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Introduction 

The sustainable use of plastics has become a global issue with all major brand owners 

committed to reducing the use of plastic in packaging through optimized design or 

recycling initiatives. An area receiving major attention is the use of PET bottles which 

are currently manufactured at a rate of one million per minute by a process known as 

Injection Stretch Blow Moulding (ISBM). ISBM begins with injection molding of a 

test tube like specimen known as a preform that is subsequently re-heated above its 

glass transition temperature and formed into a mold by a combination of axial stretching 

by a stretch rod and radial stretching by internal air pressure. The main challenge for 

manufacturers is to produce containers with as little material as possible but still meet 

in-service performance requirements such as top load and burst resistance. However 

the industry still relies a lot on empirical knowledge and trial and error and it recognizes 

the need to move away from this approach though the use of manufacturing process 

simulation. The key component of a the process simulation is the constitutive material 

model to accurately capture the nonlinear viscoelastic behavior of PET over the wide 

temperature, strain rates and modes of deformation experienced in stretch blow molding. 

An accurate model of PET for stretch blow molding must be characterized at 

temperatures and strain rates typically seen in the process. Nixon et al [1] demonstrated 

through free blowing preforms whilst monitored via high speed video that the strain 

rate has an average of 40s-1[1] whilst it is well recognized in the industry the 

temperature range of interest is between 90°C and 120°C i.e. just above the glass 

transition temperature but just below the cold crystallization temperature. 

Over the past 30 years there have been numerous attempts to develop models of the 

non linear viscoelastic behavior of PET for ISBM. Initially researchers ignored the 

viscous effects and used hyperelastic models (Marckmann et al. [2]). Billon et al [3,4] 

recognizing the need to include viscous effects and altered the hyperelastic model by 

making some of the parameters dependent on strain rate however the model proved to 

be unstable when implemented in forming simulations. Previous work from Chevalier 

et al [5] based on biaxial experimental data in the strain rate range 0.02 to 2 s-1 clearly 

demonstrated the need to capture the viscous effects and based on this data a new model 

known as the G’Sell-Jonas was developed which took into account the effect of strain 

rate and the typical strain hardening behavior observed in PET. This viscoplastic 

model 



was subsequently used by Schmidt et al [6] to demonstrate the potential of combining 

simulations of stretch blow molding and IR heating to determine the optimum process 

settings to manufacture a container with a desired thickness profile. The model was 

further developed by Cosson [7] through the implementation of anisotropy. Whilst this 

improved model was also able to relate the constitutive behavior with microstructure 

due to its viscoplastic nature it was still unable to match  data produced in experiments 

performed by Chevalier and Marco [8]. 

Other approaches to modelling PET in ISBM is the use of viscoelastic models [9,10]. 

One example includes the work by Schmidt [9] who used a Maxwell like model, 

however accurate results for predicting the preform shape evolution and strain 

hardening behaviour were not achievable. It was clear that a combination of viscoelastic 

and hyperplastic effects were required to capture the behavior of PET.  This was 

recognized by both Boyce et al [11] and Buckley et al [12] who both developed models 

of PET through the parallel combination of hyperleastic models and viscous models. 

The model developed by Buckley et al known as the Glass Rubber model was initially 

developed for the study of hot drawing of PET in industrial film drawing. Menary et al 

[13] evaluated the model for its ability to capture the behavior of PET in stretch blow 
molding and benchmarked it against the performance of a hyperleastic model and a 
creep law in an ISBM simulation. It was demonstrated that the Glass Rubber model 
was able to accurately predict the final wall thickness of a PET bottle.

Inspired from Figiel and Buckley's work [14], Chevalier et al. [15-17] have recently 

proposed a nonlinear incompressible visco-hyperelastic model to represent the complex 

constitutive behaviour of PET. Experimental uniaxial and biaxial tests performed on 

PET were carried out by Menary et al. [18] in Queen’s University of Belfast. These 

tension tests were managed with various tension speeds (strain rate from 1s-1 to 32s-

1),.The nonlinear forms of elastic and viscous characteristics were proposed. However, 

the isotropic version of the model that we proposed [15-17] did not reproduce the shape 

evolution of the perform during blowing: and thus some improvements are needed to 

fit biaxial tests and free blowing experiments. 

In the first section, based on a previous isotropic version of a visco-hyperelastic 

model build to represent the behavior of PET near the glass transition temperature, we 

propose an anisotropic version. The theoretical basements of this upgraded anisotropic 

version are presented. First, an energy function W models the elastic part with the 

isotropic contribution Wiso and anisotropic one Wani. The isotropic part Wiso depends on 

the classical invariants and the anisotropic part Wani depends on the new invariants that 

are associated to the anisotropic material behavior. The stress tensor is obtained from 

derivation of this energy function W and depends on structural tensor Ai built from the 



direction of anisotropy. The viscous part is built using a 4th order tensor to represent the 

classical orthotropic formulation. 

The second section is devoted to the identification procedure to make the model fit 

with experimental data. This anisotropic version of the visco-hyperelastic model needs 

both equi-biaxial and constant width to provide an accurate identification. These tests 

were managed at Queen’s University Belfast. A singularity problem appears for the 

numerical simulation due to asymptotic values for the h function that represents the 

strain hardening effect in the viscous part. The h function is modified in order to solve 

this singularity.  

Finally, in the third section, thanks to this identification, we can simulate free 

blowing of PET preform that is close to the industrial stretch blow molding process. 

We use the software ABAQUS/Explicit for the simulations and our model is 

implemented via a user-interface VUMAT. Free blowing simulations taking into 

account the anisotropy, are performed and are successfully compared to the 

experimental results. 

I. An anisotropic visco-hyperelastic model for PET under ISBM condition

An isotropic version of the nonlinear incompressible visco-hyperelastic model has

been presented and identified in the author’s previous papers [15-17]. This model 

reproduces nicely the equi-biaxial elongation results obtained from experimental tests 

performed at QUB [18] using strain, strain rate and temperature conditions near ISBM 

conditions, but this isotropic version did not reproduce accurately the shape evolution 

of the preform during blowing. Using this version of the model, when the strain reaches 

the “strain hardening” region in the hoop direction, the material cannot be stretched 

anymore and this limits the evolution in longitudinal direction. In order to correct this 

drawback during the free blowing simulation, one needs to introduce anisotropy in both 

the viscous and elastic parts of the model. This will allow to reproduce accurately the 

constant width test and will provide accurate simulation of the free blowing of preform. 

The Cauchy stress tensor   is developed as a Maxwell like equation with two 

expressions whether one considers the elastic or the viscous part: 
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where e is an Eulerian strain tensor: ( )IBee −=
2

1
 , vD is the viscous strain rate

tensor, pe and pv are hydrostatic pressures associated with  incompressibility 

conditions. eB is the elastic part of the left Cauchy deformation tensor. In a previous

isotropic version, G and  were scalar shear modulus and viscosity. Both characteristics 

were a function of elastic strain components for G and of viscous strain and strain rate 

for . In the following, we present the anisotropic form of these two parts. First, let’s 

focus on the elastic part. 

I.1 Elastic part visco-hyperelastic model

The free energy function W is defined as a function of two series of invariants: the

principal invariants of the elastic left Cauchy Green tensor and also more invariants 

defined in Spencer [19,20]. The first series is associated to the isotropic material 

behavior and can be written as: 
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The second series are the invariants associated to the anisotropic behavior: 
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1n , 2n et 3n are the privileged directions of the orthotropic behavior of the PET 

material. We introduce three second order structural tensors iA . They are obtained

from the preferred directions [21]:

1 1 1 2 2 2 3 3 3, ,A n n A n n A n n=  =  =  (4) 

These structural tensors have to be invariant under the rotation tensor Q  out of the 

symmetry group  , so they have to satisfy the condition [21]: 

T
i iA QA Q Q =   (5)



Due to the representation theorem, the strain energy W can be rewritten as both an 

isotropic part and an anisotropic part:

( ) ( ) ( )98765421321 ,,,,,,,,, IIIIIIWIIWAAABW aniisoe += (6) 

where Wiso and Wani are isotropic convex functions of their arguments. 

We make the assumption that displacements are big enough to neglect the volume 

variation so : I3=1. The important strain hardening effect that appears during uniaxial 

or biaxial tension tests needs to be represented by both the hyperelastic part and the 

viscous part using exponential functions. For the elastic part, Hart-Smith appears to be 

a good candidate to characterize the free energy function. Consequently, Wiso is only a 

function of I1 and the total energy function can be written as the following form: 
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Cauchy stress tensor is obtained from the strain energy by derivation [22]: 
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where ,iW stands for the partial derivative iW I  . Considering the chosen energy

function W (Eq.7), the elastic stress yields to: 
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where G1, G2,  and  are parameters in the elastic part of the Visco-hyperelastic 

model. 

I.2 Viscous part visco-hyperelastic model

In the plane stress case, the deviatoric part of the stress tensor 


 can be written: 
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We choose specific hi functions [15] for each orthotropic direction (i=1 the hoop 

direction and i=2 longitudinal direction) 
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with: 
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where , m, a are the classical parameters of Carreau’s law ( )vf d and refd are 

arbitrary reference strain rates that can be taken equal to 1s-1 for sake of simplicity. vd

is the equivalent viscous strain rate and v is the equivalent viscous strain. The chosen 

expressions for hi functions assure to give the same model as the isotropic one when 

the strain is purely equi-biaxial. 0 , K, N and vref are parameters in the h function that 



can be identified from biaxial elongation tests using the previous procedure presented 

in [15-17]. Under the assumption of additivity of the elastic and viscous strain rates, 

assumption of the pure elastic spin rate and the choice of the Oldroyd equation for 

tensor eB , the constitutive equation can be obtained. 

Therefore, equation 9 in plane stress case for the deviatoric part of the stress can be 

written as: 
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is the column form of the tensors sum 
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equation 13. In the following sections, equation 13 can be used to simulate the tension 

test and the ISBM process. 

II. Identification procedure of the model from equal-biaxial and constant width 
tensile tests

The authors have previously used a specific h function to model the strain hardening 

effect during the viscous part of the model (see [15] for details). From an arbitrary 

choice for the hyperelastic part and for the contribution of the strain rate in the viscous 

part, one can extract from experimental data, the contribution of the elongational strain 

in the viscous part. The shape of the obtained curves highlights an ultimate viscous 



strain but during the numerical simulations using this model, the limit value can be 

reached and passed: numerical problems arise. More precisely, the singularity problem 

appears during the ISBM process simulation when the viscous strain is higher than the 

parameter vlim (Figure 1). Therefore, a purely exponential function is chosen instead of 

the original h function presented in previous publications. 
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The identification process is based on minimizing the square difference between the 

model and the experimental values of both equi-biaxial and constant width tests. These 

two problems can be solved quasi-analytically: totally for the equi biaxial test and with 

a numerical resolution for the constant width. This identification leads to the identified 

values shown in Table 1. The mean difference between model and experiment 

highlighted on curves shown Figure 2 is 12.8% for constant width in the elongation 

direction and 6.2% in the constrained direction. For the equi-biaxial test, the mean 

difference is 6.3%. 

Considering the complexity of the PET behavior and the small number (12) of 

numerical parameters to be identified in our model, this agreement is good and leads to 

accurate results. 

An analysis of the sensitivity of the model to the parameters value is managed using 

a partial differentiation technique. In this case, the mean absolute error  depends on 

each parameter i and can be calculated from equation 16. Each parameter is increased 

independently by a value of 10%, the sensitivity coefficient di, can be calculated which 

is the difference between the new mean error new and the error with standard 

parameters ref. Table 2 lists the sensitivity coefficient di of each parameter in our 

model. The parameter m is clearly the most sensitive parameter. The 4 parameters used 

in the elastic part of the model have less influence. 
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III. Stretching and blowing simulation of a PET preform

The software ABAQUS / Explicit is used so that geometry definition and meshing 
operations remains easy. We implement our VHE model via a user interface VUMAT a 

classical Newton Raphson iterative procedure is used to solve this strongly non linear 

problem. Figure 3 illustrates the structure of the implementation into the ABAQUS 

software. One can compute the elastic Cauchy Green tensor Be from equation 14. 

III.1 Benefit of the anisotropic model for the free blowing simulation of a PET 
preform

In order to evaluate the predicting performance of the model, we focus on the 

simulation of a preform stretched by an internal rod and blown with air at a specific 

flow rate that generates internal pressure. Using the finite element approach, we will be 

able to compare the shape and the internal pressure evolution obtained by simulation 

with experimental data. The preform geometry and the longitudinal stretch rod are 

meshed by shell elements in ABAQUS. In order to reduce the computing time, we took 

into account the axi-symmetry of the process and that choice reduces the number of 

degrees of freedom. The air mass flow injected into the preform / bottle is modelled by 

an exchange of fluid between components (fluid structure interaction implanted in 

ABAQUS). This air mass flow modelling has already been described in detail in 

[1,23,24]. 

Nevertheless, CPU time for one complete free blow simulation using a 2.66GHz 

Pentium4 processor is about six hours.  

The previous free blow [25] and stretch blow simulation results obtained with the 

isotropic version of the visco-hyper-elastic model failed to represent the real ratio 

between the length and radius of final bottles. One explanation is that the isotropic 

model leads to very high viscosity value once the elements are stretched along one 

direction (here, the hoop direction). Consequently, the elongation in the longitudinal 

direction is more difficult. 

Figure 4 shows the evolution of the bottle shape. One can see that anisotropic version 

of the model gives a shape evolution that is in good agreement in comparison with the 

real blown bottle. A free blowing machine developed at Queen’s University [1] made 

possible the experimental measurements. During the test, the stretch rod velocity, the 

air flow rate, the maximum blowing pressure within the preform cavity are imposed 

and the preform stretching force and the pressure evolution vs time are measured. The 



details of experimental set up and the data acquisition system were previously described 

in [26-28]. During a SBM process, the hot preform is transformed into a bottle mainly 

due to the pressure exerted on the inside walls of the preform by the compressed air. 

The work of Menary et al. [26] demonstrated that the pressure that builds inside the 

preform is not a cause but an effect that depends on the amount of air filling the preform 

and the rate of expansion of the preform. By using the mass flow approach in the 

simulation, they showed that the preform shape evolution prediction was better than the 

direct experimental pressure application. Salomeia [27] used an air mass flow model 

which was described as a function of pressure difference. The mass flow rate is 

controlled by both the preblow pressure adjuster and the flow limiter. The preblow 

pressure is 8bar and the mass flow rate has two levels controlled by the flow index (two 

for low or six for high). The average value of mass flow rate at the higher level is 33.96

±0.863 g/s, almost four times larger than that of the lower level (8.88±0.195 g/s). 

Figure 5 shows the evolution of pressure coming from simulation (discontinuous 

line) and from experimental results (dots that makes a quasi-continuous line). 

Considering the complexity of the PET behavior and the small number (12) of 

numerical parameters of our model, and considering that parameter identification is 

obtained from an idealized biaxially stretched plane specimen, one can conclude that 

there is a good agreement between this axi-symmetric simulation and free blowing 

experiment. Consequently, one can have faith in the model and consider other cases for 

predicting effects on thickness distribution for example. 

III.2 Model validation from numerical/experimental comparison of a stretching 
and blowing simulation of a PET preform

Moreover, two stretch blow simulations have been performed. Figure 6a shows a 

‘free blowing’ like simulation: because of the high air flow rate, the material elongation 

in the longitudinal direction of the preform goes faster than the stretch rod. No contact 

occurs between the preform and the stretch rod during this specific blowing. The 

experimental measurements for this ‘free blowing like’ simulation is shown in Fig. 4a. 

Figure 6b shows another simulation with a lower air flow rate, in this case the material 

longitudinal elongation is slow. The preform is stretched by the rod at first and then in 

the hoop direction during blowing. This simulation is also compared with the 

experimental measurements. The stretch rod velocity for each case is given in Figure 

7a. Figure 7b shows for each case the air mass flow rate as a function of pressure 

difference (dP). 



Figure 8 shows the distribution of the thickness of the two stretch blowing cases. In 

the free blowing like simulation Fig. 8a, the mean value of the thickness is about 

0.45mm. The aspect ratio (ie. length over radius) is lower than for the second case. 

Consequently, for the same global length, the thickness will be higher in the second 

case. 

In the stretch blowing simulation case (right side of the figure), the mean thickness 

is about 0.5mm and the distribution is more homogenous. In both cases, one can see 

that the thickness is higher in the zone near the neck of the bottle than elsewhere. 

Conclusions 

We developed an orthotropic visco-hyperelastic model adapted to the severe strain-

rates and temperatures conditions of the stretch-blow molding process. An orthotropic 

formalism is used for both elastic and viscous parts and the complex form of the model 

is presented. 

The identification procedure has been achieved using data provided by equi-biaxial 

and constant width elongation tests managed at QUB at different speeds and 

temperatures. The best parameters values identified for the model enables to reproduce 

the experimental results with about 10% difference.  

We implemented the orthotropic visco-hyper-elastic model in ABAQUS software 

and we simulate free blowing of PET perform. The comparison with a real free blowing 

test validates the anisotropic version of the visco-hyperelastic model for PET near Tg. 

As a complement, the influence of the air flow rate on the shape evolution and thickness 

distribution has been managed and high air flow rate leads to larger radius and lower 

thickness. 
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Figure 8. The distribution of the thickness of the bottle: (a) Free blowing like 

simulation; (b) Stretch blowing simulation 



Figure 1. Singularity problem using the equation 11 for the h function 
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Figure 2. (a) Experimental set-up for biaxial test and comparison between 

experimental results and model simulations for the case 2s-1 and 90°C: (b) Constant 

Width; (c) Equi-biaxial 



Figure 3. Implementation of the model in ABAQUS 



Figure 4. (a) Stretch and free blowing of a preform; (b) Abaqus simulation with 

anisotropic model 



Figure 5. Comparison the pressure evolution from experiments and simulation 
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Figure 6. (a) Free blowing like simulation; (b) Stretch blowing simulation 
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Figure 7. (a) Velocity of the stretch rod; (b) Air mass flow rate as a function of 

pressure difference (dP) 
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Figure 8. The distribution of the thickness of the bottle: (a) Free blowing like 

simulation; (b) Stretch blowing simulation 




