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The dynamics of several mesoscopic biological structures depend on the interplay of growth through the
incorporation of components of different sizes laterally diffusing along the cell membrane, and loss by
component turnover. In particular, a model of such an out-of-equilibrium dynamics has recently been proposed
for postsynaptic scaffold domains, which are key structures of neuronal synapses. It is of interest to estimate the
lifetime of these mesoscopic structures, especially in the context of synapses where this time is related to memory
retention. The lifetime of a structure can be very long as compared to the turnover time of its components and
it can be difficult to estimate it by direct numerical simulations. Here, in the context of the model proposed for
postsynaptic scaffold domains, we approximate the aggregation-turnover dynamics by a shot-noise process. This
enables us to analytically compute the quasistationary distribution describing the sizes of the surviving structures
as well as their characteristic lifetime. We show that our analytical estimate agrees with numerical simulations of
a full spatial model, in a regime of parameters where a direct assessment is computationally feasible. We then use
our approach to estimate the lifetime of mesoscopic structures in parameter regimes where computer simulations
would be prohibitively long. For gephyrin, the scaffolding protein specific to inhibitory synapses, we estimate
a lifetime longer than several months for a scaffold domain when the single gephyrin protein turnover time is
about half an hour, as experimentally measured. While our focus is on postsynaptic domains, our formalism and
techniques should be applicable to other biological structures that are also formed by a balance of condensation
and turnover.

DOI: 10.1103/PhysRevE.101.012411

I. INTRODUCTION

Synapses play a central role in learning and memory. The
determination of their components, of their structure and of
their dynamics has been the focus of numerous investigations.
On the postsynaptic neurotransmitter-receiving side of the
synapse, the synaptic proteins forming the postsynaptic den-
sity (PSD) are structurally organized by scaffolding proteins.
Biophysical experiments have demonstrated that synapses are
very dynamic structures [1]. Neurotransmitter receptors are
transmembrane proteins that have been imaged to go in and
out of synapses by single-particle tracking techniques. The
scaffolding proteins themselves have been shown to turn over
at synapses on the timescale of an hour. As anticipated by
Crick 35 years ago [2], this raises the fundamental and still
unanswered question of how long-term memory persists for
years.

Motivated by this puzzle and the wealth of quantitative
biophysical data, we proposed in a previous work [3] a simple
biophysical model for the formation of postsynaptic scaf-
fold domains, taking inhibitory synapses as a starting point.
For inhibitory synapses, the scaffolding protein gephyrin
can form large oligomers through homophilic binding at its
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two ends. (Gephyrin proteins naturally occur as trimers that
can oligomerize via the three remaining dimeric binding
sites [4].) Large assemblies of the gephyrin scaffolding pro-
tein are located just below the postsynaptic membrane [4]
and serve as structural foundation to the PSD. As gephyrin
can bind transmembrane inhibitory neurotransmitter receptors
such as γ -aminobutyric acid (GABA) and glycine receptors
on their cytoplasmic side, receptor concentration at inhibitory
synapses is increased 20- to 50-fold as compared to the con-
centration of receptors laterally diffusing in the extrasynaptic
membrane [5,6].

Available data [1,7] suggest that both receptors and
gephyrin scaffolding proteins are transported to the extrasy-
naptic cell membrane. Data also suggest [5] that gephyrin
scaffolding proteins, that are not membrane proteins, diffuse
laterally along the membrane, carried along by their binding
to the cytoplasmic domain of glycine receptors. Relying on
this experimental evidence, we proposed that postsynaptic
scaffold domains are formed and maintained by the contin-
uous “aggregation,” i.e., encounter and oligomerization, of
scaffolding proteins that laterally diffuse as receptor-scaffold
complexes, counteracted by the desorption of scaffolding
proteins into the cytoplasm [3]. A sketch of the proposed
aggregation-removal dynamics is shown in Fig. 1(a). The pos-
sible aggregation of diffusing complexes outside of synapses
led us to predict that scaffold domains with a continu-
ous range of sizes should be observed extrasynaptically, as
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(a) (b)

(c) (d)

(e) (f)

FIG. 1. Dynamics of diffusing clusters and of an immobile domain of fluctuating size. (a) Schematic description of the dynamics of
postsynaptic scaffold clusters and of an immobile scaffold domain. Clusters of scaffolding proteins (orange) diffuse laterally under the
membrane, complexed with neurotransmitter receptors (dashed ellipses). Upon encounter, the diffusing clusters can aggregate and grow.
They can also encounter an immobile domain (blue) of fluctuating size meant to represent the postsynaptic scaffold domain of a synapse. The
growth of the diffusing clusters and of the immobile domain is counterbalanced by the turnover of scaffolding proteins into the cytoplasm.
(b) Snapshot of a simulation of diffusing and aggregating particles (orange) subject to turnover [3], with an immobile domain of fluctuating
size (blue). For illustrative purposes, the cluster and domain sizes are scaled by a factor of 5 with respect to their actual sizes. The diameter
a of a single particle is taken as length unit. Taking a as the distance between two neighboring vertices in a hexagonal lattice of gephyrin
trimers gives a � 20 nm. (c) Stationary concentrations cn of diffusing clusters of size n (n being the number of constituent particles)
resulting from the simulated aggregation-turnover dynamics. (d) Example of the evolution over time of the sizes of an immobile domain
(blue) and of a freely diffusing cluster (orange) that grow by stochastic encounters with other clusters and shrink by particle desorption.
Fusion with impinging clusters of different sizes lead to instantaneous size increases, while Poissonian particle loss produces slower size
decreases. (e) The probability distributions An of the sizes n of an immobile domain (solid blue line) and of long-lived diffusing clusters
(solid orange line) appear stationary after a few turnover times 1/kd . The panel also shows the corresponding quasistationary distributions
(dashed lines) obtained from the master equations (ME) for immobile domains [Eq. (42)] and diffusing clusters [Eq. (51)], corresponding
to the shot-noise model proposed in the present work, where the size dynamics are based on the rates of impingement shown in panel (f).
(f) Encounter rates rm of the immobile domain with diffusing clusters of size m as measured in the simulation (blue dots). The encounter rates
with diffusing clusters of different sizes m are also shown (orange) for a freely diffusing cluster followed over time. In this case, the encounter
rates as well as the diffusion constant [Eq. (45)] of the followed cluster depends on its size n (here n = 10, σ = 0.5).

illustrated in the simulation snapshot shown in Fig. 1(b). More
quantitatively, numerical simulations produce a distribution of
concentrations cn of clusters of n particles [Fig. 1(c)], which
is consistent with reported data on gephyrin clusters [3,8].

Focusing on a single synaptic domain, a steady state is
attained when, on average, particle loss due to turnover is
balanced by the fusion with extrasynaptic protein aggregates

of all sizes. In numerical simulations, the domain size appears
constant on average, but its size fluctuates due to both stochas-
tic particle loss and stochastic fusion with surrounding dif-
fusing clusters, as illustrated in Fig. 1(d). After a few single-
particle turnover times, the probability of the different pos-
sible sizes appears well described by a stationary probability
distribution [Fig. 1(e)]. Eventually however, rare fluctuations
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should lead to a decrease of the domain size followed by its
disappearance. The distribution of fluctuating domain sizes
shown in Fig. 1(e) should thus be more accurately described
as a quasistationary distribution, namely the distribution of
domain sizes conditioned on the survival of the domains [9].

Although the dynamics of an immobile domain is our main
interest, it is also possible to consider the dynamics of a
diffusing cluster of particles that is followed over time [3]. The
process is qualitatively very similar to that for an immobile
domain, as shown in Fig. 1(d). The quasistationary distribu-
tions of sizes in the two cases are also similar [Fig. 1(e)] and
very different from the distribution of cluster sizes at a given
time [Fig. 1(c)]. Please note that here and in the following, we
call “domains” aggregates that do not diffuse and “clusters”
aggregates that diffuse laterally along the membrane (bound
to receptors that diffuse in the membrane, in the case of
scaffolding proteins that are our main focus here).

In the present study, our aim is to obtain the quasistationary
size distribution and to estimate the lifetime of such a domain
of mesoscopic size evolving by stochastic aggregation with
clusters of a range of sizes m and Poissonian single-particle
loss. In Sec. II A, we introduce and analyze a simplified model
for the fluctuating domain dynamics in which we simply retain
the rate rm [Fig. 1(f)] of clusters of different sizes aggregating
with the immobile fluctuating domain, reducing the imping-
ing dynamics to a shot-noise process [10]. This amounts to
neglecting all correlations between the impingement times of
different clusters. In this formulation, obtaining the time of
first passage to zero of the domain size is conceptually similar
to determining the time of extinction of a population in a birth-
death rate process. We employ master equation techniques
similar to the ones used in that context [11] to obtain the
quasistationary size distribution of the fluctuating domains
as well as their lifetime. We first consider the case when
impinging clusters are monodisperse in Sec. II B and then
generalize our analysis to polydisperse clusters in Sec. II C.
We then show in Sec. III A that the proposed simplified model
provides a good approximation to the quasistationary size
distribution and lifetime of domains measured in numerical
simulations of diffusing clusters. This requires choosing ki-
netic parameters for which the cluster survival is long com-
pared to the single-molecule turnover time but short enough
to be observed and quantified in numerical simulations. We
also briefly discuss in this setting, in Sec. III B, the more
complicated case of a diffusing cluster that is followed over
time. Finally, in Sec. III C, biological parameters appropriate
for gephyrin scaffold domains are used to provide a theoretical
estimation of their lifetime, based on our previously proposed
description of their dynamics [3].

Our focus in this paper is on postsynaptic domains
but other membraneless condensed structures have recently
sparked much interest. Some of them have been viewed as
condensed structures in thermodynamic equilibrium [12,13].
Others, such as lipid rafts [14,15] and E-cadherin clus-
ters [16], have been proposed to be formed and maintained as
nonequilibrium steady states by condensation and recycling
of components, somewhat analogously to the model for post-
synaptic scaffold domains proposed in Ref. [3]. These latter
schemes consume energy but provide, for instance, means
to tune the size of the condensed structure independently of

the size of the cellular compartment which contains it. The
methods used in the present paper should be generalizable to
these other cases.

II. SIMPLIFIED DYNAMICS OF AN IMMOBILE DOMAIN

We consider the evolution of an immobile domain, the size
of which grows by stochastic aggregation of clusters of par-
ticles and diminishes due to single-particle loss. We suppose
that clusters of size m impinge stochastically on the domain
and fuse with it at a rate rm in a Poissonian fashion. Particle
loss from the domain is also supposed to be stochastic and
Poissonian at a rate kd . When cluster aggregation dominates
over particle loss for small domain sizes, domains typically
fluctuate around a large mean size 〈n〉 � 1, for a long time as
compared to 1/kd , before eventually losing all their particles
and disappearing. Our aim in the present section is to analyze
this process, inspired by the process illustrated in Fig. 1(a),
and in particular to precisely evaluate the domain survival
time.

A. Large domains and shot-noise processes

In order to provide some feeling for the considered shot-
noise process, we assume in this first subsection that the
typical size of the domain is large and neglect the discreteness
of particle loss [3]. The size discreteness is also lost in this
description which makes us denote size by s instead of n.

The evolution of the domain size s can thus approximately
be described as

ds

dt
= −kd s +

∑
m

∑
i

m δ[t − ti(m)]. (1)

The first term on the right-hand side (RHS) of Eq. (1) de-
scribes the domain size reduction due to single-particle loss
at a rate kd . We assume that all particles forming the domain
have the same probability to leave it, which gives a total loss
proportional to the domain size s. The second term on the
RHS describes the sudden domain size increases resulting
from its encounters with clusters of size m at times {ti(m),
i = . . . ,−1, 0, 1, . . . }. The times ti(m) have been indexed by
the size of the impinging clusters since we suppose that the
corresponding events occur in a Poissonian fashion at rates
rm that only depend on the impinging cluster size m. When
particle loss is described in a continuous way as in Eq. (1), the
domain size s is always strictly positive and its lifetime is in-
finite. This continuous approximation nonetheless accurately
describes the typical size of long-lived clusters and regular
fluctuations around it. We thus first consider it to obtain some
basic characteristics of the process described by Eq. (1) which
belongs to a class of well-studied shot-noise evolutions [17].

With Eq. (1), the mean domain size 〈s〉 is simply obtained
as a balance between the particle loss flux, −kd〈s〉, and the
flux

∑
m rmm of clusters impinging on the domain,

〈s〉 = 1

kd

∑
m

rmm. (2)

Other moments of the domain size can also easily be com-
puted for the linear Eq. (1). First, it is convenient to ex-
press s(t ) in terms of a specific realization of the stochastic
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times {ti(m)},

s(t ) =
∑

m

∑
ti (m)<t

m exp[−kd (t − ti(m))]. (3)

The moments can then be obtained by averaging over the
stochastic times ti(m). One obtains for the first few ones

〈s(t )〉 =
∑

m

∫ t

−∞
dt ′ rm m exp[−kd (t − t ′)] = 1

kd

∑
m

rm m,

(4)

〈s2(t )〉 = 〈s〉2 +
∑

m

∫ t

−∞
dt ′ rm m2 exp[−2kd (t − t ′)]

= 〈s〉2 + 1

2kd

∑
m

rm m2, (5)

〈s3(t )〉 = 〈s〉3 + 3〈s〉(〈s2〉 − 〈s〉2) + 1

3kd

∑
m

rm m3. (6)

Since the average size 〈s(t )〉 is independent of time, it
is simply denoted it by 〈s〉 in Eqs. (5) and (6). Correlation
functions of low order can be computed in the same way,

〈s(t )s(t ′)〉 = 〈s〉2 + (〈s2〉 − 〈s〉2) exp(−kd |t − t ′|), . . . . (7)

It is immediately apparent on the time series of the domain
size shown in Fig. 1(d) that the process dynamics, with its
sharp upward jumps and slower decreases, is not invariant un-
der time reversal. This can be explicitly demonstrated, in the
present framework, by showing that the third-order correlation
function [18] 〈s(t )s(t ′)2 − s(t )2s(t ′)〉 does not vanish in the
stationary state. Indeed, the explicit computation [3] gives

〈s(t )s(t ′)2 − s(t )2s(t ′)〉 = 1

3kd

∑
m

rm m3[exp(−kd |t − t ′|)

− exp(−2kd |t − t ′|)]sign(t − t ′).

(8)

This absence of time-reversal invariance of correlation func-
tions in the steady state shows that Eq. (1) does not describe
the dynamics of a process at thermodynamic equilibrium [19]
and that energy should be consumed to sustain it.

Higher correlation functions can also be computed. The
computation of the jth correlation function 〈s(t1) . . . s(t j )〉
involves sums over j stochastic times coming from the re-
placement of each s(ti ) by its expression (3). The only term
at order j that cannot be expressed with the help of lower
order correlation functions is obtained when the j stochastic
times are identical in the sums. In other terms, the cumulants
c j associated to the moments 〈s j〉 have the simple expression

c j =
∑

m

∫ t

−∞
dt ′rm m j exp[− jkd (t − t ′)] = 1

jkd

∑
m

rm m j .

(9)
Thus, the cumulant generating function G(μ) reads

G(μ) =
∞∑
j=1

c j
μ j

j!
= 1

kd

∑
m

rm

∫ μ m

0
du

exp(u) − 1

u
. (10)

The moments are given by the corresponding generating
function [17],

M(μ) = 〈exp[μs(t )]〉 = exp[G(μ)]. (11)

Another way [17] to analyze Eq. (1) and obtain Eq. (11) is to
write the corresponding evolution equation for the probability
P(s, t ) of observing a cluster of size s,

∂t P(s, t ) = kd∂s(sP) +
∑

m

rm[P(s − m, t ) − P(m, t )],

with P(s, t ) = 0, s < 0, (12)

where we have explicitly noted the convention used in Eq. (12)
that P(s, t ) vanishes for negative sizes. By taking the Laplace
transform of P(s), Eq. (12) gives back Eq. (11), as we show
below for the discrete case. Although we do not make use
of it, we also note that the stationary version of Eq. (12)
allows one [17] to explicitly compute the expression of P(s)
in successive size intervals.

When the fluctuations of s(t ) are small compared to its
average (i.e., c2 = 〈s2(t )〉 − 〈s(t )〉2 � 〈s(t )〉2), it is clear that
the domain size s will rarely become small and that its lifetime
will be long as compared to 1/kd . In order to obtain a precise
estimate, we turn in the following sections to the analysis of
shot-noise process with discrete particle loss.

B. Aggregation of monodisperse clusters

We begin by considering the simplest case when the im-
pinging clusters have a single size m. Similarly to Eq. (12),
master equations can easily be written for the probabilities
Pn(t ) that the evolving domain has the size n at time t ,

dPn

dt
= kd [(n + 1)Pn+1 − nPn] − rmPn, n = 1, . . . , m,

(13)
dPn

dt
= kd [(n + 1)Pn+1 − nPn] + rm[Pn−m − Pn],

n � m + 1. (14)

The first two terms on the RHS of Eqs. (13) and (14) describe
the domain size change due to particle loss. Namely, particle
loss at rate kd can produce a domain of size n from a domain
of size n + 1 or change the size of an existing domain of
size n. The other terms on the RHS of Eqs. (13) and (14)
depict size change due to aggregation of a cluster of size m
with rate rm: This can produce a cluster of size n from a
cluster of size n − m if n � m + 1 and change the size of
an existing cluster. Figure 2(a) shows an example trajectory
with m = 10, rm/kd = 2 obtained from the simulation of the
stochastic process described by Eqs. (13) and (14).

When rm � kd , the balance between cluster aggregation
and particle loss produces domains fluctuating for a long
time around the large size mrm/kd . Eventually, however, the
domain comprises only one particle and has a finite proba-
bility of disappearing. This separation of timescales renders
very relevant the mathematical notion of quasistationary dis-
tribution [9], that is, a probability distribution that is station-
ary when the domain is conditioned not to disappear. For
rm � kd , the Pn relax on a fast timescale of order 1/kd to a
quasistationary distribution, an example of which is shown in
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. Shot-noise model for the stochastic size dynamics of an immobile domain in the case of monodisperse impinging clusters.
(a) Example of size evolution for a single domain described by the simplified shot-noise model. The randomly impinging clusters contain
10 particles, with an encounter rate relative to particle loss r/kd = 2 (the simulation shown was performed with r = 2, kd = 1). (b) The
distribution of sizes explored by clusters after a transient time of 5/kd is shown. The distribution (solid blue line) represents the average
over many (n = 2000) realizations of the stochastic shot-noise process for a duration of T = 500/kd each. The theoretical quasistationary
distribution An is also shown (dashed orange line). Its determination is explained in panels (c) and (d). (c) The solution An to the master
equations (13) and (14) that govern the domain size distribution depends on the parameter ν. The slow n−(1+ν ) large-n asymptotics of the An is
proportional to C(ν ) [Eq. (26)] shown here. The sought-for solution of the master equations is obtained for ν = ν∗, when C(ν∗) = 0. (d) Three
solutions of the master equations with different values of ν are shown, ν = ν∗ = 5.69 · 10−3 (orange), ν− = 0.9ν∗ (blue), and ν+ = 1.1ν∗

(green). Inset: The distributions corresponding to ν− and ν+ have a slow decay for large n which agrees with the predicted scaling n−(1+ν ). The
distribution for ν = ν∗ decays much faster. All distributions are normalized to one. The contributions of the slow positive tail for ν− and slow
negative tail for ν+ explain their apparent differences in normalization. (e) The number of surviving clusters (solid blue line) in the simulations
agrees well with the predicted exponential decay exp(−ν∗kdt ) (dashed black curve). (f) The characteristic lifetime τd of the clusters increases
exponentially with the rate of supply r10. The theoretical prediction of the lifetime with the numerically determined ν∗ (blue line) is well
approximated by the analytical expression [Eq. (20)] for r10/kd � 1 (orange dashed line).

Fig. 2(b). The probability to remain in this quasistationary
distribution then slowly decreases. We compute below the
smallest eigenvalue of the system (13) and (14) which charac-
terizes this slow decrease and provides the (inverse) timescale
of domain disappearance. Similar estimates together with
rigorous proofs have been provided before for birth-and-
death processes in the context of population dynamics [11].
We describe first another way to estimate the small flux of
disappearing domains. It consists in turning the process into
a stationary one by fictitiously recreating a domain after its

disappearance. This is similar in spirit to Kramers’s classic
method [20] of obtaining the time of thermal escape out
of a finite potential well from the steady-state particle flux
produced by reinjecting particles into the well after their
escape.

1. A stationary process with domain recreation

In order to transform Eqs. (13) and (14) into a stationary
process, we monitor the creation of a domain of vanishing
size by introducing the probability P0 that a domain contains

012411-5



VINCENT HAKIM AND JONAS RANFT PHYSICAL REVIEW E 101, 012411 (2020)

zero particles. We also allow the creation of a domain of size
m from a domain with zero particles. Namely, we supple-
ment (13) and (14) with

dP0

dt
= kd P1 − rmP0. (15)

At the same time, Eq. (14) is supposed to be valid starting
from n = m (instead of n = m + 1) with P0 now well defined.
In other words, a domain that has disappeared is reinjected
at a size m with a rate rm. This prescription turns the domain
dynamics into a process that has a well-defined steady state.

Setting the time derivatives to zero, Eq. (15) determines P1

from P0 and by recursion all the Pn with the help of Eqs. (13)
and (14). One way to solve these equations is to introduce the
generating function for the Pn,

P(λ) =
∞∑

n=0

Pnλ
n, (16)

which obeys the differential equation

kd (1 − λ)
dP

dλ
+ rm(λm − 1)P = 0. (17)

One can note that the definitions of P(λ) coincide with that of
the previously defined M(μ) [Eq. (11)] with λ = exp(μ). The
solution of Eq. (17) is readily obtained as

P(λ) = P0 exp

[
rm

kd

∫ λ

0
du

1 − um

1 − u

]
. (18)

Requiring that the sum of the Pn equals 1 determines P0 as well
as the mean probability flux Jd for a single cluster to reach a
size 0,

P0 = exp

[
− rm

kd

∫ 1

0
du

1 − um

1 − u

]
= exp

[
− rm

kd
Hm

]
, (19)

Jd = kd P1 = rmP0. (20)

where we have used that the integral in Eq. (19) is the integral
representation of the harmonic number Hm,

Hm ≡
m∑

l=1

1

l
=

∫ 1

0
du

1 − um

1 − u
. (21)

Expansion in powers of λ of P(λ) [Eqs. (18) and (19)] pro-
vides explicit expressions for the Pn. The large-n asymptotics
of the Pn can also be determined from the large-λ behavior
of P(λ) (see Appendix A). The inverse of Jd provides the
sought-after estimation of the mean domain disappearance
time τd .

In the limit of large m, one can check that the expres-
sion (18) gives back the previously found expression for
M(μ) when applied to P[exp(μ)]. In the same limit, the mean
domain disappearance time τd can be simply expressed.

For large m, the harmonic number Hm can be approximated
as Hm � ln m + γ , where γ � 0.577 is Euler’s constant. The
mean domain disappearance time thus reads in the large m
limit,

τd = 1/Jd � 1

rm
(meγ )rm/kd . (22)

2. Computation of the smallest relaxation eigenvalue

Another estimate of the domain disappearance time is
provided by the maximal eigenvalue [11] associated to the
linear evolution [(13) and (14)]. Namely, we search the
smallest positive ν and allied eigenvector An, such that Pn =
An exp(−νkdt ) is an exact solution of the dynamics. Substi-
tution of this ansatz for the Pn in Eqs. (13) and (14) provides
explicit recursion formulas for the An for a given ν,

An+1 = n − ν + rm/kd

n + 1
An, n = 1, . . . , m, (23)

An+1 = n − ν + rm/kd

n + 1
An − rm

kd (n + 1)
An−m, n � m + 1.

(24)

These recursion relations determine all the An as a function of
A1 for a given ν. The admissible values of ν are themselves
determined by considering the asymptotic behavior of the An

for n large. Assuming that An varies slowly with n, Eq. (24)
gives (for n � 1)

dAn

dn
= −1 + ν

n
An, (25)

that is,

An ∼ A1C(ν) n−(1+ν). (26)

The numerical iteration of the recursion relations (23) and (24)
indeed produces the slow asymptotic decay (26) for general
values of ν. The obtained prefactor C(ν) is displayed in
Fig. 2(c). The slow asymptotic decay (26) does not correspond
to the solution we seek. The function C(ν) is found to be
negative for ν > ν∗ [Fig. 2(c)]. Therefore, all the values of
ν such that ν > ν∗ give negative probabilities and can be
immediately excluded. The other values, ν < ν∗, with slow
decay can also be excluded since for n large, the incoming
flux of clusters of size n is dominated by the decaying larger
clusters and not the growing smaller clusters [i.e., kd (n +
1)Pn+1 > rmPn−m]. This shows that these solutions correspond
to initial cluster distributions with long tails of large clusters
and not to the distribution we are interested in, which is
created by the growth of small clusters. Additionally, when
ν∗ < 1, as we will obtain, the slow asymptotic decay Eq. (26)
gives distributions with diverging mean cluster sizes when
ν < ν∗. This divergence is not possible when large clusters
are produced from aggregation of smaller clusters during a
finite time before disappearing (and it is, of course, different
from the mean size � mrm/kd that we expect).

The sought-for maximal eigenvalue corresponds to ν = ν∗
for which C(ν∗) = 0. In this case, the An are positive for all n
and have the much faster decay with ln(An) ∼ −[n ln(n/a) −
n]/m (see Appendix A). Examples of the obtained An for three
different values of ν are shown in Fig. 2(d), as well as the
much faster asymptotic decay of the An for ν = ν∗.

An explicit expression for ν∗ can be obtained along lines
similar to those of the previous Sec. II B 1. It is convenient to
introduce the generating function for the An,

A(λ) =
∞∑

n=1

Anλ
n. (27)

012411-6



LIFETIME OF A STRUCTURE EVOLVING BY CLUSTER … PHYSICAL REVIEW E 101, 012411 (2020)

The recursion relations (23) and (24) translate into the follow-
ing differential equation for A(λ),

(1 − λ)
dA

dλ
+ [(λm − 1)rm/kd + ν]A = A1. (28)

The solution of the linear Eq. (28) is easily obtained and reads

A(λ) = A1(1 − λ)ν
∫ λ

0

dv

(1 − v)1+ν
exp

[
rm

kd

∫ λ

v

du
1 − um

1 − u

]
.

(29)

The singularity of A(λ) at λ = 1 determines the asymptotic
behavior of the An. Developing the above integral around
λ = 1, one finds, as detailed in Appendix B,∫ λ

0

dv

(1 − v)1+ν
exp

[
rm

kd

∫ λ

v

du
1 − um

1 − u

]

= 1

ν
(1 − λ)−ν − 1

ν
+

∫ 1

0

dv

(1 − v)1+ν

×
{

exp

[
rm

kd

∫ 1

v

du
1 − um

1 − u

]
− 1

}
+ O[(1 − λ)1−ν].

(30)

At λ = 1, A(λ) therefore behaves like

A(λ) = 1

ν
A1 + A1B(ν)(1 − λ)ν + O[(1 − λ)], (31)

with

B(ν) = −1

ν
+

∫ 1

0

dv

(1 − v)1+ν

{
exp

[
rm

kd

∫ 1

v

du
1 − um

1 − u

]
− 1

}
.

(32)

It is useful to remember that the coefficients an of λn in the
expansion of (1 − λ)σ are

an = 	(n − σ )

	(−σ )	(n + 1)
∼ n−1−σ

	(−σ )
(33)

for large n, where 	 denotes the 	 function [21]. Comparing
Eqs. (31) and (33) gives back the asymptotic behavior (26) of
the An with the explicit expression of C(ν) = B(ν)/(ν	(−ν)),
or

C(ν) = 1

	(1 − ν)

(
1 − ν

∫ 1

0

dv

(1 − v)1+ν

×
{

exp

[
rm

kd

∫ 1

v

du
1 − um

1 − u

]
− 1

})
. (34)

The function C(ν) [Fig. 2(d)] quickly decays with ν from
C(0) = 1, vanishes at ν = ν∗, and then becomes negative,
reflecting the unphysical appearance of negative probabilities
for ν > ν∗, as mentioned above. The starting value C(0) = 1
is clearly seen from the explicit expression (34). Its physical
origin is simply cluster number conservation: For ν = 0, a
stationary probability distribution is obtained by the injection
of clusters of infinite size with the flux limn→+∞(kd nAn) =
kdC(0)A1, which should be equal to the disappearance rate
kd A1 of clusters of size 1.

In general, the equation C(ν∗) = 0 is an implicit equation
for ν∗. However, in the limit where rmm/kd is large, the

integral term in (34) is dominated by its lower bound. In
this limit, one obtains the explicit asymptotic formula (see
Appendix B)

ν∗ = rm

kd
exp

[
− rm

kd

∫ 1

0
du

1 − um

1 − u

]
= rm

kd
exp

[
− rm

kd
Hm

]

(35)

with Hm given by Eq. (21). Equation (35) gives the char-
acteristic time τd = 1/(kdν

∗) for the mean domain disap-
pearance time. It is identical to our previous estimate (22).
This analytical expression captures well the decay of the
fraction of surviving clusters observed in simulations of the
underlying shot-noise process, as shown in Figs. 2(e) and 2(f)
(see Appendix C for details of the implementation).

C. Aggregation of polydisperse clusters

We now extend the preceding calculation to the case of
multiple aggregating clusters of different sizes m, with Poisso-
nian encounter rates rm. These rates can be expressed in terms
of the concentrations cm of diffusing clusters of size m and
their diffusion constant Dm, as detailed in the next section. In
the polydisperse case, the probabilities Pn of the different sizes
n of the fluctuating immobile domain evolve according to the
master equations

dPn

dt
= kd [(n + 1)Pn+1 − nPn] − Pn

∞∑
m=1

rm +
n−1∑
m=1

rmPn−m,

n � 1, (36)

where we have adopted the convention that Pn = 0 for n � 0,
in the last term on the RHS.

We again search for the smallest positive eigenvalue ν and
eigenvector An such that Pn(t ) = An exp[−νkd t] is a solution
of Eq. (36). Along the lines of the previous section, we
introduce the generating function A(λ) = ∑∞

n=1 Anλ
n, which

now obeys the following differential equation:

(1 − λ)
dA

dλ
+

[
1

kd

∞∑
m=1

rm(λm − 1) + ν

]
A(λ) = A1. (37)

From this equation, we can already deduce the average do-
main size 〈〈n〉〉 = ∑

n nPn(t )/
∑

n Pn(t ) of surviving clusters,
which is constant in the quasistationary regime and given by
〈〈n〉〉 = A′(1)/A(1) when expressed in terms of the generating
function. Differentiating Eq. (37) with respect to λ, and setting
λ = 1, one obtains −(1 − ν)A′(1) + ∑

m(rm/kd )m A(1) = 0.
For ν � 1, we immediately find 〈〈n〉〉 � ∑

m rmm/kd , consis-
tent with the result obtained for the simplified description of
Sec. II.

The solution of Eq. (37) is again found relatively straight-
forwardly, and we obtain

A(λ) = A1(1 − λ)ν
∫ λ

0

dv

(1 − v)1+ν

× exp

[∑
m

rm

kd

∫ λ

v

du
1 − um

1 − u

]
. (38)
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Following the arguments of the preceding section, we obtain
an implicit equation for the smallest positive eigenvalue ν∗ for
which C(ν∗) = 0, with C(ν) given by

C(ν) = 1

	(1 − ν)

(
1 − ν

∫ 1

0

dv

(1 − v)1+ν

×
{

exp

[ ∞∑
m=1

rm

kd

∫ 1

v

du
1 − um

1 − u

]
− 1

})
. (39)

In the limit when
∑

m rm/kd � 1, we obtain the following
approximate explicit expression for ν∗,

ν∗ = 1

kd

∑
m

rm exp

[
−

∑
m

rm

kd

∫ 1

0
du

1 − um

1 − u

]

= 1

kd

∑
m

rm exp

[
−

∑
m

rm

kd
Hm

]
, (40)

and the corresponding characteristic domain lifetime

τd = exp
∑

m rmHm/kd∑
m rm

. (41)

The quasistationary distribution of domain sizes is given by
the normalized An. They can be computed using the recursion
relation

An+1 = 1

n + 1

[
(n − ν)An + An

∞∑
m=1

rm

kd
−

n−1∑
m=1

rm

kd
An−m

]
,

n � 1, (42)

with A1 = ν ensuring proper normalization. This follows from
the fact that domain disappearance only occurs when domains
reach size 1. Namely, one has

d

dt

(∑
n

Pn(t )

)
= −kd P1(t ) (43)

or

ν
∑

n

An = A1, (44)

where Eq. (44) holds for a relaxation eigenvector and readily
shows that the sum of the An equal 1 when A1 = ν. This can
also be directly seen by taking λ = 1 in Eq. (37).

III. APPLICATION TO DIFFUSING
AND AGGREGATING CLUSTERS

A. Lifetime and size distribution of an immobile domain:
Shot-noise appoximation versus particle-based simulations

In the previous sections, the lifetime of a domain was
computed by neglecting correlations between the impinging
clusters. In Ref. [3], we checked that this type of mean-field
approximation produced a cluster size distribution for the
diffusing clusters that agreed very well with the results of
full numerical simulations. In the present section, we wish to
test how these two types of description compare for domain
lifetimes.

In the full numerical simulations, single particles and
clusters diffuse and aggregate upon encounter. The diffusion

coefficient of single particles is D0 and the clusters diffuse
with a size-dependent diffusion coefficient Dm,

Dm = D0 m−σ , (45)

where m is the cluster size. The exponent σ controls the
dependence of diffusion on cluster size. By comparison to
experimental data, its value for gephyrin oligomers in spinal
cord neurons ex vivo was determined to be σ � 0.5.

Upon encounter, clusters aggregate and undergo some level
of rearrangement. The two extreme cases of no rearrangement
and full rearrangement were explored in Ref. [3]. No signif-
icant effect on the cluster size distribution was observed in
the parameter range explored. Here, we limit ourselves, for
simplicity, to simulations where clusters are fully rearranged
into disks of density ρ upon aggregation.

Finally, diffusing single particles and particles in clusters
are removed at a rate kd to mimic turnover. They are reinjected
as single particles so that the total concentration of particles in
the simulation is constant and equal to c0. Further simulation
details are provided in Appendix C and in Ref. [3].

As reported in Ref. [3], on an intermediate timescale
∼1/kd , the stochastic aggregation-removal dynamics leads to
a nonstationary steady state with a characteristic distribution
of clusters of sizes m with respective concentrations cm, as
shown in Fig. 3(a).

This dynamics and the steady-state size distribution are
well described by the Smoluchowski equations,

dc1

dt
= J − kc1 + 2kc2 − K

∞∑
m=1

(D1 + Dm)c1cm, (46)

dcn

dt
= kncn + k(n + 1)cn+1 − K

∞∑
m=1

(Dn + Dm)cncm

+ K
n−1∑
m=1

(Dn−m + Dm)cn−mcm, n � 2, (47)

where J fixes the total amount of particles c0 = J/kd . The
kinetic coefficient K is determined by fitting the stationary
concentrations c∗

n obtained by simulating Eqs. (46) and (47)
to the ones observed in full particle-based simulations, as
detailed in Appendix D. The theoretical (Smoluchowski rate
equation) result with the fitted parameter K is shown in red
in Fig. 3(a) with the cluster distribution obtained from full
numerical simulations for comparison.

In order to compute domain lifetimes in full numerical
simulations, one particular aggregate of particles, or domain,
is initialized with a given number of constituent particles.
It is immobilized during the simulation (i.e., its diffusion
constant imposed to be zero) while its size fluctuations and
lifetime are monitored over time; see, e.g., the blue trajectory
in Fig. 1(d).

For many parameter choices, the exponential dependence
of the domain lifetime on the particle turnover rate kd and
encounter rates rm renders their lifetime too long to be mea-
sured in simulations. Therefore, the simulation parameters
(Table I, case I) are chosen in Fig. 3 such as to observe the
disappearance of aggregates within reasonable computer time.

These results can be compared with those produced by the
shot-noise model of Sec. II. The rates of encounter of a single
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(a) (b)

(c) (d)

FIG. 3. Shot-noise description vs particle-based simulations of cluster-cluster aggregation for an immobile domain. Simulation parameters
are given in Table I, case I. (a) The stationary cluster size distribution (average concentrations of clusters of a given size on the membrane)
observed in the simulations (black dots) is shown together with the result from the rate-model description (red line). The latter requires
to determine a single free parameter K (see text) that is obtained by fitting the cumulative distribution of cluster sizes shown in the inset.
(b) The observed rates rm of encounters with clusters of size m for an immobile cluster (blue dots) are shown together with the rate-model
approximation (brown line) using the previously determined parameter K . (c) Quasistationary probability distribution An of explored domain
sizes for an immobile domain as observed in simulations (blue line) and predicted by the theory with the previously fitted value of K (brown
line). (d) Clusters disappear due to stochastic fluctuations with a rate 1/τd , where τd is the typical cluster lifetime. The fraction of surviving
clusters S observed in simulation (blue) is well fitted by a decreasing exponential with a time constant τd = 49.2/kd (thin black line). The
theoretical prediction based on the rate equations is τd = 46.0/kd (brown line). The approximate analytical expression of the typical lifetime
is about 7% shorter than the simulation result.

fixed domain with clusters of size m are obtained from the
mean-field Smoluchowski description as

rm = KD0m−σ c∗
m, (48)

independent of the domain size n(t ). A comparison of these
theoretically predicted rates and the ones measured in the
particle-based simulations is shown in Fig. 3(b). The quasis-

TABLE I. Parameters for computer simulations. In case I, pa-
rameters are chosen such that aggregates remain relatively small on
average and disappear on timescales compatible with the duration
of our simulations, of the order of 100/kd ; see Fig. 3. In case II,
we use the parameters identified in a previous work to describe the
aggregation-removal dynamics of gephyrin domains in spinal cord
neurons [3]. The quasistationary domain size distribution in that case
is shown in Fig. 5. Note that parameters are nondimensionalized
using the particle density in aggregates ρ and the diffusion constant
for monomers D0. See Ref. [3] for details on the implementation.

Case I Case II
(fast turnover) (slow turnover)

c0/ρ 10−3 0.9×10−3

kd/(c0D0 ) 0.1 0.022
σ 0.5 0.5

tationary distribution of domain sizes is thus readily calcu-
lated according to our previous analysis [Eq. (42)], and the
characteristic domain lifetime is given by Eq. (41). While the
observed cluster size distribution [Fig. 3(c)] is well described,
the predicted characteristic lifetime [Fig. 3(d)] is ≈7% off,
with Tpred = 46/kd versus Tobs = 49.2/kd . This seems rather
satisfactory given the exponential dependence on the rm that
involve the fitted parameter K . The variation of Tpred with K ,
together with different choices to determine the optimal K , is
presented in Appendix D.

In Fig. 3(d), the observed domain lifetime is determined
by fitting an exponential decay to the fraction of surviving
domains. As a check for internal consistency, we can fur-
thermore compare this result with the observed probability
of domains to be monomeric, i.e., the observed A1. Within
the precision of our simulations, the measured lifetime Tobs

is consistent with the expected lifetime (Aobs
1 kd )−1 = (50.5 ±

2.2)/kd , where the uncertainty corresponds to one standard
deviation determined by nonparametric bootstrap resampling
from different realizations of the simulation (see Appendix C
for details).

B. Lifetime and size distribution of a diffusing cluster

In the previous subsection as well as in Sec. II, we focused
on the size fluctuations of an immobile domain surrounded
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by diffusing and aggregating clusters, which appears the most
interesting case in the context of synaptic dynamics. Nonethe-
less, one can also imagine following a diffusing cluster of
particles over time. As the cluster diffuses, it encounters other
diffusing clusters which makes its size grow, while losing
single particles by turnover; see, e.g., the orange trajectory
in Fig. 1(d). The size distribution obtained by following a
diffusing cluster over time is similar to that of a fixed domain,
see Fig. 1(e), but very different from the size distribution of
diffusing clusters at a given time instant [Fig. 1(c)]. Namely,
when a cluster is followed, it is observed that irrespective of
its initial size, after a time of a few 1/kd , it fluctuates over a
mean average size in a quasistationary fashion [3].

One can try and adapt the methods developed for immobile
domains to determine the distribution of sizes that a diffusing
cluster explores over time, as well as its average lifetime.

A simplified shot noise process for a diffusing cluster can
be written as for an immobile domain. The corresponding
master equations generalizing Eq. (36) read

dPn

dt
= kd [(n + 1)Pn+1− nPn]−

∞∑
m=1

rm,nPn+
n−1∑
m=1

rm,n−mPn−m,

n � 1. (49)

When the diffusion constant of the clusters is given by
Eq. (45), the rates rm,n are given by

rm,n = KD0c∗
m (m−σ + n−σ ). (50)

The difference with the case of an immobile domain [Eq. (48)]
is that the rates rm,n do not only depend, as previously, on the
size m of the impinging clusters but also, when σ �= 0, on the
size n of the followed diffusing cluster. A comparison between
the rates given by Eq. (50) and measured encounter rates (see
Appendix C for details) in full particle-based simulations is
shown in Fig. 4(a).

As discussed above, the quasistationary distribution and
the lifetime of the diffusing cluster correspond to the eigen-
vector of Eq. (49), Pn = An exp(−νkdt ), with the smallest
decay time, i.e., the smallest possible ν. Substitution into
Eq. (49) allows one to recursively determine the An,

An+1 = 1

n + 1

(
n − ν + 1

kd

∞∑
m=1

rm,n

)
An

− 1

kd (n + 1)

n−1∑
m=1

rm,n−mAn−m. (51)

The desired eigenvalue is obtained as the value of ν = ν∗
for which the prefactor of the slow decay Eq. (26) vanishes.
The corresponding quasistationary distribution of the sizes n
explored by a diffusing cluster is given by the corresponding
normalized An.

The lifetime and quasistationary distribution computed
from this analysis of the model Eq. (49) are compared to full
numerical simulations of diffusing and aggregating clusters
in Fig. 4(b) for the same parameters as those of Fig. 3. The
shot-noise description is found to account for the particle-
based simulations similarly well for diffusing clusters as for
an immobile domain.

(a)

(b)

(c)

FIG. 4. Shot-noise description vs particle-based simulations of
cluster-cluster aggregation for diffusing clusters. Simulation param-
eters are given in Table I, case I. (a) The observed rates rm,n of
encounters of a cluster of size n (orange triangles: n = 5; orange
squares: n = 20) with clusters of size m are shown together with
the rate-model approximation using the previously determined pa-
rameter K [Fig. 3(a)]. (b) The quasistationary probability distribution
of explored cluster sizes for freely diffusing clusters as observed in
the simulations (orange line) and predicted (solid green line) from
the rate equations with full size dependence of encounter rates rm,n

[Eq. (50)] and choosing the value ν = ν∗ which gives a fast decay of
the An for large n. The theoretically predicted probability distribution
obtained with a self-consistently determined effective cluster size
neff and corresponding encounter rates rm that do not depend on
the size n of the tracked cluster is also shown (dashed green line).
The respective predicted characteristic lifetimes are given in the
plot legend. The given standard deviation is obtained using the
bootstrap method explained in Appendix C 3. (c) Determination of
the self-consistent cluster size neff . The predicted quasistationary
probability distribution An of observing a diffusing cluster of size
n depends on the effective cluster size neff via the effective encounter
rates; distributions are shown for neff = 5 (solid gray line), neff =
10 (dash-dotted gray line), and neff = 20 (dotted gray line); the
distribution obtained from the simulation is also plotted [orange line,
same as in panel (b)]. For larger neff , the rates are lower and the
size distribution tends to lower n. Inset: graphical explanation of the
self-consistent determination of neff . The expected average cluster
diffusion constant 〈Dn〉 = ∑

n An(neff )Dn depends on neff via the An

and increases with neff . A self-consistent solution for the effective
size is then given by neff = (〈Dn〉/D0 )−1/σ , obtained as the crossing
of the curve representing the expression of the right-hand side (solid
line) with the diagonal (dashed line).
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For an immobile fluctuating domain, we could compute
numerically the eigenvalue ν∗ but also obtain the analytic
expression (40) for the function C(ν) of which ν∗ is a root,
as well as the explicit asymptotic expression (39) for ν∗
in the parameter regime in which domains are long lived.
When the rates rm,n explicitly depend on the size of the
domain considered, these analytic computations appear dif-
ficult without further approximations. We did not succeed in
finding an analytic solution for the integrodifferential equation
that replaces the differential equation (37) for the generating
function of the An.

One simple approximation that we tried is to replace the
rates rm,n by rates rm,neff where the varying size of the consid-
ered cluster has been replaced by a fixed effective size neff .
This eliminates the additional size dependence of the rates on
the size n of the diffusing cluster and reduces the calculation
to that performed for an immobile domain. The resulting
quasistationary distributions An(neff ) for different values of
neff are shown in Fig. 4(c) for the same parameters as those
of Fig. 4(b). One can moreover try and determine neff self-
consistently by requiring, for instance, that the mean cluster
diffusion constant obtained from the distribution An(neff ) be
equal to the effective diffusion constant that served to deter-
mine the distribution,∑

n

An(neff )n−σ = n−σ
eff , (52)

where we have used the expression (45) for the diffusion
constant. The self-consistent determination of neff obtained
from Eq. (52) is depicted in the inset of Fig. 4(c). As shown
in Fig. 4(b), the resulting quasistationary distribution provides
a fair approximation of the exact quasistationary distribution
for Eq. (49). However, the diffusion rate of the cluster is
underestimated in the self-consistent approximation when the
cluster size is smaller than neff . This gives longer estimated
residence times of the cluster at small sizes and a larger
weight at n > neff for the self-consistent quasistationary dis-
tribution than for the exact one. This discrepancy leads the
the self-consistent approximation to significantly underesti-
mate the diffusing cluster lifetime (by a factor of about 3.5
for the parameters of Fig. 4). More accurate approximations of
the quasistationary distribution for small cluster sizes would
thus be worth developing.

C. Lifetime of postsynaptic gephyrin clusters

In Ref. [3], we determined biophysical parameters gov-
erning the aggregation-and-removal dynamics of postsynaptic
gephyrin aggregates. For representative values (see Table I,
case II), the size distribution of diffusing clusters obtained
in particle-based simulations is shown in Fig. 5(a). It is well
reproduced by the distribution produced by the mean-field
Smoluchowski equations [(46) and (47)] with the parameter K
fitted using the cumulative cluster size distribution [Fig. 5(a)
insert], as explained in Appendix D. As shown in Fig. 5(b), the
impinging cluster rates on the immobile fluctuating domains
obtained from the Smoluchowski equations also agree well
with the rates directly measured in particle-based simulations.

Using these rates, we can compare the predicted quasis-
tationary size distribution of surviving clusters to the one

observed in particle-based simulations; see Fig. 5(c). In our
simulations, fixed clusters are on average composed of 25 ±
13 gephyrin trimers (± standard deviation), which matches
well the analytical prediction 24 ± 14. (Here, we consider a
single particle to represent a gephyrin trimer, as the trimeric
form of gephyrin is very stable and gephyrin does not seem
to exist as a monomer or in dimeric form in cells.) Because
of the relatively large cluster sizes involved and slow particle
loss, the expected typical cluster lifetime is much longer
than for the other parameters studied, and therefore difficult
to observe in simulations. Our analytical result Eq. (41)
nevertheless provides us with a quantitative estimate: For
gephyrin domains whose dynamics are governed by the pro-
cesses described above, we predict an average lifetime of
Tpred ≈ 5.25×103/kd . With a measured kd of about half an
hour [5], this gives a lifetime of 3–4 months. This is several
orders of magnitude larger than the turnover time of individual
proteins and highlights the ability of the aggregation-removal
dynamics to maintain (on average) stable synaptic domains
over long times. Note that the precise predicted value depends
on the value of K used for approximating the full dynamics by
Smoluchowski rate equations. However, comparison with the
expected rate of decay as predicted by the sampled frequency
of clusters being of size 1, Fig. 5(c), shows both values are
consistent within the error margin of our simulations; see also
Appendix D.

In Ref. [3], fitting the model to experimental distributions
actually resulted in a range of admissible values for the
concentration of diffusing c0 of diffusing gephyrin trimers,
turnover time kd , and diffusion exponent σ [Eq. (48)]. A
variation in these values results in a change of the rates rm

in the Smoluchowski description. The corresponding variation
of the domain lifetime can be simply computed using the shot-
noise model. As shown in Fig. 5(d), the resulting variation in
domain lifetime is large and can be ascribed to the variation
in the average size of the fluctuating domain. As expected, the
larger the average size of the domain, the longer its lifetime.
Domains composed of 70 gephyrin trimers could theoretically
have an extremely long lifetime.

There is also a significant influence of the exponent σ ,
with a larger σ producing a longer lifetime for the same
average domain size. The influence of the exponent σ on the
quasistationary distribution is milder, as shown in Fig. 5(e).

A similar analysis can be repeated for diffusing clusters.
The theoretically predicted quasistationary size distribution is
compared with the one determined in simulations in Fig. 5(f)
for parameters of case II (see Table I). The expected lifetime
of diffusing domains is several orders of magnitudes larger
than for immobile domains. Because the observation of clus-
ters of size 1 is a very rare event, the quantitative accuracy
of the theoretical prediction is, however, difficult to assess.
Similarly to the parameters with faster turnover (Fig. 4), the
self-consistent solution overestimates small and large cluster
sizes because encounter rates are underestimated when the
cluster is small and overestimated when the cluster is large.

IV. DISCUSSION AND CONCLUSION

In this work, we have derived an explicit expression for
the lifetime of a mesoscopic domain of particles that evolve,
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immobile

(a) (b)

(c)

(e)

(d)

(f)

FIG. 5. Predicted distribution of explored cluster sizes for synaptic gephyrin domains, which allow us to infer the typical domain lifetime.
Simulation parameters are given in Table I, case II. (a) Particle-based simulations with the parameter values obtained in a previous work [3]
give rise to a stationary distribution of diffusing clusters in the membrane (black dots). The stationary cluster size distribution (average
concentrations of clusters of a given size on the membrane) is shown together with the result from the rate-model description (red line).
The latter requires us to determine a single free parameter K (see text). Inset: The best fit to the cumulative distribution of cluster sizes is
obtained for K = 1.81. (b) The observed rates of encounter rm for domains of size n with clusters of size m. For immobile domains (blue
dots), the rates do not depend on the size n; for diffusing clusters that are followed, the rates are shown for n = 10 (orange triangles) and
n = 30 (orange crosses). The theoretical predictions for the rm based on the fitted K [panel (a)] are shown as lines (immobile: solid brown,
diffusing n = 10: solid green, diffusing n = 30: dashed green). (c) The quasistationary distribution of sizes explored by immobile domains
subject to encounter with diffusing clusters and turnover of constituent particles for particle-based simulations (blue line) and the prediction
from the rate-equation description with fitted K (brown line). The expected lifetime of immobile domains is given in the plot legend, where the
uncertainty in the simulation result reflects limited sampling of occurrences where the domain size is 1. (d) Theoretically predicted lifetimes
for immobile domains for different values of c0, kd , and σ . For given σ , the predicted lifetime depends only on the average domain size 〈n〉. The
parameters corresponding to the simulations and theory shown in panels (a)–(c) and (f) are surrounded by the black circle; for all parameters,
we used the value K = 1.81 for the mean-field equations as determined in panel (a). (e) The averaged rescaled quasistationary size distributions
of immobile clusters for different combinations of c0, kd , and σ show a trend toward narrower size distributions with increasing σ , implying
larger domain lifetimes. Error bars represent the standard deviation over the averaged quasistationary size distributions for different kd and
c0. (f) For diffusing domains, the distribution of explored cluster sizes tends to larger values as the rates of encounter with other clusters are
larger on average than for immobile domains; see panel (b). The self-consistent solution (see text for details) captures the overall shape of the
distribution but can be expected to overestimate the probability of observing clusters of size 1; see text for details. Because the corresponding
cluster lifetimes are extremely long, the quantitative accuracy of the predictions is difficult to assess by direct numerical simulations.

i.e., respectively grow and shrink, by the aggregation of
clusters of particle of different sizes and loss of individual
constituent particles. This was achieved by considering the
simpler mathematical problem of computing the average time

of first passage to zero for a Markov process with downward
jumps of unit size, representing particle loss, and upward
jumps of a range of sizes, representing cluster aggregation,
at rates only depending on the size of the jumps, i.e., simply
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on the size of the impinging clusters and their concentrations.
This is a simplification of the spatial model of Ref. [3] in
the spirit of the mean-field Smoluchowski equations [22].
These are known to give an accurate description of the
cluster size probability distribution [23] after the adjustment
of an overall kinetic parameter, as was also checked in
Ref. [3]. Similarly, we have found here that our derived
expression for the domain lifetime holds approximately for
full particle-based simulations of the physical processes of
diffusion, aggregation, and turnover. This has thus allowed us
to provide an estimate of the expected lifetime of inhibitory
postsynaptic scaffold domains based on our earlier proposed
model [3] together with the previously determined biophysical
parameters for diffusion, aggregation kinetics, and turnover of
gephyrin scaffolding proteins. Outside of the synaptic domain
context, the method and techniques should be generalizable to
other cases of interest [14–16], where mesoscopic structures
arise through a balance of diffusion-mediated aggregation and
recycling.

One motivation of our work was the fundamental question
of long-term memory maintenance while the turnover time of
synaptic components is on the scale of hours and their typical
lifetime on the scale of days [24] (although some synaptic pro-
teins have been found to be very long-lived [25,26]). A simple
idea already proposed by Crick [2] is that the biophysical
substrate of long-term memory lies in a multiparticle state, the
existence of which could be much longer than the residence
time of single particles. Crick himself suggested a cooperative
switch based on phosphorylation [2], an idea much further
elaborated by Lisman and others who suggested the autophos-
phorylation of CaMKII as its implementation. While there is
strong evidence that CaMKII is involved in early long-term
potentiation of synapses, its involvement in their long-term
maintenance is much less clear since CaMKII catalytic activ-
ity only persists for about a minute after synaptic stimulation
(see Ref. [27] for a review). A long-lived multiparticle state
is also at the root of a different proposal by Shouval [28],
who suggested that clustering of neurotransmitter receptors
at the synapse increased the insertion rate of new receptors.
This allows for a clustered state of many receptors to persist
at the synapse while individual receptors go in and out on a
much shorter timescale. In the present work, our emphasis
has been on the role and dynamics of synaptic scaffolding
proteins rather than on those of receptors. We have shown
that a domain persistence time much longer that the residence
time of individual scaffolds naturally occurs in the model of
Ref. [3] for an oligomer of scaffold proteins similar to those
found at inhibitory synapses.

The model of Ref. [3] can be experimentally distinguished
from other ones [28–30] on several grounds. First, at the
most basic level, it supposes that the existence of a scaffold
domain depends on a lateral flux of scaffolding proteins onto
the domain. This can be experimentally tested by perturbing
this flux and assessing the resulting effect on the domain.
Second, the model predicts specific size distributions of
diffusing clusters. Extrasynaptic scaffold clusters are seen
experimentally [3,8]. The measured distributions obtained in
a previous work are consistent with the model predictions [3]
but more data could be gathered for more precise tests. Third,
the temporal fluctuations of domain size analyzed in the

present work are a specific prediction of the model and their
measure should be experimentally accessible.

Our description is admittedly a provocatively simplified
description of a synapse, in several respects. First, we have
not considered the presynaptic side, or only assigned to it an
implicit role in helping to fix the position of the postsynaptic
domain considered. Second, the postsynaptic side is known to
harbor many other proteins besides receptors and scaffolds,
such as adhesion, cytoskeletal, and signaling proteins. These
proteins as well as the interaction between the pre- and
postsynaptic sides certainly play roles on synapse lifetime and
modify our estimate. Nonetheless, the present study highlights
that the proposed dynamics of postsynaptic scaffold domains
already endows them with a much longer lifetime than those
of individual scaffold domains. A long lifetime of synap-
tic domains is thus compatible with a turnover of scaffold
proteins on the hour timescale. One specific assumption we
made is that the lifetime of a domain is determined by its
shrinkage to a vanishing size. It is certainly worth trying
to examine this scenario experimentally and more generally
to experimentally investigate the path of a synapse toward
disappearance.

Besides lifetime per se, the explicit model we have ex-
amined highlights features of synaptic dynamics that need
to be reconciled with the function of synapses in memory
maintenance. Namely, our model synaptic domain is subject
to large fluctuations [see Figs. 1(d), 1(e) and 5] so that cor-
relations of its size between different instants in time quickly
decay with their distance in time [Eq. (7)]. The probability
that the synaptic domain has a given size at time t is simply
described by the quasistationary size distribution, indepen-
dently of the size it had a few turnover times before, as has
also been seen experimentally, both for excitatory [31,32] and
inhibitory synapses [29] (although with a slower relaxation
rate than in the present model). This is also seen in other
proposed models of synaptic fluctuations, e.g., Ref. [30].
This emphasizes the much greater difficulty of preserving
in a persistent way the size of a domain or the “strength”
of synapses than maintaining their mere existence. This is a
general difficulty for the encoding of a continuous variable,
which inevitably tends to drift in the presence of fluctuations.
Future work will hopefully tell us whether long-term memory
maintenance relies on the use of multiple synapses between
neurons, or synapses with discrete values, perhaps based
on synaptic nanodomains [33], or in another yet unforeseen
manner.
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APPENDIX A: LARGE-n ASYMPTOTICS OF THE
STATIONARY AND QUASI-STATIONARY DISTRIBUTIONS

The asymptotics of the stationary probability distribution
Pn [Eqs. (13)–(15)] and the quasistationary one An [Eqs. (23)
and (24)] can be obtained either from their generating func-
tions or directly from the recurrence relations that they obey,
as we briefly discuss.

012411-13



VINCENT HAKIM AND JONAS RANFT PHYSICAL REVIEW E 101, 012411 (2020)

We take the stationary probability distribution Pn for
monodisperse diffusing clusters of size m as an example. The
generating function P(λ) for the Pn is defined in Eq. (16).
Its large-λ behavior is directly obtained from the explicit
expression [Eq. (18)] of P(λ) as

ln[P(λ)] ∼ rm

kd m
λm for λ � 1. (A1)

From the definition of P(λ) [Eq. (16)], the method of sta-
tionary phase gives that the asymptotics (A1) for λ � 1
corresponds to the size n that maximizes g(y) = ny + ln(Pn),
namely to the Legendre transform of − ln(Pn) with respect to
the variable y = ln(λ). The logarithm of the probability ln(Pn)
can thus be obtained by taking the extremum of −ny + g(y)
with respect to y,

ln(Pn) = max
y

[
−ny + rm

kd m
exp(my)

]

� 1

m

[
−n ln

(
kd

rm
n

)
+ n

]
. (A2)

Further terms in the asymptotics of Pn could be obtained by
matching the expansion around the stationary phase to the
large λ asymptotics of the generating function P(λ). It is also
possible to obtain them directly from the defining recursion
relations Pn as we now show.

For n > m, the Pn obey [Eq. (14)]

(n + 1)Pn+1 − nPn + a[Pn−m − Pn] = 0, (A3)

where we have defined a = rm/kd to simplify notations. For
large n, some terms dominate and their balance determines the
asymptotics. The balance of the first two terms in Eq. (A3) is
a simple possibility. It gives nPn ∼ cst , which is consistent in
the sense that the two neglected terms proportional to a are
indeed found to be negligible with respect to the kept terms.
However, this slow asymptotics gives a non-normalizable
function which cannot correspond to the distribution Pn. An-
other possibility is that Pn decreases sufficiently quickly with
n, so that Pn−m is comparable to nPn. The balance of the two
corresponding terms in Eq. (A3) gives back very simply the
previously found asymptotics [Eq. (A2)],

Pn ∼ a

n
Pn−m, or, ln(Pn) ∼ n

m
ln

(
a

n

)
. (A4)

The fast asymptotics (A2) or (A4) can be obtained more
systematically by searching Pn in an exponential WKB-like
form [34],

Pn = exp[ f (n)], (A5)

with a slowly varying f so that its value at n − m can be
approximated by a Taylor expansion around n. With the help
of Eq. (A5), the recursion relation (A3) can be rewritten as

exp[ f (n − m) − f (n)]

= n

a
− n + 1

a
exp[ f (n + 1) − f (n)] + 1. (A6)

After expansion of f in Taylor series, e.g., f (n − m) =
f (n) − m f ′(n) − m2 f ′′(n)/2 + · · · , one obtains at dominant
order

exp[−m f ′(n)] = n

a
, or f ′(n) = − 1

m
ln(n/a), (A7)

which is equivalent to the previously found dominant asymp-
totics of Pn [Eq. (A2)]. The first few subdominant asymptotic
terms in f (n) can be obtained by searching for f ′(n) under the
form

f ′(n) = − 1

m
ln(n/a) + f1,0(n/a)−1/m

+ f2,0(n/a)−2/m + · · · + f0,1/n + · · · , (A8)

where the dots denote terms with mixed negative powers of
n1/m and n and eventually other more complicated subdomi-
nant terms. Substitution in Eq. (A6) after Taylor expansion of
the finite difference terms determines the coefficients f10, f2,0,
and f0,1,

f1,0 = 1

m
, f2,0 = m + 2

2m2
, f0,1 = −m + a

2m
. (A9)

Finally, this provides by integration the asymptotic series for
f (n) which refines Eq. (A2),

ln(Pn) = − n

m

[
ln

(
a

n

)
− 1

]
+ a

m − 1

(
a

n

)1−1/m

+ a(m + 2)

2m(m − 2)

(
a

n

)1−2/m

+ · · ·

− m + a

2m
ln(n) + O(n−1/m). (A10)

APPENDIX B: LOCAL EXPANSIONS AND EXPLICIT
EXPRESSION FOR ν∗

We detail here our derivation of the local expansion (30)
and of the expression (35) for the root ν∗ of the function C(ν).

In order to obtain Eq. (30), we write the expression (29) for
the generating function A(λ) as

A(λ) = A1(1 − λ)νI (λ; ν) (B1)

with

I (λ; ν) =
∫ λ

0
dv

f (v, λ)

(1 − v)1+ν
,

f (v, λ) = exp

(
rm

kd

∫ λ

v

du
1 − um

1 − u

)
. (B2)

In the limit of λ → 1, we can develop the integrand and obtain
to first order

f (v, λ) � f (v, 1) − (1 − λ) ∂λ f (v, 1). (B3)

Because the second term scales with an additional power
(1 − λ), it does not contribute to the two leading terms in the
expansion of I (λ; ν) around λ = 1, I (λ; ν) = ν−1(1 − λ)−ν +
B(ν) + · · · , and we can safely neglect it.

As f (v, 1) is finite over the range of integration, the
integral I (λ; ν) is dominated by the divergence at its upper
bound v = λ for λ → 1. We therefore split the integral in two
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parts, I = I1 + I2, with

I1(λ; ν) =
∫ λ

0
dv

f (1, 1)

(1 − v)1+ν
= 1

ν

[
1

(1 − λ)ν
− 1

]
, (B4)

I2(λ; ν) =
∫ λ

0
dv

f (v, 1) − f (1, 1)

(1 − v)1+ν

=
∫ 1

0
dv

f (v, 1) − 1

(1 − v)1+ν
+ O[(1 − λ)1−ν]. (B5)

where we have used f (1, 1) = 1 in the second equalities
of Eqs. (B4) and (B5). Note that I2(1; ν) does not diverge
because f (v, 1) − f (1, 1) vanishes like v − 1 as v → 1. Sub-
stitution of I by the expressions (B4) and (B5) for I1 and
I2 provides the local expansion (30) and the explicit expres-
sion (34) for C(ν).

In the limit when a ≡ rm/kd is large, I2(1; ν) becomes
independent of ν and the root ν∗ of C(ν) is readily obtained.
From the expression of f (v, 1) [Eq. (B2)], it is clear that its
maximum of the integrand for I2(1; ν) is at v = 0. For a ≡
rm/kd � 1, the dominant contribution to the integral comes
from a neighborhood of v = 0 of size O(1/a) since

f (v, 1) − 1 � exp[aH (m) − av] (B6)

where the number H (m) is given by Eq. (21). In this small
neighborhood, the denominator of the integrand is simply
equal to one to dominant order, (1 − λ)1+ν ∼ 1, and

I2(1; ν) � exp[aH (m)]

a
. (B7)

Replacement of I2(1; ν) by this ν-independent approximation
in the expression for C(ν) [Eq. (34)] immediately provides the
explicit expression (35) for ν∗.

APPENDIX C: NUMERICAL SIMULATIONS

1. Simulation of the shot-noise process

To simulate the shot-noise process described and analyzed
in Sec. II, we implemented a discretized version of the dy-
namics described by Eqs. (13) and (14). For each time step
ti, the domain size n(ti ) was diminished by 1 with proba-
bility n(ti )kd�t and increased by m with probability rm�t
to determine n(ti+1). The domain lifetime was determined
as the first passage to n = 0, where domain sizes were ini-
tialized at the expected mean cluster size 〈n〉 = rmm/kd . In
our simulation, �t = 0.001 < 1/(〈n〉kd ), with kd = 1, proved
sufficiently small to show excellent agreement between simu-
lations and analytic results. We simulated the size trajectories
of 2000 domains over a duration of Tsim = 500/kd .

2. Numerical determination of C(ν)

We used the large-n asymptotics Eq. (26) to determine
C(ν) = 1

ν
limn→∞ Ann1+ν from the corresponding recursion

relation in the case of mono- or polydisperse aggregation
for immobile domains [Eqs. (23) and (24), or (42), respec-
tively] or for diffusing domains [Eq. (51)]. For practical
reasons, we chose a large, finite nc to evaluate C(ν) =
Anc nc

1+ν and checked that C(ν) did not significantly vary with
increasing nc.

3. Full spatial particle-based simulations

The full numerical simulations reported in the present
article correspond to those described as model A in Ref. [3]:
Upon aggregation or single-particle loss, a cluster is immedi-
ately rearranged into a disk of radius R = √

n/(πρ), where n
is the number of particles in the cluster and ρ is the cluster
density. Simulations are performed as described in Ref. [3].

The diameter of a single particle a and the diffusion time
a2/D0 are used as units of length and time, with D0 being
the diffusion constant of a single particle. Time is discretized
in steps of �t = 0.02. Space is a square box of side length
L with periodic boundary conditions. The cluster density was
chosen to be ρ = 0.77a−2 which corresponds to a hexagonal
lattice.

A simulation consists of the simulated dynamics of N =
c0L2 particles. In simulations with an immobilized domain, a
cluster of size ninit is initially positioned at the center of the
simulation box and its diffusion constant set to zero through-
out the simulation, including after fusion events with imping-
ing clusters. The remaining N − ninit particles are randomly
positioned. In simulations without an immobilized domain,
all N particles are initially positioned at random. Then, at each
time step, the four following moves are performed. First, parti-
cle and cluster positions are displaced by random Gaussian in-
crements corresponding to their diffusion constants. Second,
overlapping particles or clusters are merged and their radius
updated. Third, the number of removed particles per cluster
is drawn from a binomial distribution and the cluster sizes
and radii are reduced accordingly. Fourth, removed particles
are reinserted as new randomly distributed particles. The total
number of particles in the simulation is thus constant.

In the present article, two different parameter sets were
used for the simulations; see Table I. In addition, we used
L = 1000 and ninit = 10 (where appropriate) for parameter set
I (Figs. 3 and 4) and L = 2000 and ninit = 20 (where appropri-
ate) for parameter set II (Figs. 1 and 5). All simulations were
run for a total time of Tsim = 100/kd .

Reported quantities were measured as follows: The instan-
taneous cluster size distribution cn was determined as the
average over realizations and time after a transient of 10/kd .
The explored cluster size distribution was determined from
individual size trajectories of immobile or diffusing clusters,
taking into account all sizes after an initial transient of 10/kd

until the (potential) disappearance of the cluster. For immobile
clusters, the lifetime was simply given by the time at which the
cluster disappeared; the fraction of surviving clusters is the
number of simulations for which the immobile domain still
exists relative to the total number of realizations. To determine
the encounter rates, all individual fusion events in the sim-
ulations were registered. (In the case of immobile domains,
only fusions with the immobile domain were registered.) For
the immobile domains, the encounter rate was given by the
number of fusions with clusters of a given size m divided
by the time over which fusions were tracked. For diffusing
domains, all events where clusters of sizes m and n fused were
independently counted and divided by the time over which
fusions were tracked; in order to obtain encounter rates that
do not scale with the size of the simulation box, these rates
were normalized by the expected average number of clusters
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(a1) (a2)

(b1) (b2)

(c1) (c3)

FIG. 6. Determination and influence on predicted lifetimes of the Smoluchowski kinetic coefficient K . Left panels correspond to case I
parameters, right panels to case II parameters. The optimal parameter K in the Smoluchowski equations is determined by best fitting the results
of full numerical equations. (a) Sum of least-squared errors for the three objective functions indicated on the graph, as a function of the kinetic
coefficient K in the mean-field description. Fitted values of K correspond to the respective minima of the errors. [(b), (c)] Predicted cluster
lifetime τd based on the Smoluchowski rate equations as a function of K (thick solid gray line) and the value of τd for the three optimal values
of K determined according to the fits shown in panel (a), for immobile (b) and diffusing (c) domains. The expected true cluster lifetime can
be inferred from the value A1 of the quasistationary size distribution observed in the simulations and is shown (dashed black line) together
with the 95% confidence interval obtained from bootstrap resampling; see Appendix C for details. In the case of fast particle turnover and for
immobile domains [panel (b1)], the cluster lifetime can be measured directly from the particle-based simulations (thin solid black line).

per size n, Nn = cnL2, using the average cluster concentrations
cn observed in the simulations in order to obtain the rates rm,n.
(Fusions were also considered only after a transient of 10/kd .)

To estimate the uncertainty of simulation results due to
finite sampling, we used a nonparametric bootstrap method.
When nreal data points were obtained by simulations, we
produced nbootstrap synthetic realizations (nbootstrap = 1000)
by randomly resampling nreal times these data points with
replacement. Where simulation results are reported, errors
(respectively error bars in the figures) represent the standard
deviation of the distribution of measured values obtained from
these nbootstrap resampled data. For immobile domains, we
analyzed nreal = 500, respectively nreal = 300, independent
size trajectories for parameter cases I and II, respectively, from
the same number of independent simulations. For diffusing
domains, we analyzed nreal = 1557 independent (nonoverlap-
ping) cluster size trajectories from 50 independent simulations

that lasted at least 20/kd in case I; in case II, we analyzed
nreal = 4365 independent (nonoverlapping) cluster size trajec-
tories from 100 independent simulations that lasted at least
20/kd .

APPENDIX D: COMPARISON WITH SMOLUCHOWSKI
EQUATIONS: FIT OF THE KINETIC COEFFICIENT K

In order to compare the Smoluchowski description with
full particle-based numerical simulations, one has to deter-
mine the kinetic coefficient K in Eqs. (46) and (47). This
determines the rates rm [Eq. (48)] and allows one to compute
the fluctuating domain lifetime 1/(ν∗kd ) predicted from the
implicit equation C(ν∗) = 0 for ν∗ with Eq. (39), or from
Eq. (41) being the approximate expression in closed form.

We can use the theoretical predictions for the steady-state
cluster concentrations c∗

n to determine the value of K that best
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accounts for the data, as it is the sole free parameter in the
mean-field description for the diffusion-aggregation dynamics
for known c0, kd , and σ . In a previous work [3], we used
the typical cluster size 〈n〉 = ∑

n n2c∗
n/

∑
n nc∗

n to determine
an approximate expression for K = K (c0) that best accounted
for the ensemble of parameter sets c0, kd , and σ tested. The
precise value of K does not matter much as long as only size
distributions are concerned, for small variations of K translate
into only small variations of the predicted cluster concentra-
tions c∗

n . However, because of the exponential dependence of
the τd on the encounter rates rm [Eq. (41)], the precise value
does matter when exact domain lifetimes are to be predicted.

Here, we tried to determine the K that best accounts for the
particle-based simulations independently for the two parame-
ter sets investigated. We furthermore compared different ways
to determine the optimal K in order to address the uncertainty
linked to the Smoluchowski mean-field approximation. In all
three cases, we determined the optimal K by minimizing
the least-squares error

∑
(Yn,pred(K ) − Yn,sim )2 using one of

three objective functions: (i) the steady-state cluster size con-
centrations, Yn = c∗

n; (ii) the cumulative steady-state cluster
size distribution Yn = ∑n

m=1 c∗
m/

∑
m c∗

m; or (iii) the quasista-
tionary cluster size distribution of fluctuating immobile do-

mains, Yn = An. The respective normalized errors are shown
in Fig. 6(a). We decided to use the value of K determined by
the second method (cumulative size distribution) throughout
this article because of its intermediate value and the relative
sensitivity of the associated error to variations of K ; note,
however, that the differently determined values of K differed
by at most 13% from that value and generally less than 10%.

The predicted cluster lifetimes as a function of K (thick
solid grey line) are shown in Figs. 6(b) and 6(c) for immobile
and diffusing domains, respectively. Note how small varia-
tions in K can give rise to considerably larger variations in
the predicted cluster lifetime τd . The expected cluster lifetime
as inferred from the quasistationary size distribution observed
in simulations (dashed black line) is superposed on all four
panels, with the 95% confidence interval determined from
bootstrap resampling shown in gray. Within this confidence
interval, the expected cluster lifetime is consistent with the
range of cluster lifetimes predicted from the different values of
K determined using the three fit objective functions. Note that
in the case of fast particle turnover and for immobile domains,
Fig. 6(b1), the explicitly measured cluster lifetime (thin solid
black line) matches the expected cluster lifetime within the
limit of precision of the latter.
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