of (1) whose ξ 3 (in a certain sense) is not too large. This is the purpose of our second main result.

Set

V ε = (x, ξ) ∈ T * M H : |ξ 3 | > 1 ε (g * x (ξ)) 1/2
Note that since ξ 3 is constant along null-bicharacteristics, V ε and its complementary V c ε are invariant under the bicharacteristic equations (10).

In the next statement, we call horizontal strip the periodization under the action of the co-compact subgroup Γ of a set of the form

{(x 1 , x 2 , x 3 ) : (x 1 , x 2 ) ∈ [0, √ 2π) 2 , x 3 ∈ I} where I is a strict open subinterval of [0, 2π).
Theorem 2. Let B ⊂ M H be an open subset and suppose that B is sufficiently small, so that ω = M H \B contains a horizontal strip. Let a ∈ S 0 phg (T * M H ), a 0, such that, denoting by j : T * ω → T * M H the canonical injection,

j(T * ω) ∪ V ε ⊂ Supp(a) ⊂ T * M H ,
and in particular a does not depend on time. There exists κ > 0 such that for any ε > 0 and any T κε -1 , there holds

C (u(0), ∂ t u(0)) 2 H0×L 2 0 T 0 |(Op(a)∂ t u, ∂ t u) L 2 | dt + (u(0), ∂ t u(0)) 2 L 2 0 ×H 0 (11) 
for some C = C(ε, T ) > 0 and for any solution

u ∈ C 0 (R; D((-∆ H ) 1 2 )) ∩ C 1 (R; L 2 0 ) of (9). The term (u 0 , u 1 ) 2 L 2 ×H 0
in the right-hand side of (11) cannot be removed, i.e. our statement only consists in a weak observability inequality. Indeed, the usual way to remove such terms is to use a unique continuation argument for eigenfunctions ϕ of ∆, but here it does not work since Op(a)ϕ = 0 does not imply in general that ϕ ≡ 0 in the whole manifold, even if the support of a contains j(T * ω) for some non-empty open set ω: in some sense, there is no "pseudodifferential unique continuation argument".

Comments on the existing literature

Elliptic and subelliptic waves. The exact controllability/observability of the elliptic wave equation is known to be almost equivalent to the so-called Geometric Control Condition (GCC) (see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]) that any geodesic enters the control set ω within time T . In some sense, our main result is that GCC is not verified in the subelliptic setting, as soon as M \ω contains in its interior a point x at which ∆ is "truly subelliptic". For the elliptic wave equation, in many geometrical situations, there exists a minimal time T 0 > 0 such that observability holds only for T T 0 : when there exists a geodesic γ : (0, T 0 ) → M traveled at speed 1 which does not meet ω, one constructs a sequence of initial data (u k 0 , u k 1 ) k∈N * of the wave equation whose associated microlocal defect measure is concentrated on (x 0 , ξ 0 ) ∈ S * M taken to be the initial conditions for the null-bicharacteristic projecting onto γ. Then, the associated sequence of solutions (u k ) k∈N * of the wave equation has an associated microlocal defect measure ν which is invariant under the geodesic flow: pν = 0 where p is the Hamiltonian flow associated to the principal symbol p of the wave operator. In particular, denoting by π : T * M → M the canonical projection, π * ν gives no mass to ω since γ is contained in M \ ω, and this proves that observability cannot hold.

In the subelliptic setting, the invariance property pν = 0 does not give any information on ν on the characteristic manifold Σ, since p = -2τ ∂ t + g * vanishes on Σ. This is related to the lack of information on propagation of singularities in this characteristic manifold, see the main theorem of [START_REF] Lascar | Propagation des singularités pour des équations hyperboliques à caractéristique de multiplicité au plus double et singularités masloviennes[END_REF]. If one instead tries to use the propagation of the microlocal defect measure for subelliptic half-wave equations, one is immediately confronted with the fact that √ -∆ is not a pseudodifferential operator near Σ. This is why, in this paper, we used only the elliptic part of the symbol g * (or, equivalently, the strictly hyperbolic part of p 2 ), where the propagation properties can be established, and then the problem is reduced to proving geometric results on normal geodesics.

Subelliptic Schrödinger equations. The recent article [START_REF] Burq | Time optimal observability for Grushin Schrödinger equation[END_REF] deals with the same observability problem, but for subelliptic Schrödinger equations: namely, the authors consider the (Baouendi)-Grushin Schrödinger equation

i∂ t u -∆ G u = 0, where u ∈ L 2 ((0, T ) × M G ), M G = (-1, 1) x × T y and ∆ G = ∂ 2 x + x 2 ∂ 2 y is the Baouendi-Grushin Laplacian.
Given a control set of the form ω = (-1, 1) x × ω y , where ω y is an open subset of T, the authors prove the existence of a minimal time of control L(ω) related to the maximal height of a horizontal strip contained in M G \ω. The intuition is that there are solutions of the Baouendi-Grushin Schrödinger equation which travel along the degenerate line x = 0 at a finite speed: in some sense, along this line, the Schrödinger equation behaves like a classical (half)-wave equation. What we want here is to explain in a few words why there is a minimal time of observability for the Schrödinger equation, while the wave equation is never observable in finite time as shown by Theorem 1.

The plane R 2

x,y endowed with the vector fields ∂ x and x∂ y also admits normal geodesics similar to the 1-parameter family q ε , namely, for ε > 0,

x(t) = ε sin(t/ε) y(t) = ε(t/2 -ε sin(2t/ε)/4)
These normal geodesics, denoted by γ ε , also "spiral" around the line x = 0 more and more quickly as ε → 0, and so we might expect to construct solutions of the Baouendi-Grushin Schrödinger equation with energy concentrated along γ ε , which would contradict observability when ε → 0 as above for the Heisenberg wave equation. However, we can convince ourselves that it is not possible to construct such solutions: in some sense, the dispersion phenomena of the Schrödinger equation exactly compensate the lengthening of the normal geodesics γ ε as ε → 0 and explain that even these Gaussian beams may be observed in ω from a certain minimal time L(ω) > 0 which is uniform in ε.

To put this argument into a more formal form, we consider the solutions of the bicharacteristic equations for the Baouendi-Grushin Schrödinger equation i∂ t u -∆ G u = 0 given by

x(t) = ε sin(ξ y t) y(t) = ε 2 ξ y t 2 - sin(2ξ y t) 4ξ y ξ x (t) = εξ y cos(ξ y t) ξ y (t) = ξ y .
It follows from the hypoellipticity of ∆ G (see [BS19, Section 3] for a proof) that

|ξ y | 1/2 -∆ G = (|ξ x | 2 + x 2 |ξ y | 2 ) 1/2 = ε|ξ y |.
Therefore ε 2 |ξ y | 1, and hence |y(t)| t, independently from ε and ξ y . This heuristic gives the intuition that a minimal time L(ω) is required to detect all solutions of the Baouendi-Grushin Schödinger equation from ω, but that for T 0 > L(ω), no solution is localized enough to stay in M \ω during the time interval (0, T 0 ). Roughly speaking, the frequencies of order ξ y travel at speed ∼ ξ y , which is typical for a dispersion phenomenon. This picture is very different from the one for the wave equation (which we consider in this paper) for which no dispersion occurs.

With similar ideas, in [START_REF] Letrouit | Observability of Baouendi-Grushin-Type Equations Through Resolvent Estimates[END_REF], the interplay between the subellipticity effects measured by the non-holonomic order of the distribution D (see Section 3.1) and the strength of dispersion of Schrödinger-type equations was investigated. More precisely, for ∆ γ = ∂ 2

x + |x| 2γ ∂ 2 y on M = (-1, 1) x × T y , and for s ∈ N, the observability properties of the Schrödinger-type equation (i∂ t -(-∆ γ ) s )u = 0 were shown to depend on the value κ = 2s/(γ + 1). In particular it is proved that, for κ < 1, observability fails for any time, which is consistent with the present result, and that for κ = 1, observability holds only for sufficiently large times, which is consistent with the result of [START_REF] Burq | Time optimal observability for Grushin Schrödinger equation[END_REF]. The results of [START_REF] Letrouit | Observability of Baouendi-Grushin-Type Equations Through Resolvent Estimates[END_REF] are somehow Schrödinger analogues of the results of [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF] which deal with a similar problem for the Baouendi-Grushin heat equation.

General bibliographical comments. Control of subelliptic PDEs has attracted much

attention in the last decade. Most results in the literature deal with subelliptic parabolic equations, either the Baouendi-Grushin heat equation ([Koe17], [START_REF] Duprez | Control of the Grushin equation: nonrectangular control region and minimal time[END_REF], [START_REF] Beauchard | Minimal time issues for the observability of Grushin-type equations[END_REF]) or the heat equation in the Heisenberg group ( [START_REF] Beauchard | Heat equation on the Heisenberg group: Observability and applications[END_REF], see also references therein). The paper [START_REF] Burq | Time optimal observability for Grushin Schrödinger equation[END_REF] is the first to deal with a subelliptic Schrödinger equation and the present work is the first to handle exact controllability of subelliptic wave equations.

A slightly different problem is the approximate controllability of hypoelliptic PDEs, which has been studied in [START_REF] Laurent | Tunneling estimates and approximate controllability for hypoelliptic equations[END_REF] for hypoelliptic wave and heat equations. Approximate controllability is weaker than exact controllability, and it amounts to proving "quantitative" unique continuation results for hypoelliptic operators. For the hypoelliptic wave equation, it is proved in [LL20] that for T > 2 sup x∈M (dist(x, ω)) (here, dist is the sub-Riemannian distance), the observation of the solution on (0, T )×ω determines the initial data, and therefore the whole solution.

Organization of the paper

In Section 2, we construct exact solutions of the subelliptic wave equation (1) concentrating on any given normal geodesic. First, in Section 2.1, we show that, given any normal geodesic t → x(t) which does not hit ∂M in the time interval (0, T ), it is possible to construct a sequence (v k ) k∈N of approximate solutions of (1) whose energy concentrates along t → x(t) during the time interval (0, T ) as k → +∞. By "approximate", we mean here that ∂ 2 tt v k -∆v k is small, but not necessarily exactly equal to 0. In Section 2.1, we provide a first proof for this construction using the classical propagation of complex Lagrangian spaces. An other proof using a Gaussian beam approach is provided in Appendix B. Then, in Section 2.2, using this sequence (v k ) k∈N , we explain how to construct a sequence (u k ) k∈N of exact solutions of (∂ 2 tt -∆)u = 0 in M with the same concentration property along the normal geodesic t → x(t).

In Section 3, we prove the existence of normal geodesics which spiral in M , spending an arbitrarily large time in M \ω. These normal geodesics generalize the example described in Section 1.3 for the Heisenberg manifold with boundary. The proof proceeds in two steps: first, we show that it is sufficient to prove the result in the so-called "nilpotent case" (Section 3.2), and then we prove it in the nilpotent case (Section 3.3).

In Section 4.1, we use the results of Section 2 and Section 3 to conclude the proof of Theorem 1. In Section 4.2, we deduce Corollary 3 by a duality argument. Finally, in Section 4.3, we prove Theorem 2.
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Gaussian beams along normal geodesics 2.1 Construction of sequences of approximate solutions

We consider a solution (x(t), ξ(t)) t∈[0,T ] of (8) on M . We shall describe the construction of solutions of

∂ 2 tt u -∆u = 0 (12) on [0, T ] × M with energy E(u(t, •)) := 1 2 ∂ t u(t, •) 2 L 2 (M,µ) + u(t, •) 2 H concentrated along x(t) for t ∈ [0, T ].
The following proposition, which is inspired by [START_REF] Ralston | Gaussian beams and the propagation of singularities[END_REF] and [START_REF] Macia | On the lack of observability for wave equations: a Gaussian beam approach[END_REF], shows that it is possible, at least for approximate solutions of (12).

Proposition 10. Fix T > 0 and let (x(t), ξ(t)) t∈[0,T ] be a solution of (8) (in particular g * (x(0), ξ(0)) = 1/4) which does not hit the boundary ∂M in the time-interval (0, T ). Then there exist a 0 , ψ ∈ C 2 ((0, T ) × M ) such that, setting, for k ∈ N,

v k (t, x) = k n 4 -1 a 0 (t, x)e ikψ(t,x)
the following properties hold:

• v k is an approximate solution of (12), meaning that

∂ 2 tt v k -∆v k L 1 ((0,T );L 2 (M )) Ck -1 2 . ( 13 
)
• The energy of v k is bounded below with respect to k and t ∈ [0, T ]:

∃A > 0, ∀t ∈ [0, T ], lim inf k→+∞ E(v k (t, •)) A. (14) 
• The energy of v k is small off x(t): for any t ∈ [0, T ], we fix V t an open subset of M for the initial topology of M , containing x(t), so that the mapping t → V t is continuous (V t is chosen sufficiently small so that this makes sense in a chart). Then

sup t∈[0,T ] M \Vt   |∂ t v k (t, x)| 2 + m j=1 (X j v k (t, x)) 2   dµ(x) → k→+∞ 0. ( 15 
)
Remark 11. The construction of approximate solutions such as the ones provided by Proposition 10 is usually done for strictly hyperbolic operators, that is operators with a principal symbol p m of order m such that the polynomial f (s) = p m (t, q, s, ξ) has m distinct real roots when ξ = 0 (see for example [START_REF] Ralston | Gaussian beams and the propagation of singularities[END_REF]). The operator ∂ 2 tt -∆ is not strictly hyperbolic because g * is degenerate, but our proof shows that the same construction may be adapted without difficulty to this operator along normal bicharacteristics. This is due to the fact that along normal bicharacteristics, ∂ 2 tt -∆ is indeed strictly hyperbolic (or equivalently, ∆ is elliptic). It was already noted by [START_REF] Ralston | Gaussian beams and the propagation of singularities[END_REF] that the construction of Gaussian beams could be done for more general operators than strictly hyperbolic ones, and that the differences between the strictly hyperbolic case and more general cases arise while dealing with propagation of singularities. Also, in [Hör07, Chapter 24.2], it was noticed that "since only microlocal properties of p 2 are important, it is easy to see that hyperbolicity may be replaced by ∇ ξ p 2 = 0".

Hereafter we provide two proofs of Proposition 10. The first proof is short and is actually quite straightforward for readers acquainted with the theory of propagation of complex Lagrangian spaces, once one has noticed that the solutions of (8) which we consider live in the elliptic part of the principal symbol of -∆. For the sake of completeness, and because this also has its own interest, we provide in Appendix B a second proof, longer but more elementary and accessible without any knowledge of complex Lagrangian spaces; it relies on the construction of Gaussian beams in the subelliptic context. The two proofs follow parallel paths, and indeed, the computations which are only sketched in the first proof are written in full details in the second proof, given in Appendix B.

First proof of Proposition 10. The construction of Gaussian beams, or more generally of a WKB approximation, is related to the transport of complex Lagrangian spaces along bicharacteristics, as reported for example in [Hör07, Chapter 24.2] and [Ivr19, Volume I, Part I, Chapter 1.2]. Our proof follows the lines of [START_REF] Hörmander | The analysis of linear partial differential operators III: Pseudo-differential operators[END_REF].

A usual way to solve (at least approximately) evolution equations of the form

P u = 0 ( 16 
)
where P is a hyperbolic second order differential operator with real principal symbol and C ∞ coefficients is to search for oscillatory solutions

v k (x) = k n 4 -1 a 0 (x)e ikψ(x) . ( 17 
)
In this expression as in the rest of the proof, we suppress the time variable t. Thus, we use x = (x 0 , x 1 , . . . , x n ) where x 0 = t in the earlier notations, and we set x = (x 1 , . . . , x n ). Similarly, we take the notation ξ = (ξ 0 , ξ 1 , . . . , ξ n ) where ξ 0 = τ previously, and ξ = (ξ 1 , . . . , ξ n ). The bicharacteristics are parametrized by s as in (7), and without loss of generality, we only consider bicharacteristics with x(0) = 0 at s = 0, which implies in particular x 0 (s) = s because of our choice τ 2 (s) = g * (x(s), ξ(s)) = 1/4. Taking charts of M , we can assume M ⊂ R n . The precise argument for reducing to this case is written at the end of Appendix B. Also, in the sequel, P = ∂ 2 tt -∆. Plugging the Ansatz (17) into (16), we get

P v k = (k n 4 +1 A 1 + k n 4 A 2 + k n 4 -1 A 3 )e ikψ (18) 
with

A 1 (x) = p 2 (x, ∇ψ(x)) a 0 (x) A 2 (x) = La 0 (x) A 3 (x) = ∂ 2 tt a 0 (x) -∆a 0 (x)
. and L is a transport operator given by

La 0 = 1 i n j=0 ∂p 2 ∂ξ j (x, ∇ψ(x)) ∂a 0 ∂x j + 1 2i   n j,k=0 ∂ 2 p 2 ∂ξ j ∂ξ k (x, ∇ψ(x)) ∂ 2 ψ ∂x j ∂x k   a 0 . (19) 
In order for v k to be an approximate solution of P , we are first led to cancel the higher order term in (18), i.e., f (x) := p 2 (x, ∇ψ(x)) = 0 (20) which we solve for initial conditions ψ(0, x ) = ψ 0 (x ), ∇ψ 0 (0) = ξ (0) and ψ 0 (0) = 0 (21) (i.e., we fix such a ψ 0 , and then we solve (20) for ψ). Indeed, it will be sufficient for our purpose for (20) to be verified at second order along the curve x(s), i.e., D α x f (x(s)) = 0 for any |α| 2 and any s. For that, we first notice that the choice ∇ψ(x(s)) = ξ(s) ensures that (20) holds at orders 0 and 1 along the curve s → x(s) (see Appendix B for detailed computations). Now, we explain how to choose D 2 ψ(x(s)) adequately in order for (20) to hold at order 2.

We use the decomposition of p 2 into

p 2 (x 0 , x , ξ 0 , ξ ) = -(ξ 0 -r(x , ξ ))(ξ 0 + r(x , ξ )) + R(x , ξ )
where r = √ g * in a conic neighborhood of (0, ξ(0)). Note that √ g * is smooth in small conic neighborhoods of (0, ξ(0)) since g * (0, ξ(0)) = 1/4 = 0. Indeed, g * is elliptic along the whole bicharacteristic since g * (x(t), ξ(t)) = 1/4 is preserved by the bicharacteristic flow. The rest term R(x , ξ ) is smooth and microlocally supported far from the bicharacteristic, i.e., R(x , ξ ) = 0 for any (x , ξ ) ∈ T * M in a conic neighborhood of (x (s), ξ (s)) for s ∈ [0, T ].

We consider the bicharacteristic γ + starting at (0, 0, r(0, ξ (0)), ξ (0)) and the bicharacteristic γ -starting at (0, 0, -r(0, ξ (0)), ξ (0)).

We denote by Φ ± (x 0 , y , η ) the solution of the Hamilton equations with Hamiltonian H ± (x 0 , x , ξ ) = ξ 0 ∓ r(x , ξ ) and initial datum (x , ξ ) = (y , η ) at x 0 = 0. In other words, Φ ± (x 0 , y , η ) = e x0 H± (0, y , η ). Then, for any s, Φ(s, •) is well-defined and symplectic from a neighborhood of (0, ξ (0)) to a neighborhood of H ± (s, 0, ξ (0)).

The solution ψ(s, •) of ( 20) and ( 21) is equal to 0 on γ ± and ∇ψ(s, •) is obtained by the transport of the values of ∇ψ 0 by Φ ± (s, •). In other words, to compute ∇ψ(s, •), one transports the Lagrangian sub-space Λ 0 = {(x , ∇ψ 0 (x ))} along the Hamiltonian flow H ± during a time s, which yields Λ s ⊂ T * M , and then, if possible, one writes Λ s under the form {(x , ∇ x ψ(s, x ))}, which gives ∇ x ψ(s, x ). The trouble is that the solution is only local in time: when x → π(Φ ± (s, x , ∇ψ 0 (x ))) ceases to be a diffeomorphism (conjugate point), where π : T * M → M is the canonical projection, we see that the process described above does not work (appearance of caustics). In the language of Lagrangian spaces, Λ 0 = {(x , ∇ψ 0 (x ))} ⊂ T * M is a Lagrangian subspace and, since Φ ± (s, •) is a symplectomorphism, Λ s = Φ ± (s, Λ 0 ) is Lagrangian as well. If π |Λs is a local diffeomorphism, one can locally describe Λ s by Λ s = {(x , ∇ x ψ(s, x ))} ⊂ T * M for some function ψ(s, •), but blow-up happens when rank(dπ |Λs ) < n (classical conjugate point theory), and such a ψ(s, •) may not exist.

However, if the phase ψ 0 is complex, quadratic, and satisfies the condition Im(D 2 ψ 0 ) > 0, where D 2 ψ 0 denotes the Hessian, no blow-up happens, and the solution is global in time. Let us explain why. Indeed, Λ 0 = {(x , ∇ψ 0 (x ))} then lives in the complexification of the tangent space T * M , which may be thought of as C 2(n+1) . We take coordinates (y, η) on T * R n+1 or T * C n+1 and we consider the symplectic forms defined by σ = dy j ∧ dη j and σ C = dy j ∧ dη j . Because of the condition Im(D 2 ψ 0 ) > 0, Λ 0 is called a "strictly positive Lagrangian space" (see [Hör07, Definition 21.5.5]), meaning that iσ C (v, v) > 0 for v in the tangent space to Λ 0 . For any s, the symplectic forms σ and σ C are preserved by Φ(s, •), meaning that Φ(s, •) * σ = σ and Φ(s, •) * σ C = σ C , therefore σ = 0 on the tangent space to Λ s , and iσ C (v, v) > 0 for v tangent to Λ s . It precisely means that Λ s is also a strictly positive Lagrangian space. Then, by [Hör07, Proposition 21.5.9], we know that there exists ψ(s, •) complex and quadratic with Im(D 2 ψ(s, •)) > 0 such that Λ s = {(x , ∇ x ψ(s, x ))} (to apply [Hör07, Proposition 21.5.9], recall that for ϕ(x ) = 1 2 (Ax , x ), there holds ∇ϕ(x ) = Ax ). In other words, the key point in using complex phases is that strictly positive Lagrangian spaces are parametrized by complex quadratic phases ϕ with Im(D 2 ϕ) > 0, whereas real Lagrangian spaces were not parametrized by real phases (see explanations above). This parametrization is a diffeomorphism from the Grassmannian of strictly positive Lagrangian spaces to the space of complex quadratic phases with ϕ with Im(D 2 ϕ) > 0. Hence, the phase

ψ(s, y ) = ∇ x ψ(x(s)) • (y -x (s)) + 1 2 (y -x (s)) • D 2 x ψ(s, x (s))(y -x (s))
for s ∈ [0, T ] and y ∈ R n is smooth and for this choice, ( 20) is satisfied at second order along s → x(s) (the rest R(x , ξ ) plays no role since it vanishes in a neighborhood of s → x(s)).

Then, we note that A 2 vanishes along the bicharacteristic if and only if La 0 (x(s)) = 0 (see also [Hör07, Equation (24.2.9)]). According to (19), this turns out to be a linear transport equation on a 0 (x(s)), with leading coefficient ∇ ξ p 2 (x(s), ξ(s)) different from 0. Given a = 0 at (t = 0, x = x (0)), this transport equation has a solution a 0 (x(s)) with initial datum a, and, by Cauchy uniqueness, a 0 (x(s)) = 0 for any s. We can choose a 0 in a smooth (and arbitrary) way outside the bicharacteristic. We choose it to vanish outside a small neighborhood of this bicharacteristic, so that no boundary effect happens.

With these choices of ψ and a 0 , the bound (13) then follows from the following result whose proof is given in [Ral82, Lemma 2.8].

Lemma 12. Let c(x) be a function on R n+1 which vanishes at order S -1 on a curve Γ for some S 1. Suppose that Supp c ∩ {|x 0 | T } is compact and that Im ψ(x) ad(x) 2 on this set for some constant a > 0, where d(x) denotes the distance from the point x ∈ R d+1 to the curve Γ. Then there exists a constant C such that

|x0| T c(x)e ikψ(x) 2 dx Ck -S-n/2 .
Let us now sketch the end of the proof, which is given in Appendix B in full details. We apply Lemma 12 to S = 3, c = A 1 and to S = 1, c = A 2 , and we get

∂ 2 tt v k -∆v k L 1 (0,T ;L 2 (M )) C(k -1 2 + k -1 2 + k -1 ),
which implies (13). The bounds ( 14) and (15) follow from the facts that Im(D 2 ψ(s, •)) > 0 and v k (x) = k n 4 -1 a 0 (x)e ikψ(x) .

Remark 13. An interesting question would be to understand the delocalization properties of the Gaussian beams constructed along normal geodesics in Proposition 10. Compared with the usual Riemannian case done for example in [START_REF] Ralston | Gaussian beams and the propagation of singularities[END_REF], there is a new phenomenon in the sub-Riemannian case since the normal geodesic x(t) (or, more precisely, its lift to S * M ) may approach the characteristic manifold Σ = {g * = 0} which is the set of directions in which ∆ is not elliptic. In finite time T as in our case, the lift of the normal geodesic remains far from Σ, but it may happen as T → +∞ that it goes closer and closer to Σ. The question is then to understand the link between the delocalization properties of the Gaussian beams constructed along such a normal geodesic, and notably the interplay between the time T and the semi-classical parameter 1/k.

Construction of sequences of exact solutions in M

In this section, using the approximate solutions of Proposition 2.1, we construct exact solutions of (12) whose energy concentrates along a given normal geodesic of M which does not meet the boundary ∂M during the time interval [0, T ].

Proposition 14. Let (x(t), ξ(t)) t∈[0,T ] be a solution of (8) in M (in particular g * (x(0), ξ(0)) = 1/4) which does not meet ∂M . Let θ ∈ C ∞ c ([0, T ] × M ) with θ(t, •) ≡ 1 in a neighborhood of x(t) and such that the support of θ(t, •) stays at positive distance of ∂M . Suppose (v k ) k∈N is constructed along x(t) as in Proposition 10 and u k is the solution of the Cauchy problem

   (∂ 2 tt -∆)u k = 0 in (0, T ) × M, u k = 0 in (0, T ) × ∂M, u k|t=0 = (θv k ) |t=0 , ∂ t u k|t=0 = [∂ t (θv k )] |t=0 .
Then:

• The energy of u k is bounded below with respect to k and t ∈ [0, T ]:

∃A > 0, ∀t ∈ [0, T ], lim inf k→+∞ E(u k (t, •)) A. (22) 
• The energy of u k is small off x(t): for any t ∈ [0, T ], we fix V t an open subset of M for the initial topology of M , containing x(t), so that the mapping t → V t is continuous (V t is chosen sufficiently small so that this makes sense in a chart). Then

sup t∈[0,T ] M \Vt   |∂ t u k (t, x)| 2 + m j=1 (X j u k (t, x)) 2   dµ(x) → k→+∞ 0. ( 23 
)
Proof of Proposition 14.

Set h k = (∂ 2 tt -∆)(θv k ). We consider w k the solution of the Cauchy problem    (∂ 2 tt -∆)w k = h k in (0, T ) × M, w k = 0 in (0, T ) × ∂M, (w k|t=0 , ∂ t w k|t=0 ) = (0, 0) . (24) 
Differentiating E(w k (t, •)) and using Gronwall's lemma, we get the energy inequality

sup t∈[0,T ] E(w k (t, •)) C E(w k (0, •)) + h k L 1 (0,T ;L 2 (M )) .
Therefore, using (13), we get sup t∈[0,T ] E(w k (t, •))

Ck -1 . Since u k = θv k -w k , we obtain that lim k→+∞ E(u k (t, •)) = lim k→+∞ E((θv k )(t, •)) = lim k→+∞ E(v k (t, •))
for every t ∈ [0, T ] where the last equality comes from the fact that θ and its derivatives are bounded and v k L 2 Ck -1 when k → +∞. Using (14), we conclude that (22) holds.

To prove (23), we observe similarly that sup

t∈[0,T ] M \Vt   |∂ t u k (t, x)| 2 + m j=1 (X j u k (t, x)) 2   dµ(x) C sup t∈[0,T ]   M \Vt   |∂ t v k (t, x)| 2 + m j=1 (X j v k (t, x)) 2   dµ(x)   + Ck -1 2 -→ 0
as k → +∞, according to (15). It concludes the proof of Proposition 14.

Existence of spiraling normal geodesics

The goal of this section is to prove the following proposition, which is the second building block of the proof of Theorem 1, after the construction of localized solutions of the subelliptic wave equation (1) done in Section 2. We say that X 1 , . . . , X m satisfies the property (P) at q ∈ M if the following holds: (P) For any open neighborhood V of q, for any T 0 > 0, there exists a non-stationary normal geodesic t → x(t), traveled at speed 1, such that x(t) ∈ V for any t ∈ [0, T 0 ]. Proposition 15. At any point q ∈ M such that there exist 1 i, j m with [X i , X j ](q) / ∈ D q , property (P) holds.

In Section 3.1, we define the so-called nilpotent approximations X q 1 , . . . , X q m at a point q ∈ M , which are first-order approximations of X 1 , . . . , X m at q ∈ M such that the associated Lie algebra Lie( X q 1 , . . . , X q m ) is nilpotent. Roughly, we have X q i ≈ X i (q), but low order terms of X i (q) are not taken into account for defining X q i , so that the high order brackets of the X q i vanish (which is not generally the case for the X i ). These nilpotent approximations are good local approximations of the vector fields X 1 , . . . , X m , and their study is much simpler.

The proof of Proposition 15 splits into two steps: first, we show that it is sufficient to prove the result in the nilpotent case (Section 3.2), then we handle this simpler case (Section 3.3).

Nilpotent approximation

In this section, we recall the construction of the nilpotent approximations X q 1 , . . . , X q m . The definitions we give are classical, and the reader can refer to [ABB19, Chapter 10] and [Jea14, Chapter 2] for more material on this section. This construction is related to the notion of tangent space in the Gromov-Hausdorff sense of a sub-Riemannian structure (M, D, g) at a point q ∈ M ; the tangent space is defined intrinsically (meaning that it does not depend on a choice of coordinates or of local frame) as an equivalence class under the action of sub-Riemannian isometries (see [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF], [START_REF] Jean | Control of nonholonomic systems: from sub-Riemannian geometry to motion planning[END_REF]).

Sub-Riemannian flag. We define the sub-Riemannian flag as follows: we set D 0 = {0}, D 1 = D, and, for any j 1, D j+1 = D j + [D, D j ]. For any point q ∈ M , it defines a flag

{0} = D 0 q ⊂ D 1 q ⊂ . . . ⊂ D r-1 q D r(q) q = T q M.
The integer r(q) is called the non-holonomic order of D at q, and it is equal to 2 everywhere in the Heisenberg manifold for example. Note that it depends on q, see Example 4 in Section 1.2 (the Baouendi-Grushin example). For 0 i r(q), we set n i (q) = dim D i q , and the sequence (n i (q)) 0 i r(q) is called the growth vector at point q. We set Q(q) = r(q) i=1 i(n i (q) -n i-1 (q)), which is generically the Hausdorff dimension of the metric space given by the sub-Riemannian distance on M (see [START_REF] Mitchell | On Carnot-Caratheodory metrics[END_REF]). Finally, we define the non-decreasing sequence of weights w i (q) for 1 i n as follows. Given any 1 i n, there exists a unique 1 j n such that n j-1 (q) + 1 i n j (q). We set w i (q) = j. For example, for any q in the Heisenberg manifold, w 1 (q) = w 2 (q) = 1 and w 3 (q) = 2: indeed, the coordinates x 1 and x 2 have "weight 1", while the coordinate x 3 has "weight 2" since ∂ x3 requires a bracket to be generated.

Regular and singular points. We say that q ∈ M is regular if the growth vector (n i (q )) 0 i r(q ) at q is constant for q in a neighborhood of q. Otherwise, q is said to be singular. If any point q ∈ M is regular, we say that the structure is equiregular. For example, the Heisenberg manifold is equiregular, but not the Baouendi-Grushin example.

Non-holonomic orders. The non-holonomic order of a smooth germ of function is given by the formula ord q (f ) = min{s ∈ N : ∃i 1 , . . . , i s ∈ {1, . . . , m} such that (X i1 . . . X is f )(q) = 0} where we adopt the convention that min ∅ = +∞.

The non-holonomic order of a smooth germ of vector field X at q, denoted by ord q (X), is the real number defined by ord q (X) = sup{σ ∈ R : ord q (Xf ) σ + ord q (f ), ∀f ∈ C ∞ (q)}.

For example, there holds ord q ([X, Y ]) ord q (X) + ord q (Y ) and ord q (f X) ord q (f ) + ord q (X). As a consequence, every X which has the property that X(q ) ∈ D i q for any q in a neighborhood of q is of non-holonomic order -i.

Privileged coordinates. Locally around q ∈ M , it is possible to define a set of so-called "privileged coordinates" of M (see [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF]).

A family (Z 1 , . . . , Z n ) of n vector fields is said to be adapted to the sub-Riemannian flag at q if it is a frame of T q M at q and if Z i (q) ∈ D wi(q) q for any i ∈ {1, . . . , n}. In other words, for any i ∈ {1, . . . , r(q)}, the vectors Z 1 , . . . , Z ni(q) at q span D i q . A system of privileged coordinates at q is a system of local coordinates (x 1 , . . . , x n ) such that ord q (x i ) = w i , for 1 i n.

(25)

In particular, for privileged coordinates, we have ∂ xi ∈ D wi(q) q \D wi(q)-1 q at q, meaning that privileged coordinates are adapted to the flag.

Example: exponential coordinates of the second kind. Choose an adapted frame

(Z 1 , . . . , Z n ) at q. It is proved in [Jea14, Appendix B] that the inverse of the local diffeo- morphism (x 1 , . . . , x n ) → exp(x 1 Z 1 ) • • • • • exp(x n Z n )(q)
defines privileged coordinates at q, called exponential coordinates of the second kind.

Dilations. We consider a chart of privileged coordinates at q given by a smooth mapping ψ q : U → R n , where U is a neighborhood of q in M , with ψ q (q) = 0. For every ε ∈ R\{0}, we consider the dilation δ ε : R n → R n defined by δ ε (x) = (ε wi(q) x 1 , . . . , ε wn(q) x n ) for every x = (x 1 , . . . , x n ). A dilation δ ε acts also on functions and vector fields on R n by pull-back:

δ * ε f = f • δ ε and δ * ε X is the vector field such that (δ * ε X)(δ * ε f ) = δ * ε (Xf ) for any f ∈ C 1 (R n ).
In particular, for any vector field X of non-holonomic order k, there holds

δ * ε X = ε -k X.
Nilpotent approximation. Fix a system of privileged coordinates (x 1 , . . . , x n ) at q. Given a sequence of integers α = (α 1 , . . . , α n ), we define the weighted degree of x α = x α1 1 . . . x αn n to be w(α) = w 1 (q)α 1 + . . . + w n (q)α n . Coming back to the vector fields X 1 , . . . , X m , we can write the Taylor expansion

X i (x) ∼ α,j a α,j x α ∂ xj . ( 26 
)
Since X i ∈ D, its non-holonomic order is necessarily -1, hence there holds w(α) w j (q) -1 if a α,j = 0. Therefore, we may write X i as a formal series

X i = X (-1) i + X (0) i + X (1) i + . . .

where X

(s) i is a homogeneous vector field of degree s, meaning that

δ * ε (ψ q ) * X (s) i = ε s (ψ q ) * X (s) i .
We set X q i = (ψ q ) * X (-1) i

for 1 i m. Then X q i is homogeneous of degree -1 with respect to dilations, i.e., δ * ε X q i = ε -1 X q i for any ε = 0. Each X q i may be seen as a vector field on R n thanks to the coordinates (x 1 , . . . , x n ). Moreover,

X q i = lim ε→0 εδ * ε (ψ q ) * X i
in C ∞ topology: all derivatives uniformly converge on compact subsets. For ε > 0 small enough we have

X ε i := εδ * ε (ψ q ) * X i = X q i + εR ε i
where R ε i depends smoothly on ε for the C ∞ topology (see also [START_REF] Agrachev | A comprehensive introduction to sub-Riemannian geometry[END_REF]Lemma 10.58]). An important property is that ( X q 1 , . . . , X q m ) generates a nilpotent Lie algebra of step r(q) (see [Jea14, Proposition 2.3]).

The nilpotent approximation of X 1 , . . . , X m at q is then defined as M q R n endowed with the vector fields X q 1 , . . . , X q m . It is important to note that the nilpotent approximation depends on the initial choice of privileged coordinates. For an explicit example of computation of nilpotent approximation, see [Jea14, Example 2.8].

Reduction to the nilpotent case

In this section, we show the following Lemma 16. Let X 1 , . . . , X m be smooth vector fields on M satisfying Hörmander's condition, and let q ∈ M . If the property (P) holds at point 0 ∈ R n for the nilpotent approximation X q 1 , . . . , X q m , then the property (P) holds at point q for X 1 , . . . , X m . Note that the above lemma is true for any nilpotent approximation X q 1 , . . . , X q m at q, i.e., for any choice of privileged coordinates (see Section 3.1).

Proof of Lemma 16. We use the notation h Z for the momentum map associated with the vector field Z (see Section 1.4). We use the notations of Section 3.1, in particular the coordinate chart ψ q .

We set Y i = (ψ q ) * X i and X ε i = εδ * ε Y i which is a vector field on R n . Recall that

X ε i = X q i + εR ε i
where R ε i depends smoothly on ε for the C ∞ topology. Therefore, using the homogeneity of X q i , we get, for any ε > 0,

Y i = 1 ε (δ ε ) * X ε i = 1 ε (δ ε ) * ( X q i + εR ε i ) = X q i + (δ ε ) * R ε i . (27) 
The vector field (δ ε ) * R ε i (x) does not depend on ε and has a size which tends uniformly to 0 as x → 0 ∈ M q R n . Recall that the Hamiltonian H associated to the vector fields X q i is given by

H = m i=1 h 2 X q i .
Similarly, we set

H = m i=1 h 2 Yi .
We note that (27) gives

h Yi = h X q i + h (δε) * R ε i . Hence H = 2 m i=1 h Yi h Yi = H + Θ, ( 28 
)
where Θ is a smooth vector field on T * R n such that

(dπ • Θ)(x, ξ) C x (29)
when x → 0 (independently of ξ) where π : T * R n → R n is the canonical projection. This last point comes from the smooth dependence of R ε i on ε for the C ∞ topology (uniform convergence of all derivatives on compact subsets of R n ).

Given the projection of an integral curve c(•) of H, we denote by c(•) the projection of the integral curve of H with same initial covector. Combining (28) and (29), and using Gronwall's lemma, we obtain the following result: Fix T 0 > 0. For any neighborhood V of 0 in R n , there exists another neighborhood

V of 0 such that if c |[0,T0] ⊂ V , then c |[0,T0] ⊂ V .
Therefore, if the property (P) holds at 0 ∈ R n for X q 1 , . . . , X q m , then it holds also at 0 ∈ R n for the vector fields Y 1 , . . . , Y m .

Using that X i = ψ * q Y i , we can pull back the result to M and obtain that the property (P) holds at point q for X 1 , . . . , X m , which concludes the proof of Proposition 15.

Thanks to Lemma 16, it is sufficient to prove the property (P) under the additional assumption that M ⊂ R n and Lie(X 1 , . . . , X m ) is nilpotent.

(

) 30 
In all the sequel, we assume that this is the case.

End of the proof of Proposition 15

Let us finish the proof of Proposition 15. Our ideas are inspired by [AG01, Section 6].

First step: reduction to the constant Goh matrix case. We consider an adapted frame Y 1 , . . . , Y n at q. We take exponential coordinates of the second kind at q: we consider the inverse ψ q of the diffeomorphism

(x 1 , . . . , x n ) → exp(x 1 Y 1 ) . . . exp(x n Y n )(q).
Then we write the Taylor expansion (26) of X 1 , . . . , X m in these coordinates. Thanks to Lemma 16, we can assume that all terms in these Taylor expansions have non-holonomic order -1. We denote by ξ i the dual variable of x i . We use the notations n 1 , n 2 , . . . introduced in Section 3.1, and we make a strong use of (25).

Claim 1. If a normal geodesic (x(t), ξ(t)) t∈R has initial momentum satisfying ξ k (0) = 0 for any k n 2 +1, then ξk ≡ 0 for any k n 1 +1, and in particular ξ k ≡ 0 for any k n 2 +1.

Proof. We write

X j (x) = n i=1 a ij (x)∂ xi , j = 1, . . . , m
where the a ij are homogeneous polynomials. We have

g * (x, ξ) = m j=1 n i=1 a ij (x)ξ i 2 . ( 31 
)
Let k n 2 + 1, which means that x k has non-holonomic order 3. If a ij (x) depends on x k , then necessarily i n 3 + 1, since a ij (x)∂ xi has non-holonomic order -1. Thus, writing explicitly ξk = -∂g * ∂x k thanks to (31), there is in front of each term a factor ξ i for some i which is in particular n 2 + 1. By Cauchy uniqueness, we deduce that ξ k ≡ 0 for any k n 2 + 1. Now, let k n 1 +1, which means that x k has non-holonomic order 2. If a ij (x) depends on x k , then necessarily i n 2 +1, since a ij (x)∂ xi has non-holonomic order -1. Thus, writing explicitly ξk = -∂g * ∂x k thanks to (31), there is in front of each term a factor ξ i for some i which is n 2 + 1. It is null by the previous conclusion, hence ξk ≡ 0.

The previous claim will help us reducing the complexity of the vector fields X i once again (after the first reduction provided by Lemma 16). Let us consider, for any 1 j m, the vector field

X red j = n2 i=1 a ij (x)∂ xi (32) 
where the sum is taken only up to n 2 . We also consider the reduced Hamiltonian on

T * M g * red = m j=1 h 2 X red j .
Claim 2. If X red 1 , . . . , X red m satisfy Property (P) at q, then X 1 , . . . , X m satisfy Property (P) at q.

Proof. Let us assume that X red 1 , . . . , X red m satisfy Property (P) at q. Let T 0 > 0 and let (x red,ε (0), ξ red,ε (0)) be initial data for the Hamiltonian system associated to g * red which yield speed 1 normal geodesics (x red,ε (t), ξ red,ε (t)) such that x red,ε (t) → q uniformly over (0, T 0 ) as ε → 0.

We can assume without loss of generality that ξ red,ε i (0) = 0 for any i n 2 + 1, since these momenta (preserved under the reduced Hamiltonian evolution) do not change the projection x red,ε (t) of the normal geodesic. We consider (x ε (0), ξ ε (0)) = (x red,ε (0), ξ red,ε (0)) as initial data for the (non-reduced) Hamiltonian evolution associated to g * . Then we notice that ξ ε k ≡ 0 for k n 2 + 1 thanks to Claim 1. It follows that when i n 2 , we have

x ε i (t) = x red,ε i (t), i.
e., the coordinate x i is the same for the reduced and the non-reduced Hamiltonian evolution.

Finally, we take k such that n 2 + 1 k n 3 . Since g * is given by (31), we have

ẋε k = ∂g * ∂ξ k = 2 m j=1 a kj (x ε ) n i=1 a ij (x ε )ξ ε i . (33) 
But a kj has necessarily non-holonomic order 2 since ∂ x k has non-holonomic order -3. Thus, a kj (x) is a non-constant homogeneous polynomial in x 1 , . . . , x n2 . Since x ε 1 , . . . , x ε n2 converge to q uniformly over (0, T 0 ) as ε → 0, it is also the case of x ε k according to (33), noticing that

n i=1 a ij (x ε )ξ ε i (g * ) 1/2 = 1/2
for any j. In other words, x ε n2+1 , . . . , x ε n3 also converge to q uniformly over (0, T 0 ) as ε → 0. We can repeat this argument successively for k ∈ {n 3 + 1, . . . , n 4 }, k ∈ {n 4 + 1, . . . , n 5 }, etc, and we finally obtain the result: for any 1 k n, x ε k converges to q uniformly over (0, T 0 ) as ε → 0.

Thanks to the previous claim, we are now reduced to prove Proposition 15 for the vector fields X red 1 , . . . , X red m . In order to keep notations as simple as possible, we simplify these notations into X 1 , . . . , X m , i.e., we drop the upper notation "red". Also, without loss of generality we assume that q = 0.

If we choose our normal geodesics so that x(0) = 0, then x i ≡ 0 for any i n 2 + 1 thanks to (32). In other words, we forget the coordinates x n2+1 , . . . , x n in the sequel, since they all vanish.2 Second step: conclusion of the proof. Now, we write the normal extremal system in its "control" form. We refer the reader to [ABB19, Chapter 4]. We have

ẋ(t) = m i=1 u i (t)X i (x(t)), (34) 
where the u i are the controls, explicitly given by

u i (t) = 2h Xi (x(t), ξ(t)) (35) 
since (x(t), ξ(t)) = e t g * (0, ξ 0 ). Thanks to (32), we rewrite (34) as

ẋ(t) = F (x(t))u(t), (36) 
where F = (a ij ), which has size n 2 × m, and u = t (u 1 , . . . , u m ). Differentiating (35), we have the complementary equation

u(t) = G(x(t), ξ(t))u(t)
where G is the Goh matrix

G = (2{h Xj , h Xi }) 1 i,j m
(it differs from the usual Gox matrix by a factor -2 due to the absence of factor 1 2 in the Hamiltonian g * in our notations).

Let us prove that G(t) is constant in t. Fix 1 j, j m. We notice that in (32), a ij is a constant (independent of x) as soon as 1 i n 1 since ∂ xi has weight -1. This implies that [X j , X j ] is spanned by the vector fields

∂ xn 1 +1 , ∂ xn 1 +2 , . . . , ∂ xn 2 . ( 37 
)
Putting this into the relation {h Xj , h X j } = h [Xj ,X j ] , and using that the dual variables ξ k for n 1 + 1 k n 2 are preserved under the Hamiltonian evolution (due to Claim 1), we get that G(t) ≡ G is constant in t.

We know that G = 0 and that G is antisymmetric. The whole control space R m is the direct sum of the image of G and the kernel of G, and G is nondegenerate on its image. We take u 0 in an invariant plane of G; in other words its projection on the kernel of G vanishes (see Remark 17). We denote by G the restriction of G to this invariant plane. We also assume that u 0 , decomposed as u 0 = (u 01 , . . . , u 0m ) ∈ R m , satisfies m i=1 u 2 0i = 1/4. Then u(t) = e t G u 0 and since e t G is an orthogonal matrix, we have e t G u 0 = u 0 . We have by integration by parts

x(t) = t 0 F (x(s))e s G u 0 ds = F (x(t)) G -1 (e t G -I)u 0 - t 0 d ds (F (x(s)) G -1 (e s G -I)u 0 ds. (38) 
Let us now choose the initial data of our family of normal geodesics (indexed by ε). The starting point x ε (0) = 0 is the same for any ε, we only have to specify the initial covectors ξ ε = ξ ε (0) ∈ T * 0 R n . For any i = 1, . . . , m, we impose that

ξ ε , X i = u 0i . (39) 
It follows that g * (x(0), ξ ε (0)) = m i=1 u 2 0i = 1/4 for any ε > 0. Now, we notice that Span(X 1 , . . . , X m ) is in direct sum with the Span of the [X i , X j ] for i, j running over 1, . . . , m (this follows from (37)). Fixing G 0 = 0 an antisymmetric matrix and G 0 its restriction to an invariant plane, we can specify, simultaneously to (39), that

ξ ε , 2[X j , X i ] = ε -1 G 0 ij .
Then x ε (t) is given by (38) applied with G = ε -1 G 0 , which brings a factor ε in front of (38).

Recall finally that the coefficients a ij which compose F have non-holonomic order 0 or 1, thus they are degree 1 (or constant) homogeneous polynomials in x 1 , . . . , x n1 . Thus d ds (F (x(s)) is a linear combination of ẋi (s) which we can rewrite thanks to (36) as a combination with bounded coefficients (since m i=1 u 2 i = 1/4) of the x i (s). Hence, applying the Gronwall lemma in (38), we get x ε (t)

Cε, which concludes the proof.

Remark 17. Let us explain why we choose u 0 to be in an invariant plane of G. If the projection of u 0 to the kernel of G is nonzero then the primitive of the exponential of e t ε G0 u 0 contains a linear term that does not depend on ε. Then the corresponding trajectory follows a singular curve (see [START_REF] Agrachev | A comprehensive introduction to sub-Riemannian geometry[END_REF]Chapter 4] for a definition). This means, we find normal geodesics which spiral around a singular curve and do not remain close to their initial point over (0, T 0 ), although their initial covector is "high in the cylinder bundle U * M ". For example, for the Hamiltonian ξ 2 1 +(ξ 2 +x 2 1 ξ 3 ) 2 associated to the "Martinet" vector fields

X 1 = ∂ x1 , X 2 = ∂ x2 + x 2 1 ∂ x3 in R 3
, there exist normal geodesics which spiral around the singular curve (t, 0, 0).

Remark 18. The normal geodesics constructed above lose their optimality quickly, in the sense that their first conjugate point and their cut-point are close to q.

Proofs

Proof of Theorem 1

In this section, we conclude the proof of Theorem 1.

Fix a point q in the interior of M \ ω and 1 i, j m such that [X i , X j ](q) / ∈ D q . Fix also an open neighborhood V of q in M such that V ⊂ M \ω. Fix V an open neighborhood of q in M such that V ⊂ V , and fix also T 0 > 0.

As already explained in Section 1.3, to conclude the proof of Theorem 1, we use Proposition 14 applied to the particular normal geodesics constructed in Proposition 15.

By Proposition 15, we know that there exists a normal geodesic t → x(t) such that x(t) ∈ V for any t ∈ (0, T 0 ). It is the projection of a bicharacteristic (x(t), ξ(t)) and since it is non-stationary and traveled at speed 1, there holds g * (x(t), ξ(t)) = 1/4. We denote by (u k ) k∈N a sequence of solutions of (12) as in Proposition 14 whose energy at time t concentrates on x(t) for t ∈ (0, T 0 ). Because of (22), we know that (u k (0), ∂ t u k (0)) H×L 2 c > 0 uniformly in k.

Therefore, in order to establish Theorem 1, it is sufficient to show that

T0 0 ω |∂ t u k (t, x)| 2 dµ(x)dt → k→+∞ 0. (40) 
Since x(t) ∈ V for any t ∈ (0, T 0 ), we get that for V t chosen sufficiently small for any t ∈ (0, T 0 ), the inclusion V t ⊂ V holds (see Proposition 14 for the definition of V t ). Combining this last remark with (23), we get (40), which concludes the proof of Theorem 1.

Proof of Corollary 3

We endow the topological dual H(M ) with the norm v

H(M ) = (-∆) -1/2 v L 2 (M ) .
The following proposition is standard (see, e.g., [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF], [START_REF] Jérôme | Geometric control condition for the wave equation with a time-dependent observation domain[END_REF]).

Lemma 19. Let T 0 > 0, and ω ⊂ M be a measurable set. Then the following two observability properties are equivalent: (P1): There exists C T0 such that for any (v 0 , v 1 ) ∈ D((-∆)

1 2 ) × L 2 (M ), the solution v ∈ C 0 (0, T 0 ; D((-∆) 1 2 )) ∩ C 1 (0, T 0 ; L 2 (M )) of (1) satisfies T0 0 ω |∂ t v(t, q)| 2 dµ(q)dt C T0 (v 0 , v 1 ) H(M )×L 2 (M ) . (41) 
(P2): There exists C T0 such that for any

(v 0 , v 1 ) ∈ L 2 (M ) × D((-∆) -1 2 ), the solution v ∈ C 0 (0, T 0 ; L 2 (M )) ∩ C 1 (0, T 0 ; D((-∆) -1 2 )) of (1) satisfies T0 0 ω |v(t, q)| 2 dµ(q)dt C T0 (v 0 , v 1 ) 2 L 2 ×H(M ) . (42) 
Proof. Let us assume that (P2) holds. Let u be a solution of (1) with initial conditions (u 0 , u 1 ) ∈ D((-∆)

1 2 ) × L 2 (M ). We set v = ∂ t u, which is a solution of (1) with initial data v |t=0 = u 1 ∈ L 2 (M ) and ∂ t v |t=0 = ∆u 0 ∈ D((-∆) -1 2 ). Since (v 0 , v 1 ) L 2 ×H(M ) = (u 1 , ∆u 0 ) L 2 ×H(M ) = (u 0 , u 1 ) H(M )×L 2 , applying the observability inequality (42) to v = ∂ t u, we obtain (41). The proof of the other implication is similar.

Finally, using Theorem 1, Lemma 19 and the standard HUM method ([Lio88]), we get Corollary 3.

Proof of Theorem 2

We consider the space of functions u ∈ C ∞ ([0, T ] × M H ) such that M H u(t, •)dµ = 0 for any t ∈ [0, T ], and we denote by H T its completion for the norm • H T induced by the scalar product

(u, v) H T = T 0 M H (∂ t u∂ t v + (X 1 u)(X 1 v) + (X 2 u)(X 2 v)) dµdt.
We consider also the topological dual H 0 of the space H 0 (see Section 1.5).

Lemma 20. The injections

H 0 → L 2 (M H ), L 2 (M H ) → H 0 and H T → L 2 ((0, T ) × M H ) are compact.
Proof. Let (ϕ k ) k∈N be an orthonormal basis of real eigenfunctions of L 2 (M H ), labeled with increasing eigenvalues 0 = λ 0 < λ 1 . . . λ k → +∞, so that -∆ H ϕ k = λ k ϕ k . The fact that λ 1 > 0, which will be used in the sequel, can be proved as follows: if -∆ H ϕ = 0 then M H ((X 1 ϕ) 2 + (X 2 ϕ) 2 ) dµ = 0 and, since ϕ ∈ C ∞ (M H ) by hypoelliptic regularity, we get X 1 ϕ(x) = X 2 ϕ(x) = 0 for any x ∈ M H . Hence, [X 1 , X 2 ]ϕ ≡ 0, and alltogether, this proves that ϕ is constant, hence λ 1 > 0.

We prove the last injection. Let u ∈ H T . Writing u(t, •) = ∞ k=1 a k (t)ϕ k (•) (note that there is no 0-mode since u(t, •) has null average), we see that

u 2 H T (-∆ H u, u) L 2 ((0,T )×M H ) = ∞ k=1 λ k a k 2 L 2 ((0,T )) λ 1 ∞ k=1 a k 2 L 2 ((0,T )) = λ 1 u 2 L 2 ((0,T )×M H ) ,
thus H T imbeds continuously into L 2 ((0, T ) × M H ). Then, using a classical subelliptic estimate (see [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF] and [RS76, Theorem 17]), we know that there exists C > 0 such that

u H 1 2 ((0,T )×M H ) C( u L 2 ((0,T )×M H ) + u H T ).
Together with the previous estimate, we obtain that for any u ∈ H T , u

H 1 2 ((0,T )×M H )
C u H T . Then, the result follows from the fact that the injection

H 1 2 ((0, T ) × M H ) → L 2 ((0, T ) × M H ) is compact.
The proof of the compact injection H 0 → L 2 (M H ) is similar, and the compact injection L 2 (M H ) → H 0 follows by duality.

Proof of Theorem 2. In this proof, we use the notation P = ∂ 2 tt -∆ H . For the sake of a contradiction, suppose that there exists a sequence (u k ) k∈N of solutions of the wave equation such that (u k 0 , u k 1 ) H×L 2 = 1 for any k ∈ N and

(u k 0 , u k 1 ) L 2 ×H 0 → 0, T 0 |(Op(a)∂ t u k , ∂ t u k ) L 2 (M H ,µ) |dt → 0 (43) 
as k → +∞. Following the strategy of [START_REF] Tartar | H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations[END_REF] and [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch[END_REF], our goal is to associate a defect measure to the sequence (u k ) k∈N . Since the functional spaces involved in our result are unusual, we give the argument in detail.

First, up to extraction of a subsequence which we omit, (u k 0 , u k 1 ) converges weakly in H 0 × L 2 (M H ) and, using the first convergence in (43) and the compact embedding

H 0 × L 2 (M H ) → L 2 (M H ) × H 0 , we get that (u k 0 , u k 1 ) 0 in H 0 × L 2 0 .
Using the continuity of the solution with respect to the initial data, we obtain that u k 0 weakly in H T . Using Lemma 20, we obtain u k → 0 strongly in L 2 ((0, T ) × M H ).

Fix B ∈ Ψ 0 phg ((0, T ) × M H ). We have

(Bu k , u k ) H T = T 0 M H ∂ t Bu k ∂ t u k + X 1 Bu k X 1 u k + X 2 Bu k X 2 u k dµ(q)dt = T 0 M H [∂ t , B]u k ∂ t u k + [X 1 , B]u k X 1 u k + [X 2 , B]u k X 2 u k dµ(q)dt + T 0 M H B∂ t u k ∂ t u k + BX 1 u k X 1 u k + BX 2 u k X 2 u k dµ(q)dt (44) Since [∂ t , B] ∈ Ψ 0 phg ((0, T ) × M H ), [X j , B] ∈ Ψ 0 phg ((0, T ) × M H ) and u k → 0 strongly in L 2 ((0, T ) × M H
), the first one of the two lines in (44) converges to 0 as k → +∞. Moreover, the last line is bounded uniformly in k since B ∈ Ψ 0 phg ((0, T ) × M H ). Hence (Bu k , u k ) H T is uniformly bounded. By a standard diagonal extraction argument (see [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch[END_REF] for example), there exists a subsequence, which we still denote by (u k ) k∈N such that (Bu k , u k ) converges for any B of principal symbol b in a countable dense subset of C ∞ c ((0, T ) × M H ). Moreover, the limit only depends on the principal symbol b, and not on the full symbol.

Let us now prove that lim inf

k→+∞ (Bu k , u k ) H T 0 (45) 
when b 0. With a bracket argument as in (44), we see that it is equivalent to proving that the liminf as k → +∞ of the quantity

Q k (B) = (B∂ t u k , ∂ t u k ) L 2 + (BX 1 u k , X 1 u k ) L 2 + (BX 2 u k , X 2 u k ) L 2 (46) 
is 0. But there exists B ∈ Ψ 0 phg ((0, T )×M H ) such that B -B ∈ Ψ -1 phg ((0, T )×M H ) and B is positive (this is the so-called Friedrichs quantization, see for example [Tay74, Chapter VII]). Then, lim inf k→+∞ Q k (B ) 0, and 

Q k (B -B) → 0 since (B -B)∂ t ∈ Ψ 0 phg ((0, T ) × M H ) and u k → 0 strongly in L 2 ((0, T ) × M H ).
k , u k ) H T → S * (C(p)) bdν for any b ∈ S 0 phg ((0, T ) × M H ). Let C ∈ Ψ -1 phg ((0, T ) × M H ) of principal symbol c. We have pc = {p, c} ∈ S 0 phg ((0, T ) × M H ) and, for any k ∈ N, ((CP -P C)u k , u k ) H T = (CP u k , u k ) H T -(Cu k , P u k ) H T = 0 (47) 
since P u k = 0. To be fully rigorous, the identity of the previous line, which holds for any solution u ∈ H T of the wave equation, is first proved for smooth initial data since P u / ∈ H T in general, and then extended to general solutions u ∈ H T . Taking principal symbols in (47), we get ν, pc = 0. Therefore, denoting by (ψ s ) s∈R the maximal solutions of

d ds ψ s (ρ) = p(ψ s (ρ)), ρ ∈ T * (R × M H )
Here we have set

La 0 = 1 i n j=0 ∂p 2 ∂ξ j (x, ∇ψ(x)) ∂a 0 ∂x j + 1 2i   n j,k=0 ∂ 2 p 2 ∂ξ j ∂ξ k (x, ∇ψ(x)) ∂ 2 ψ ∂x j ∂x k   a 0 (51) 
(For general strictly hyperbolic operators, L contains a term with the sub-principal symbol of the operator, but here it is null, see Appendix A.)

In what follows, we construct a 0 and ψ so that A 1 (x) vanishes at order 2 along Γ and A 2 (x) vanishes at order 0 along the same curve. We will then be able to use Lemma 12 with S = 3 and S = 1 respectively.

Analysis of A 1 (x). Our goal is to show that, if we choose ψ adequately, we can make the quantity f

(x) = p 2 (x, ∇ψ(x)) (52) 
vanish at order 2 on Γ. For the vanishing at order 0, we prescribe that ψ satisfies ∇ψ(x(s)) = ξ(s), and then f (x(s)) = 0 since (x(s), ξ(s)) is a null-bicharacteristic. Note that this is possible since x(s) = x(s ) for any s = s , due to ẋ0 (s) = 1 (bicharacteristics are traveled at speed 1, see Section 1.4). For the vanishing at order 1, using ( 52) and (7), we remark that for any 0 j n, Therefore, f vanishes automatically at order 1 along Γ (without making any particular choice for ψ): it just follows from (52) and the bicharacteristic equations (7). But for f (x) to vanish at order 2 along Γ, it is required to choose a particular ψ. In the end, we will find that if ψ is given by the formula (59) below, with M being a solution of (54), then f vanishes at order 2 along Γ. Let us explain why.

∂f ∂x j (x(s)) = ∂p 2 ∂x j (x(s)) + n k=0 ∂p 2 ∂ξ k (x(s)) ∂ψ ∂x j ∂x k (x(s)) = -ξj (s) + n k=0 ẋk (s) ∂ψ ∂x j ∂x k (x(s)) (53) 
Using the Einstein summation notation, we want that for any 0 i, j n, there holds

0 = ∂ 2 f ∂x j ∂x i = ∂ 2 p 2 ∂x j ∂x i + ∂ 2 p 2 ∂ξ k ∂x i ∂ 2 ψ ∂x j ∂x k + ∂ 2 p 2 ∂x j ∂ξ k ∂ 2 ψ ∂x i ∂x k + ∂ 2 p 2 ∂ξ l ∂ξ k ∂ 2 ψ ∂x i ∂x k ∂ 2 ψ ∂x j ∂x l + ∂p 2 ∂ξ k ∂ 3 ψ ∂x j ∂x k ∂x i along Γ. Introducing the matrices (M (s)) ij = ∂ 2 ψ ∂x i ∂x j (x(s)), (A(s)) ij = ∂ 2 p 2 ∂x i ∂x j (x(s), ξ(s)), (B(s)) ij = ∂ 2 p 2 ∂ξ i ∂x j (x(s), ξ(s)), (C(s)) ij = ∂ 2 p 2 ∂ξ i ∂ξ j (x(s), ξ(s))
this amounts to solving the matricial Riccati equation

dM ds + M CM + B T M + M B + A = 0 (54) 
For s ∈ R, we consider y(s) = n i=0 b i y i (s) and we set χ(s) = n i=0 b i (y i (s), η i (s)). Then,

σ C (χ(s), χ(s)) = -2iy(s) • Im(M (s))y(s). (57) 
By preservation of σ C and using (57), we get that

y(s 0 ) • Im(M (s 0 ))y(s 0 ) = y(0) • Im(M 0 )y(0). (58) 
But y(0) cannot be proportional to ẋ(0) otherwise, using (56), we would get that y(s 0 ) is proportional to ẋ(s 0 ). Hence, the right hand side in (58) is > 0, which implies that Im(M (s 0 )) is positive definite on the orthogonal complement to ẋ(s 0 ).

Therefore, we found a choice for the second order derivatives of ψ along Γ which meets all our conditions. For x = (t, x ) ∈ R × R n and s such that t = t(s), we set

ψ(x) = ξ (s) • (x -x (s)) + 1 2 (x -x (s)) • M (s)(x -x (s)), (59) 
and for this choice of ψ, f vanishes at order 2 along Γ.

To sum up, as in the Riemannian (or "strictly hyperbolic") case handled by Ralston in [START_REF] Ralston | Gaussian beams and the propagation of singularities[END_REF], the key observation is that the invariance of σ and σ C prevents the solutions of (54) with positive imaginary part on the orthogonal complement of ẋ(0) to blowup.

Analysis of A 2 (x). We note that A 2 vanishes along Γ if and only if La 0 (x(s)) = 0.

According to (51), this turns out to be a linear transport equation on a 0 (x(s)). Moreover, the coefficient of the first-order term, namely ∇ ξ p 2 (x(s), ξ(s)), is different from 0. Therefore, given a 0 = 0 at (t = 0, x = x(0)), this transport equation has a solution a 0 (x(s)) with initial datum a 0 , and, by Cauchy uniqueness, a 0 (x(s)) = 0 for any s. Note that we have prescribed a 0 only along Γ, and we may choose a 0 in a smooth (and arbitrary) way outside Γ. We choose it to vanish outside a small neighborhood of Γ.

Proof of (13). We use (50) and we apply Lemma 12 to S = 3, c = A 1 and to S = 1, c = A 2 , and we get ∂ 2 tt v k -∆v k L 1 (0,T ;L 2 (M )) C(k -1 2 + k -1 2 + k -1 ), which implies (13).

Proof of (14). We first observe that since Im(M (s)) is positive definite on the orthogonal complement of ẋ(s) and continuous as a function of s, there exist α, C > 0 such that for any t(s) ∈ [0, T ] and any x ∈ M , Proof of (15). We observe that since Im(M (s)) is positive definite (uniformy in s) on the orthogonal complement of ẋ(s), there exist C, α > 0 such that for any t ∈ [0, T ], for any Extension of the result to any manifold M . In the case of a general manifold M , not necessarily included in R n , we use charts together with the above construction. We cover M by a set of charts (U α , ϕ α ), where (U α ) is a family of open sets of M covering M and ϕ α : U α → R n is an homeomorphism U α onto an open subset of R n . Take a solution (x(t), ξ(t)) t∈[0,T ] of (8). It visits a finite number of charts in the order U α1 , U α2 , . . ., and we choose the charts and a 0 so that v k (t, •) is supported in a unique chart at each time t. The above construction shows how to construct a 0 and ψ as long as x(t) remains in the same chart. For any l 1, we choose t l so that x(t l ) ∈ U α l ∩ U α l+1 and a 0 (t l , •) is supported in U α l ∩ U α l+1 . Since there is a (local) solution v k for any choice of initial a 0 (t l , x(t l )) and Im ∂ 2 ψ ∂xi∂xj (t l , x(t l )) in Proposition 10, we see that v k may be continued from the chart U α l to the chart U α l+1 . This continuation is smooth since the two solutions coincide as long as a 0 (t, •) is supported in U α l ∩ U α l+1 . Patching all solutions on the time intervals [t l , t l+1 ] together, it yields a global in time solution v k , as desired.

C Proof of (49)

Because of the second convergence in (43) and the non-negativity of a, it amounts to proving that (X 1 Op(a)u k , X 1 u k ) L 2 ((0,T )×M H ) + (X 2 Op(a)u k , X 2 u k ) L 2 ((0,T )×M H ) → 0. Now, we notice that for any B ∈ Ψ 0 phg ((0, T ) × M H ), there holds (Bu k , X 1 u k ) L 2 ((0,T )×M H ) -→ k→+∞ 0 and (Bu k , ∂ t u k ) L 2 ((0,T )×M H ) -→ k→+∞ 0 (63) since u k → 0 strongly in L 2 ((0, T )×M H ) and both X 1 u k and ∂ t u k are bounded in L 2 ((0, T )× M H ). We apply this to B = [X 1 , Op(a)], and then, also using (63), we see that we can replace Op(a) by its Friedrichs quantization Op F (a), which is positive (see [START_REF] Taylor | Pseudodifferential operators[END_REF]Chapter VII]).

In other words, we are reduced to prove (Op F (a)X 1 u k , X 1 u k ) L 2 ((0,T )×M H ) + (Op F (a)X 2 u k , X 2 u k ) L 2 ((0,T )×M H ) -→ k→+∞ 0.

(64)

Let δ > 0 and a ∈ S 0 phg ((-δ, T + δ) × M H ), 0 a sup(a) and such that a(t, •) = a(•) for 0 t T . Making repeated use of (63) and of integrations by parts (since a is compactly supported in time), we have Finally we note that since Op F is a positive quantization, we have 2 j=1 (Op F (a)X j u k , X j u k ) L 2 ((0,T )×M H ) 2 j=1 (Op F ( a)X j u k , X j u k ) L 2 ((0,T )×M H ) = (Op F ( a)∂ t u k , ∂ t u k ) L 2 ((0,T )×M H ) + o(1) Cδ + (Op F (a)∂ t u k , ∂ t u k ) L 2 ((0,T )×M H ) + o(1)

Cδ + o(1)
where C does not depend on δ. Making δ → 0, it concludes the proof of (64), and consequently (49) holds.

  It immediately implies that (45) holds. Therefore, setting p = σ p (P ) and denoting by C(p) the characteristic manifold C(p) = {p = 0}, there exists a non-negative Radon measure ν on S * (C(p)) = C(p)/(0, +∞) such that (Op(b)u

|∂ t v

  k (t(s), x )| 2 + m j=1 |X j v k (t(s), x )| 2 C|a 0 (t(s), x )| 2 k n 2 + O(k 2( n 2 -1) ) e -αkd(x ,x (s)) 2where d(•, •) denotes the Euclidean distance in R n . We denote by n the Lebesgue measure on R n . Using the observation that for any function f , M f (x )e -αkd(x ,x (s)) 2 dµ(x ) ∼ π k → +∞, and the fact that a 0 (x(s)) = 0, we obtain (14).

x

  ∈ M , |∂ t v k (t(s), x )| and |X j v k (t(s), x )| are both bounded above by Ck n 4 e -α kd(x ,x (s)) 2 . ThereforeM \V t(s)   |∂ t v k (t(s), x )| 2 + m j=1 |X j v k (t(s), x )| 2   dµ(x ) Ck n/2 M \V t(s)e -2α kd(x ,x (s)) 2 dµ(x )Ck n/2 M \V t(s) e -2α kd(x ,x (s)) 2 d n (x ) + o(1)(61)where, in the last line, we used the fact that |dµ/d n | C in a fixed compact subset of M (since µ is a smooth volume), and the o(1) comes from the eventual blowup of µ at the boundary of M . Now, M ⊂ R n , and there exists r > 0 such that B d (x(s), r) ⊂ V t(s) for any s such that t(s) ∈ (0, T ), where d(•, •) still denotes the Euclidean distance in R n . Therefore, we bound above the integral in (61) byCk n/2 R n \B d (x(s),r) e -2α kd(x ,x (s)) 2 d n (x )(62)Making the change of variables y = k -1/2 (y -x(s)), we bound above (62) byC R n \B d (0,rk 1/2 ) e -2α y 2 d n (y)with • the Euclidean norm. This last expression is bounded above byCe -α r 2 kR n e -α y 2 d n (y) which implies (15).

2 j=1(

 2 Op F ( a)X j u k , X j u k ) L 2 ((0,T )×M H ) = 2 j=1 (X j Op F ( a)u k , X j u k ) L 2 ((0,T )×M H ) + o(1) = -(Op F ( a)u k , ∆u k ) L 2 ((0,T )×M H ) + o(1) = -(Op F ( a)u k , ∂ 2 t u k ) L 2 ((0,T )×M H ) + o(1) = (∂ t Op F ( a)u k , ∂ t u k ) L 2 ((0,T )×M H ) + o(1) = (Op F ( a)∂ t u k , ∂ t u k ) L 2 ((0,T )×M H ) + o(1).

This terminology is common in sub-Riemannian geometry, and it is justified by the fact that we can naturally associate to the vector fields X1, . . . , Xm a metric structure on M for which these projected paths are geodesics, see[START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF].

Note that this is the case only because we are now working with the reduced Hamiltonian evolution; otherwise, under the original Hamiltonian evolution associated to (31), the xi (for i n2 + 1) remain small according to Claim 2, but do not necessarily vanish.

(see (7)), we get that, for any s ∈ (0, T ),

We note here that the precise homogeneity of c (namely c ∈ S -1 phg ((0, T ) × M H )) does not matter since ν is a measure on the sphere bundle S * (C(p)). The identity (48) means that ν is invariant under the flow p.

From the second convergence in (43), we can deduce that ν = 0 in S * (C(p)) ∩ T * ((0, T ) × Supp(a)).

(

The proof of this fact, which is standard (see for example [BG02, Section 6.2]), is given in Appendix C. Let us prove that any normal geodesic of M H with momentum ξ ∈ V c ε enters ω in time at most κε -1 for some κ > 0 which does not depend on ε. Indeed, the solutions of the bicharacteristic equations (10) with g * = 1/4 and ξ 3 = 0 are given by

where B, C, ξ 2 , ξ 3 are constants. Since ξ ∈ V c ε and g * = 1/4, there holds 1 4|ξ3| ε 2 . Hence, we can conclude using the expression for x 3 (whose derivative is roughly (4|ξ 3 |) -1 ) and the fact that ω = M H \B contains a horizontal strip. Note that if ξ 3 = 0, the expressions of x 1 (t), x 2 (t), x 3 (t) are much simpler and we can conclude similarly.

Hence, together with (49), the propagation property (48) implies that ν ≡ 0. It follows that u k H T → 0. By conservation of energy, it is a contradiction with the normalization (u k 0 , u k 1 ) H×L 2 = 1. Hence, (11) holds.

A Pseudodifferential calculus

We denote by Ω an open set of a d-dimensional manifold (typically d = n or d = n + 1 with the notations of this paper) equipped with a smooth volume µ. We denote by q the variable in Ω, typically q = x or q = (t, x) with our notations.

Let ω 0 = dp∧dq be the canonical symplectic form on T * Ω written in canonical coordinates (q, p). The Hamiltonian vector field f of a function f ∈ C ∞ (T * Ω) is defined by the relation

In the coordinates (q, p), it reads

In these coordinates, the Poisson bracket is

which is also equal to f g and -gf .

Let π : T * Ω → Ω be the canonical projection. We recall briefly some facts concerning pseudodifferential calculus, following [START_REF] Hörmander | The analysis of linear partial differential operators III: Pseudo-differential operators[END_REF]Chapter 18].

We denote by S m hom (T * Ω) the set of homogeneous symbols of degree m with compact support in Ω. We also write S m phg (T * Ω) the set of polyhomogeneous symbols of degree m with compact support in Ω. Hence,

) is a compact of Ω, and there exist a j ∈ S m-j hom (T * Ω) such that for all N ∈ N, a-N j=0 a j ∈ S m-N -1 phg (T * Ω). We denote by Ψ m phg (T * Ω) the space of polyhomogeneous pseudodifferential operators of order m on Ω, with a compactly supported kernel in Ω × Ω. For A ∈ Ψ m phg (Ω), we denote by σ p (A) ∈ S m phg (T * Ω) the principal symbol of A. The sub-principal symbol is characterized by the action of pseudodifferential operators on oscillating functions: if A ∈ Ψ m phg (Ω) and f (q) = b(q)e ikS(q) with b, S smooth and real-valued, then

A quantization is a continuous linear mapping

An example of quantization is obtained by using partitions of unity and, locally, the Weyl quantization, which is given in local coordinates by

e i q-q ,p a q + q 2 , p f (q )dq dp.

We have the following properties:

phg (Ω), then A maps continuously the space H s (Ω) to the space H s-m (Ω).

B Proof of Proposition 10

In this Appendix, we give a second proof of Proposition 10 written in a more elementary form than the one of Section 2.1. Let us first prove the result when M ⊂ R n , following the proof of [START_REF] Ralston | Gaussian beams and the propagation of singularities[END_REF]. The general case is addressed at the end of this section. As in the proof of Section 2.1, we suppress the time variable t. Thus we use x = (x 0 , x 1 , . . . , x n ) where x 0 = t. Similarly, ξ = (ξ 0 , ξ 1 , . . . , ξ n ) where ξ 0 = τ previously. Let Γ be the curve given by x(s) ∈ R n+1 . We insist on the fact that in the proof the bicharacteristics are parametrized by s, as in (7). We consider functions of the form

We would like to choose ψ(x) such that for all s ∈ R, ψ(x(s)) is real-valued and Im ∂ 2 ψ ∂xi∂xj (x(s)) is positive definite on vectors orthogonal to ẋ(s). Roughly speaking, |e ikψ(x) | will then look like a Gaussian distribution on planes perpendicular to Γ in R n+1 .

We first observe that ∂ 2 tt v k -∆v k can be decomposed as

with

on a finite-length time-interval. While solving (54), we also require M (s) to be symmetric, Im(M (s)) to be positive definite on the orthogonal complement of ẋ(s), and M (s) ẋ(s) = ξ(s) to hold for all s due to (53). Let M 0 be a symmetric (n + 1) × (n + 1) matrix with Im(M 0 ) > 0 on the orthogonal complement of ẋ(0) and M 0 ẋ(0) = ξ(0) (in particular Im(M 0 ) ẋ(0) = 0). It is shown in [START_REF] Ralston | Gaussian beams and the propagation of singularities[END_REF] that there exists a global solution M (s) on [0, T ] of (54) which satisfies all the above conditions and such that M (0) = M 0 . The proof just requires that A, C are symmetric, but does not need anything special about p 2 (in particular, it applies to our sub-Riemannian case where p 2 is degenerate). For the sake of completeness, we recall the proof here.

We consider (Y (s), N (s)) the matrix solution with initial data (Y (0), N (0)) = (Id, M 0 ) (where Id is the (n + 1) × (n + 1) identity matrix) to the linear system

We note that (Y (s) ẋ(0), N (s) ẋ(0)) then also solves (55), with Y and N being this time vectorial. One can check that ( ẋ(s), ξ(s)) is the solution of the same linear system with same initial data, and therefore, for any s ∈ R,

All the coefficients in (55) are real and A and C are symmetric, and it follows that the flow defined by (55) on vectors preserves both the real symplectic form acting on pairs (y, η) ∈ (R n+1 ) 2 and (y , η ) ∈ (R n+1 ) 2 given by σ((y, η), (y , η )) = y • η -η • y and the complexified form σ C ((y, η), (y , η )) = σ((y, η), (y , η )) for (y, η) ∈ (C n+1 ) 2 and (y , η ) ∈ (C n+1 ) 2 . When we say that σ C is invariant under (55), it means that we allow complex vectorial initial data in (55).

Let us prove that Y (s) is invertible for any s. Let v ∈ C n+1 and s 0 ∈ R be such that Y (s 0 )v = 0. We set y(s 0 ) = Y (s 0 )v and η(s 0 ) = N (s 0 )v and consider χ(s 0 ) = (y(s 0 ), η(s 0 )). From the conservation of σ C , we get

Since Im(M 0 ) is positive definite on the orthogonal complement to ẋ(0), there holds v = λ ẋ(0) for some λ

where the last equality comes from (56). Since ẋ0 (s 0 ) = ∂p2 ∂ξ0 (s 0 ) = -2ξ 0 (s 0 ) = 1, there holds ẋ(s 0 ) = 0, hence λ = 0. It follows that v = 0 and Y (s 0 ) is invertible. Now, for any s ∈ R, we set

which is a solution of (54) with M (0) = M 0 . It verifies M (s) ẋ(s) = ξ(s) thanks to (56). Moreover, it is symmetric: if we denote by y i (s) and η i (s) the column vectors of Y and N , by preservation of σ, for any 0 i, j n, the quantity σ((y i (s), η i (s)), (y j (s), η j (s)) = y i (s) • M (s)y j (s) -y j (s) • M (s)y i (s) is equal to the same quantity at s = 0, which is equal to 0 since M 0 is symmetric. Let us finally prove that for any s ∈ R, Im(M (s)) is positive definite on the orthogonal complement of ẋ(s). Let y(s 0 ) ∈ C n+1 be in the orthogonal complement of ẋ(s 0 ). We decompose y(s 0 ) on the column vectors of Y (s 0 ):