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Abstract

We consider the problem of maximizing a non-concave Lipschitz multivariate function f over a com-
pact domain. We provide regret guarantees (i.e., optimization error bounds) for a very natural algorithm
originally designed by Piyavskii and Shubert in 1972. Our results hold in a general setting in which
values of f can only be accessed approximately. In particular, they yield state-of-the-art regret bounds
both when f is observed exactly and when evaluations are perturbed by an independent subgaussian
noise.

1 Introduction and related work.

The goal of online optimization is to find an approximate maximizer of a given function f : D ⊂ R
d → R with

as little evaluations of f as possible. In this paper we assume that the only access to the function f is through
an oracle returning the (possibly) perturbed values of the function at the queried points. Perturbations can
be deterministic or stochastic. No analytical expression of f or any of its derivatives is available.

At each round k the learner picks a new point xk ∈ D and the value f(xk) is revealed by the oracle, up
to an additive perturbation ξk. After each evaluation, the learner can return a point x⋆

k ∈ D, which may
differ from the last queried point xk.

We measure the accuracy of the approximation provided by the point x⋆
n returned after the n-th evaluation

of the function with the relative error

rn := sup
x∈D

f(x)− f(x⋆
n) . (1)

Following the bandit optimization literature, we call this error simple regret (or regret for short).
We consider two variants of the problem. In the first one, a budget n of evaluations is given to the

learner. The goal is to find an x⋆
n ∈ D such that rn 6 ε, with ε > 0 as small as possible. In the second one,

a level of accuracy ε > 0 is given instead. In this case, the goal is to find an x⋆
n ∈ D such that rn 6 ε, with

n as small as possible.
Due to numerous practical applications, this black-box global optimization problem has received consid-

erable attention over the past decades. Many different algorithms have been proposed in several communities
such as concave optimization [Nesterov, 2004, Boyd and Vandenberghe, 2004, Bubeck, 2015], non-concave
optimization [Hansen et al., 1992a, Jones et al., 1993, Jain and Kar, 2017, Basso, 1978, 1982, Shang et al.,
2019], stochastic optimization or approximation [Spall, 2003, Shalev-Shwartz, 2011], Bayesian optimization
[Brochu et al., 2010], and bandit optimization over metric spaces [Munos et al., 2014].
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In this article, we focus on the case where f attains its maximum at some x⋆ ∈ D and it is Lipschitz
around x⋆ (Assumption 1). Unlike global Lipschitzness, this assumption does not imply continuity anywhere
but at the maximizer x⋆ (Figure 1).

We consider two different settings. In the deterministic setting the values of f are observed up to
deterministic (and possibly adaptive) adversarial perturbations (Section 3). In the stochastic setting the
queried values are observed up to a subgaussian noise (Section 4).

We extend a classical algorithm originally designed by Piyavskii [1972] and Shubert [1972] for the one-
dimensional deterministic setting with no perturbations. We call it the Piyavskii–Shubert algorithm in the
sequel. The principle is simple: at each round k, the query point xk is chosen as an approximate maximizer
of a proxy function f̂k−1 that provably satisfies f̂k−1(x

⋆) > f(x⋆). In the case of globally L-Lipschitz
optimization without perturbations, the proxy at round k is the piecewise-conic function

f̂k−1 : D → R

x 7→ min
i∈{1,...,k−1}

{
f(xi) + L‖xi − x‖

}

(see Figure 3) and it is the best upper bound on f given the available information. After observing the

perturbed value of f(xk), the learner updates the proxy function f̂k and chooses the next point xk+1 as an

approximate maximizer of f̂k.

1.1 Related works.

Several papers studied the Piyavskii–Shubert algorithm in the eighties and nineties (see, e.g., Mayne and
Polak [1984], Mladineo [1986], Hansen et al. [1991] or the survey by Hansen et al. [1992a]). Despite this
literature, little was known about the rate of convergence of its simple regret rn as a function of the number
n of evaluations of the function. A crude regret bound of the form rn = O

(
n−1/d

)
, where d is the ambient

dimension, can be obtained from [Mladineo, 1986, Theorem 4.2] when f is globally Lipschitz. The authors
show that the Piyavskii–Shubert algorithm is minimax optimal among all algorithms, and therefore superior
to a uniform grid search ensuring a simple regret of order n−1/d.

The analysis in Horn [2006] gives a regret rate that corresponds to our Corollary 1 in the special case in
which the near-optimality dimension d⋆ (see Section 2.3 for a definition) is d/2.

In dimension d = 1 a bound on the sample complexity was derived by Hansen et al. [1991] for a variant of
the Piyavskii–Shubert algorithm that stops automatically returning an ε-maximizer of f . More precisely, they
proved that the number of iterations required by the algorithm to reach precision ε is at most proportional

to
∫ 1

0

(
f(x⋆)− f(x)+ ε

)−1
dx. In this paper the authors rely heavily on the one-dimensional setting to study

the proxy functions f̂k in an explicit manner. In the same paper, they claim “Extending the results of this
paper to the multivariate appears to be difficult”.

In a recent paper, Malherbe and Vayatis [2017] studied a variant of the Piyavskii–Shubert algorithm called

LIPO. Rather than maximizing the proxy function f̂k−1, LIPO queries the k-th point uniformly at random

in the set of potential maximizers
{
x ∈ D : f̂k−1(x) > maxi=1,...,k−1 f(xi)

}
. In their paper, they obtain

upper bounds on the regret slightly worse (by a log factor) than our Corollary 1, under slightly stronger
assumptions. In the same paper, they mention that a general regret analysis for the Piyavskii–Shubert
algorithm was still missing (Table 1). Our results fill this theoretical gap.

In the context of global optimization, there is a line of research devoted to maximizing L-Lipschitz func-
tions without knowing L. Algorithms for these problems typically sacrifice some of the available evaluations
of f to compute an estimate of the Lipschitz constant L and use the remaining ones to optimize the objective.

Such estimates L̂ of L can be defined (up to small margins) as L̂ = maxi6=j
f(xi)−f(xj)

xi−xj
, where the maximum

is over all pairs of distinct values xi, xj that have been queried so far. Bubeck et al. [2011b] present a
two-phase algorithm in which the estimation of the Lipschitz constant occurs in the first phase. Their results
hold for twice differentiable objectives for which the eigenvalues of the Hessian are bounded everywhere by
a constant M . Notably, the bounds they obtain are meaningless unless the time horizon is bigger than a
function of M (i.e., in order to apply the result in practice one would need prior knowledge of M).
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Malherbe and Vayatis [2017] introduce AdaLIPO, an adaptive version of LIPO. Their algorithm flips a
biased coin at each round. Depending on the outcome, AdaLIPO either performs a LIPO step (using the
current best estimate of the Lipschitz constant) or it evaluates the function at a point drawn uniformly
in the domain of f . These uniform draws are used to obtain increasingly more accurate approximations
of the Lipschitz constant. Again, the bounds they obtain become meaningless if the probability of getting
a good estimate of the Lipschitz constant with only two uniform queries to f (what the authors call Γ,
in Proposition 18) is too small. In some papers the Lipschitzness assumption is replaced by some other
regularity assumption (e.g., Bartlett et al. [2019], Grill et al. [2015] use a notion of smoothness related to
hierarchical partitioning that is comparable to our Assumption 1).

The idea of investing some of the available evaluations to approximate the Lipschitz constant could also
be applied to the Piyavskii–Shubert algorithm with a budget of evaluations n. However, missing any prior
quantitative information on the smoothness of f has a crucial limitation. It makes it impossible to design
algorithms that take an accuracy ε as an input and stop automatically returning an ε-optimal point (without
any other inputs). To see this, note that all algorithms will fail when the objective function is the “spike”
x 7→ max

{
0, a− L‖x− x0‖

}
for some values of a, L, and x0 that depend on the algorithm (typically a and

L should be chosen large enough to force the algorithm to miss a tall and narrow spike).
It is worth noting that the Piyavskii–Shubert algorithm might not be computationally efficient in high

dimensions. Indeed, the problem of optimizing f is replaced by the optimization of n − 1 other functions
f̂1, . . . , f̂n−1 (the proxy functions used to compute the query points) which could be a demanding task on its

own. To see this, note that finding the maximum of f̂k is related to the problem of determining a Voronoi
diagram for a set of k points, which is known to have a computational complexity that is exponential in the
dimension of the ambient space [Aurenhammer and Klein, 2000, Theorem 4.5 , Section 4.3.2 “Power diagrams
and convex hulls”]. Some algorithms get around these computational issues by replacing the piecewise-
conic proxies of the Piyavskii–Shubert algorithm with looser but simpler functions. The DOO algorithm
Munos [2011] (see also Perevozchikov [1990]), for example, uses piecewise-constant functions, with pieces
that correspond to a predetermined hierarchical partition of D. We however conjecture that the associated
sample complexity of such simplified algorithms is worse than that of the Piyavskii–Shubert algorithm (by a
non-negligible multiplicative constant). This is supported by some low-dimensional experiments carried out
in Hansen et al. [1992b].

The Piyavskii–Shubert algorithm can be applied to low-dimensional real-life problems (e.g., hyperparam-
eter tuning), but also to maximization problems in which the computational cost is driven by the evaluation
of the objective f rather than the dimension of the ambient space. Finally, we remark that the peeling
technique that we introduce in this paper allows to write refined bounds that could be of theoretical interest
on their own.

1.2 Main contributions.

In this paper we provide a theoretical analysis of the simple regret rn of the Piyavskii–Shubert algorithm
in arbitrary dimension d > 1, using recent concepts from the bandit optimization literature. Our only
assumptions are that f is Lipschitz around a maximizer x⋆ (see Section 2 for a rigorous definition) and its
domain D is compact.

Deterministic setting. We prove the first non-trivial upper bound on the simple regret rn of the Piyavskii–
Shubert algorithm in arbitrary dimension d > 1.1 Rather than depending on the dimension d, our
general result (Theorem 1) is expressed in terms of packing numbers that represent the hardness of
the optimization of the objective function. In particular, this general result allows to bound the regret
in terms of a quantity d⋆ ∈ [0, d] usually referred to as near-optimality dimension of f (see Section 2.3
for a definition). When the values of f can be observed without perturbations, this bound is roughly

1See discussion in previous section.
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of the form

rn .

{
n−1/d⋆

if d⋆ > 0

exp
(
−Ω(n)

)
if d⋆ = 0

(2)

The regret bound (2) matches the best bound known so far in this deterministic setting.2 Examples of
other algorithms that attain this bound include the branch-and-bound algorithm Perevozchikov [1990],
the DOO algorithm Munos [2011], and the LIPO algorithm Malherbe and Vayatis [2017].

To prove (2), we upper bound the sample complexity of the Piyavskii–Shubert algorithm. Our sample
complexity bounds hold even if the values of f are perturbed, provided that the absolute values of
the perturbations are bounded by a known constant α of order at most ε. More precisely, we derive
the following equivalent upper bound: if α = O(ε), then the number n of iterations needed to reach
precision ε is at most n = O

(
(1/ε)d

⋆)
for d⋆ > 0 or n = O

(
log(1/ε)

)
for d⋆ = 0.

This result is satisfactory if an overall budget of evaluations n is imposed, but it might be impractical
if a target precision ε is required instead. In this case, the knowledge of d⋆ is necessary to stop the
algorithm at the right time, i.e., to compute the upper bound n = O

(
(1/ε)d

⋆)
or n = O

(
log(1/ε)

)
on

the number of iterations needed to reach precision ε.

To address this issue, we study a version of the Piyavskii–Shubert algorithm that takes ε as input and
stops automatically after a simple condition is satisfied (Algorithm 2), as in the one-dimensional study
by Hansen et al. [1991]. We prove that this algorithm is in a way adaptive to the near-optimality
dimension d⋆: it stops after n = O

(
(1/ε)d

⋆)
or n = O

(
log(1/ε)

)
iterations (if d⋆ > 0 or d⋆ = 0

respectively) without any prior knowledge on d⋆, and guarantees rn 6 ε. However, a closer look to the
tighter bounds given in Theorem 1 and Theorem 2 reveals that the computational complexity of the
automatically stopped version of the Piyavskii–Shubert algorithm is higher than its non-automatically
stopped variant. The additional terms appearing in Theorem 2 are not an artifact of the analysis, but
evidence that stopping automatically is harder than exhausting a given budget of evaluations. After
stating Theorem 2 , in Section 3.2 we discuss why this is the case.

Stochastic setting. In Section 4 we consider the case in which querying a point x returns a value f(x)+ ξ,
where ξ is an i.i.d. subgaussian noise. We design a natural extension of the Piyavskii–Shubert algorithm
based on mini-batch sampling, a technique in which each value of f is queried a small number of times
in a row in order to average out the random perturbations. We study the number n of evaluations of f
needed by the algorithm to reach precision ε with probability at least 1− δ. Note that the number of
evaluations of f is now larger than the number of iterations of the algorithm because of the mini-batch
sampling. We derive sample complexity bounds of the form n . (1/ε)d

⋆+2 with high probability, where
the . notation hides logarithmic terms and problem-dependent constants. These bounds correspond
to regret upper bounds roughly of the form:

rn . n−1/(d⋆+2) ,

which are known to be worst-case optimal as a consequence of the minimax lower bound of Bubeck
et al. [2011a, Theorem 13] (this lower bound is stated for the cumulative regret, but it could be adapted
for the simple regret).

Examples of other algorithms with a similar regret bound in the stochastic setting include, e.g., the
zooming algorithm by Kleinberg et al. [2008], the HOO algorithm by Bubeck et al. [2011a] and the
StoOO algorithm by Munos et al. [2014] (some of these papers derived upper bounds on the cumulative
regret, which in turn imply upper bounds on the simple regret).

2Note that, when d⋆ = 0, different constants in Ω(n) lead to different rates. Also, we are not aware of lower bounds for
all possible values of d⋆ ∈ [0, d] except for d⋆ = d [Nesterov, 2004, Theorem 1.1.2] or for d⋆ = d/2 [Horn, 2006, Theorem 9].
However we conjecture that the best sample complexity upper bounds known so far are minimax optimal (up to logarithmic
factors).
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1.3 Outline of the paper.

Our paper is organized as follows. We state our main assumptions on f and introduce all notation in Section 2.
In Section 3 we revisit the Piyavskii–Shubert algorithm in the deterministic setting with perturbations.
We prove a general upper bound on its regret involving packing numbers of suboptimal regions. This
result implies state-of-the-art regret bounds in terms of the intrinsic dimension d⋆ of f , for an arbitrary
dimension d > 1. We study two types of algorithms: the natural extension of the original Piyavskii–Shubert
algorithm, whose optimal stopping would require the knowledge of d⋆, and an adaptive variant that stops
automatically guaranteeing precision ε when its halting criterion is met. In Section 4 we design an extension
of the automatically stopped Piyavskii–Shubert algorithm that works in the stochastic setting. We prove
an analogous general upper bound on the regret in terms of packing numbers and its consequent corollary
expressed as a function of d⋆. Finally, in the appendix, we recall a few important lemmas on packing numbers
(Appendix A) and near-optimality dimension (Appendix B), we prove Corollaries 1 and 3 (Appendix C),
and we discuss the connections of our results with a regret bound of Hansen et al. [1991] in dimension d = 1.

2 Assumption, definitions, and notation.

In this section we introduce a regularity assumption, all notation, and all definitions that will be used
throughout the paper.

2.1 Assumption on f .

In all the sequel, D is any nonempty compact subset of Rd, f : D → R is any function, and ‖ · ‖ is any norm
on R

d. We make the following assumption, which is sometimes referred to as “local smoothness” Munos
et al. [2014], and close in spirit to “calmness” Rockafellar [1985].

Assumption 1 (Lipschitzness around a maximum). We assume that f attains its maximum at some x⋆ ∈ D
and that there exists a constant L0 > 0 such that, for all x ∈ D,

f(x) > f(x⋆)− L0‖x⋆ − x‖ .

Moreover, we assume that only D, ‖ · ‖, and an upper bound L1 on L0 are known to the learner.

Note that we do not even require this assumption to be true for all maximizers. To the best of our knowl-
edge, all previous works on the Piyavskii–Shubert algorithm and variants thereof assume f to satisfy some
global continuity condition (e.g., Lipschitzness, Hölderness, uniform continuity) Vanderbei [1999], Piyavskii
[1972], Hansen et al. [1991], Rahal and Ziadi [2008], Lera and Sergeyev [2002], Ellaia et al. [2012], Shen and
Zhu [1987], Nešić et al. [2013]. However, recent contributions from the bandit optimization literature Munos
et al. [2014] have shown that the behavior of this type of algorithms is usually driven by the regularity of f
around its maxima Auer et al. [2007], Kleinberg et al. [2008], Bubeck et al. [2011a]. Our analysis will show
that this is also the case for the Piyavskii–Shubert algorithm.

Lipschitzness around a maximum is a significantly weaker assumption than global Lipschitzness. The
only constraint that it poses to the function f is for its graph to lie between the cone

{
(x, y) ∈ R

d+1 :

y = f(x⋆) − L0‖x⋆ − x‖
}
and the hyperplane

{
(x, y) ∈ R

d+1 : y = f(x⋆)
}
. Most of the good properties

that globally Lipschitz functions enjoy are not guaranteed under this assumption. For example, f could be
non-differentiable or even discontinuous everywhere on D \ {x⋆} (Figure 1).

2.2 Useful notation and definitions.

We denote the set of integers by Z, the set of nonnegative integers {0, 1, 2, . . .} by N, and the set of positive
integers {1, 2, . . .} by N

∗. For all x ∈ R, we write ⌈x⌉ for the value min{k ∈ Z : k ≥ x} of the ceiling function
at x. For all δ > 0, we denote by B‖·‖(δ) the ball of radius δ in

(
R

d, ‖ · ‖
)
centered at the origin:

B‖·‖(δ) :=
{
x ∈ R

d : ‖x‖ 6 δ
}
.
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Figure 1: On the left, a typical example of a function Lipschitz around a maximum x⋆: it has multiple
maxima, points with vertical tangents, and discontinuities. On the right, a pathological example of function
discontinuous everywhere but at a maximum x⋆, but still Lipschitz around x⋆. Our analysis holds even in
this extreme case.

We now recall the definitions of packing and covering numbers. The former is of utmost importance to our
analysis. For any bounded set A ⊂ R

d and any real number r > 0:

• the r-packing number of A is the largest number of r-separated points contained in A, that is,

N (A, r) := sup

{
k ∈ N

∗ : ∃x1, . . . , xk ∈ A,min
i6=j
‖xi − xj‖ > r

}
, (3)

if A is nonempty, zero otherwise;

• the r-covering number of A is the smallest cardinality of an r-covering of A, that is,

M(A, r) := min
{
N ∈ N

∗ : ∃x1, . . . , xN ∈ R
d, ∀x ∈ A, ∃i ∈ {1, . . . , N}, ‖x− xi‖ 6 r

}
,

if A is nonempty, zero otherwise.

In Appendix A we recall a few known inequalities about packing and covering numbers that will prove useful
throughout the paper.

2.3 Sets of near-optimal points, with examples.

In this section we will introduce a few important definitions and properties that will play a crucial role in
our analysis. For all ε > 0, we define the set of ε-optimal points of f : D → R by

Xε :=
{
x ∈ D : f(x) > f(x⋆)− ε

}
.

We also denote its complement (i.e., the set of ε-suboptimal points) by X c
ε and, for all 0 6 a < b, we define

the (a, b]-layer
X(a,b] := X c

a ∩ Xb =
{
x ∈ D : a < f(x⋆)− f(x) 6 b

}
(4)

(i.e., the set of points that are b-optimal but a-suboptimal). Whenever the explicit dependence on ε or (a, b]
can be omitted, we will simply refer to these sets as sets of near-optimal (resp., suboptimal) points or layers.
In particular, we will say that an (a, b]-layer is a suboptimal layer if a > 0.

Since f is L0-Lipschitz around x⋆, every point in D is ε0-optimal with ε0 defined by

ε0 := L0 sup
x,y∈D

‖x− y‖ . (5)

In other words, Xε0 = D. For this reason, without loss of generality we will only consider values of ε smaller
than or equal to ε0.
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x⋆ x⋆

x⋆

Figure 2: On the left, a linear function (d⋆ = 0). In the center, a quadratic function (d⋆ = d/2). On the
right, a function that is linear outside of a neighborhood of x⋆ (d⋆ = 0 for large r), but quadratic inside
(d⋆ = d/2 for small r).

As we will see in Sections 3 and 4, the size of the sets of near-optimal points and that of layers will be key
quantities in our sample complexity bounds. As it turns out, the “correct” notion of size for this problem is
the packing number (3). In particular, we will derive explicit and immediate corollaries whenever, for some
C⋆, d⋆ > 0, we have:3

∀r ∈ (0, ε0], N
(
Xr,

r

2L0

)
6 C⋆

(ε0
r

)d⋆

. (6)

The idea behind Inequality (6) is that ε-optimal points are hard to find if the corresponding set X c
ε of

ε-suboptimal points is large. Since for any increasing sequence ε := r0 < r1 < r2 < . . . , the set of ε-
suboptimal points X c

ε can be decomposed into a union of suboptimal layers X(r0,r1],X(r1,r2],X(r2,r3], . . ., and
each of these layers X(rs−1,rs] is included in Xrs (by definition of layer (4)), by controlling the size of each
of these Xrs we can control the size of X c

ε . Therefore, by controlling how large the sets Xr can be at all
scales r, the parameters C⋆ and d⋆ quantify the difficulty of the optimization problem. (See the discussion
in Appendix B about the related notions of near-optimality dimension Bubeck et al. [2011a] and zooming
dimension Kleinberg et al. [2008].)

As noted in Lemma 7 (Appendix B), Inequality (6) is always true with C⋆ = 9d and d⋆ = d. However,
depending on f , a significantly smaller value of the constant d⋆ may be picked. We provide three examples
below. The first two are very classical. The last one indicates that a “worst-case” single value of d⋆ may be
insufficient to give an appropriate description of the hardness of the optimization problem.

Example 1 (Linear Regime). Consider any norm ‖ · ‖ and the function f(x) = 1 − L0‖x − a‖ on any
compact domain D ⊂ R

d, with a ∈ D (Figure 2, left). Then f is L0-Lipschitz with respect to ‖ · ‖ and, for
all r ∈ (0, ε0], we have Xr =

{
x ∈ D : ‖x− a‖ 6 r/L0

}
, which gives

N
(
Xr,

r

2L0

)
6 N

(
B‖·‖(r/L0),

r

2L0

)

6M
(
B‖·‖(r/L0),

r

4L0

)
(by (17))

6

(
1 +

2(r/L0)

r/(4L0)

)d

(by (18))

= 9d ,

which does not depend on r. Thus Inequality (6) holds with C⋆ = 9d and d⋆ = 0.

Example 2 (Quadratic Regime). Fix any β > 0. Consider the Euclidean norm ‖·‖2 on R
d and the function

f(x) = 1−β‖x−a‖22 on any compact domain D ⊂ R
d, with a ∈ D (Figure 2, center). Then, for all r ∈ (0, ε0],

3Property (6) could be rewritten somewhat equivalently as ∀r ∈ (0, ε0], N (Xr , r) 6 C⋆
(
1

r

)d⋆
. Our choice of normalizing r

by 2L0 or ε0 makes C⋆ more “intrinsic” (typically independent of L0), as can be seen from the examples below.
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Xr =
{
x ∈ D : ‖x− a‖2 6

√
r/β

}
. Letting α = supx∈D ‖x− a‖2 and L0 = 2αβ, note that f is L0-Lipschitz

with respect to ‖ · ‖2. Then, for all r ∈ (0, ε0],

N
(
Xr,

r

2L0

)
6 N

(
B‖·‖2

(√
r/β

)
,

r

4αβ

)

6M
(
B‖·‖2

(√
r/β

)
,

r

8αβ

)
(by (17))

6

(
1 +

2
√
r/β

r/(8αβ)

)d

=

(
1 + 16α

√
β

r

)d

(by (18))

6
(
1 + 8

√
2
)d (ε0

r

)d/2
. (since ε0 = 2αβ supx,y∈D ‖x− y‖2 > 2α2β)

Thus Inequality (6) holds with C⋆ =
(
1 + 8

√
2
)d

and d⋆ = d/2.

The next example shows that a unique value of d⋆ is sometimes insufficient to describe the shape of a
function around a maximizer. Notably, our main regret bounds in Sections 3–4 will not depend on a single
(worst-case) value of d⋆, but on a suitable combination of such values at different scales r. This allows to
give tighter bounds on the regret in cases like the following one.

Example 3 (Mixed Regime). Consider the Euclidean norm ‖ · ‖2 on R
d and the function f : [−1, 1]d → R

defined by

f(x) =

{
1/4− ‖x‖22 if ‖x‖2 6 1/2

1/2− ‖x‖2 if ‖x‖2 > 1/2

(Figure 2, right). A direct verification shows that f is 1-Lipschitz with respect to ‖ · ‖2 and attains its
maximum at x⋆ = 0, with f(x⋆) = 1/4. In this case, ε0 = supx,y ‖x − y‖2 = 2

√
d. Proceeding as in the

previous two examples, we get, for all r ∈
[
1/4, 2

√
d
]
,

N
(
Xr,

r

2L0

)
6 17d ,

but for all r ∈ (0, 1/4),

N
(
Xr,

r

2L0

)
6

(
17

2
√
2 d1/4

)d (ε0
r

)d/2
.

Therefore, Inequality (6) holds with d⋆ = 0 for large values of r (linear regime) or with d⋆ = d/2 for small
values of r (quadratic regime). Many different examples can be designed this way.

3 Deterministic perturbations.

In this section we provide a new regret analysis of the Piyavskii–Shubert algorithm [Piyavskii, 1972, Shubert,
1972] for the deterministic setting, i.e., when values of f are observed up to deterministic perturbations with
absolute value bounded by a known constant. These perturbations can be chosen arbitrarily and even
adaptively to the learner’s algorithm. In Section 4 we will study the stochastic setting, in which values of f
are observed up to a subgaussian noise.

We consider two variants of the problem in the deterministic setting. When an overall budget n on
the number of evaluations of f is fixed in advance, we analyze Algorithm 1 (Section 3.1), which makes n
queries to f before returning a near-optimal point. When an accuracy level ε is imposed instead, we study
Algorithm 2 (Section 3.2), which stops automatically and guarantees an ε-optimal solution after stopping.
In the first case, we upper bound the number n of iterations required to reach any given precision ε > 0
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(Theorem 1 and Corollary 1). This leads to an upper bound on the regret rn as a function of the number n
of queries to f (Corollary 2). In the second case, we upper bound the number n′ of evaluations of f after
which the algorithm automatically stops (Theorem 2 and Corollary 3). This second result might be more
useful in practice, since the algorithm does not require the knowledge of n to guarantee an ε-optimal solution
(see discussion at the beginning of Section 3.2).

3.1 Budget on queries.

In this section we derive new bounds for the simple regret rn of the Piyavskii–Shubert algorithm. Our main
result is a general bound on the sample complexity (Theorem 1), from which we derive a bound on rn as
a function of the number n of queries to f (Corollary 2). Formally, the algorithm applies to the following
online optimization protocol.

A function f : D ⊂ R
d → R that attains its maximum at some point x⋆ ∈ D is fixed in advance. Only

the compact domain D of the function, an upper bound L1 on the Lipschitz constant L0 (Assumption 1), an
upper bound α > 0 on the absolute value of the perturbations (see below), and the total number of queries
n ∈ N

⋆ are known to the learner in advance.
For each k = 1, . . . , n:

1. the learner chooses a point xk ∈ D,

2. the environment picks a deterministic perturbation

ξk ∈ [−α, α] , (7)

depending on f and all points xs chosen by the learner up to and including the current one xk,

3. the value f(xk) + ξk is revealed to the learner.

The learner then outputs a prediction x⋆
n with the goal of minimizing the simple regret

rn := f(x⋆)− f(x⋆
n) . (8)

In this section we extend the simpler original version of the Piyavskii–Shubert algorithm to our setting with
perturbations. The behavior of the algorithm is illustrated in Figure 3. The Piyavskii–Shubert algorithm
(Algorithm 1) works by maintaining a proxy f̂k of the objective function f that upper bounds f at the

maximizer x⋆ (in case f is globally Lipschitz, we even have f̂k(x) > f(x) for all x ∈ D). The next point xk+1

is chosen as an approximate maximizer of f̂k. The intuition is that such a point xk+1 may either correspond to
an approximate maximizer of f (which reduces the regret immediately) or to a largely unexplored suboptimal
region (which helps reduce the regret in the future, see Lemma 2). Note the similarity with the “optimism in
the face of uncertainty” principle in stochastic multiarmed bandits Lattimore and Szepesvári [2018]. There,
a proxy for the real mean of an arm is given by an upper confidence bound, and arms can have high upper
confidence bounds only if they are either actually good, or they belong to an under-explored set of arms.

In Algorithm 1, we pick xk+1 as an α-optimal point of f̂k. The algorithm could be defined slightly more

generally by picking xk+1 as an η-optimal point of f̂k, where η > 0 is an additional parameter independent
of the bound α on |ξk|. Our choice to lighten the notation is due to the fact that we would have 2α + η
instead of 3α in the regret bound, therefore picking η = α would be a good choice anyway. Note also that
picking η > 0 would allow to run the Piyavskii–Shubert algorithm on noncompact sets D (xk+1 would still
be well defined); the regret analysis would be exactly the same. We only state our results for D compact
and η = α > 0 to simplify the presentation.

3.1.1 Main results

We first upper bound the minimum number of iterations (i.e., the sample complexity) needed for the simple
regret rn = f(x⋆)− f(x⋆

n) to fall below some threshold ε. The following theorem is proved in Section 3.1.2.
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Algorithm 1 Piyavskii–Shubert algorithm (with known query budget n)

Inputs: Lipschitz constant L1, number of iterations n, perturbation scale α > 0, initial guess x1 ∈ D

for k = 1, . . . , n do

observe yk = f(xk) + ξk

update f̂k(x) = mini∈{1,...,k}

{
yi + L1‖xi − x‖+ α

}

pick xk+1 ∈ D such that f̂k(xk+1) > supx∈D f̂k(x)− α
end for

compute i⋆n = argmax i∈{1,...,n} yi

return x⋆
n := xi⋆n

x1 x2x3 x4

Figure 3: First three iterations of the Piyavskii–Shubert algorithm in dimension d = 1, with no perturbations
(α = 0). In blue the function f . In black the proxy function f̂3.

Theorem 1. Assume that f is L0-Lipschitz around x⋆ (Assumption 1) and let L1 > L0. Define ε0 as in
Equation (5) and let ε ∈ (0, ε0). Assume also that the perturbations in (7) are bounded by α ∈ [0, ε/6), and
that the Piyavskii–Shubert algorithm (Algorithm 1) is run with inputs L1, n ∈ N

⋆, α, and x1 ∈ D. Define

ñ :=

⌈log2
ε0
ε ⌉−1∑

s=0

N
(
X(ε02−s−1,ε02−s],

ε02
−s−1 − 3α

L1

)
+ 1 . (9)

If n > ñ, then the simple regret (8) of the Piyavskii–Shubert algorithm satisfies rn 6 ε+ 2α.

We now express the previous result in terms of the constants C⋆, d⋆ introduced in (6). The following
corollary is proved in Appendix C. It shows that when d⋆ = 0, the number of evaluations needed to reach an
ε-optimizer is at most logarithmic in 1/ε, while for d⋆ > 0, at most order of (1/ε)d

⋆

evaluations are needed.
Note that our bound is continuous with respect to d⋆, i.e., for smaller and smaller values of d⋆ the polynomial
bound approaches the logarithmic bound.

Corollary 1. Assume that f is L0-Lipschitz around x⋆ (Assumption 1) and let L1 > L0. Define ε0 as in
Equation (5) and let ε ∈ (0, ε0). Assume also that the perturbations in (7) are bounded by α ∈ [0, ε/9], and
that the Piyavskii–Shubert algorithm (Algorithm 1) is run with inputs L1, n ∈ N

⋆, α, and x1 ∈ D. Fix any
C⋆ > 0 and d⋆ ∈ [0, d] satisfying (6). Define

n := 1 + C⋆

(
1 + 28

L1

L0
1L1 6=L0 orα6=0

)d

×





log2

(ε0
ε

)
+ log2

(
18

7

)
if d⋆ = 0

(
18

7

)d⋆ (ε0
ε

)d⋆

− 1

2d⋆ − 1
if d⋆ > 0

(10)

If n > n, then the simple regret (8) of the Piyavskii–Shubert algorithm satisfies rn 6 ε.

Remark 1 (Comparison with earlier work). The above bound is of the same order as those proved for variants
of the Piyavskii–Shubert algorithm, e.g., by Perevozchikov [1990] and Munos et al. [2014, Corollary 3.3] for

10



piecewise-constant proxy functions f̂k, or by Malherbe and Vayatis [2017] when xk+1 is picked uniformly at

random in the set {x ∈ D : f̂k(x) > maxi6k f(xi)}. We therefore fill a gap in the study of the original (and
very natural) Piyavskii–Shubert algorithm. Note also that the general bound of Theorem 1 is much stronger
than the more classical bound in Corollary 1:

• As a simple example, when f is a constant function, only n = 1 evaluation is sufficient to maximize
it. In this case Theorem 1 gives the correct sample complexity ñ = 1, while Corollary 1 yields a much
worse upper bound n of the order of (1/ε)d (since d⋆ = d for constant functions).

• More importantly, Theorem 1 implies meaningful upper bounds when different values of d⋆ appear at
different scales ε (as in Example 3 in Section 2.3). This case could be handled similarly to Corollary 1;
the resulting bound would involve different rates depending on the value of ε. The same comment
applies to Corollaries 2, 3, and 4.

The proof in Appendix C shows that the multiplicative term
(
1 + 28L1

L0
1L1 6=L0 orα6=0

)d
appears applying

Lemma 6 (Appendix A) because of the imperfect information on L0 and the perturbations in the evaluations
of f . If L0 = L1 and α = 0 the term disappears. This suggests a discontinuity in the hardness of the problem
with respect to the information available to the learner. A very accurate, but not exact, estimate of L0 or
evaluation of f might increase the sample complexity by a term exponential in the dimension of the ambient
space. Moreover, we note that the constant 28 inside the exponential term is the result of upper bounding
α with its maximum allowed value ε/9. A smaller α would result in a smaller constant. As can be seen in
the second-to-last inequality in the proof of Corollary 1 (Appendix C), the constant decreases monotonically
when α decreases, and attains its minimum 4 when α = 0. The same observation applies to Corollary 3.

We conclude the section by upper bounding the regret rn of the Piyavskii–Shubert algorithm as a function
of n, when the values of f are observed exactly. This is obtained directly by letting α = 0 and solving
Equation (10) for ε.

Corollary 2. Assume that f is L0-Lipschitz around x⋆ (Assumption 1) and let L1 > L0. Assume that the
values of f are observed exactly, and that the Piyavskii–Shubert algorithm (Algorithm 1) is run with inputs
L1, n ∈ N

⋆, α = 0, and x1 ∈ D. Fix any C⋆ > 0 and d⋆ ∈ [0, d] satisfying (6). Then the simple regret (8)
of the Piyavskii–Shubert algorithm satisfies

rn 6

{
c1e

−c3n if d⋆ = 0

c2n
−1/d⋆

if d⋆ > 0

where c1, c2 > 0 and c3 > 0 are constants that depend on d, C⋆, d⋆, L0, L1, ε0, α but not on n.

3.1.2 Proof of Theorem 1.

In this section we present a formal proof of Theorem 1. The main argument, which consists in manipu-
lating packing numbers at different scales, was already present in [Munos et al., 2014, Chapter 3] (see also
Perevozchikov [1990]). These earlier works however crucially relied on a prespecified hierarchical partitioning
of the domain D (in particular the points xk there are chosen in cells with highest upper-confidence values).
In our case, the choice of the xk is not based on any a priori hierarchical partitioning, which might be a
reason why a tight analysis of the Piyavskii–Shubert algorithm for general dimensions d > 1 has been missing
so far.

We begin by proving an important property of the proxy function f̂k. When f is globally Lipschitz and
α = 0, the lower bound f̂k(x) > f(x) is well known and true not only for x = x⋆ but for all x ∈ D.

Lemma 1. Assume that f is L0-Lipschitz around x⋆ (Assumption 1) and let L1 > L0. Assume also that
the perturbations in (7) are bounded by α > 0, and that the Piyavskii–Shubert algorithm (Algorithm 1) is
run with inputs L1, n ∈ N

⋆, α, and x1 ∈ D.
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Then, for all k ∈ {1, . . . , n}, the proxy function f̂k(x) = min16i6k

{
f(xi) + L1‖xi − x‖ + (ξi + α)

}
is

L1-Lipschitz and satisfies, for all j ∈ {k, . . . , n},

f̂k(x
⋆) > f(x⋆) and f̂j(xk) 6 f(xk) + 2α .

Proof. Fix any k > 1 and j > k. The fact that f̂k is L1-Lipschitz is straightforward. Moreover,

f̂k(x
⋆) = min

i∈{1,...,k}

{
f(xi) + L1‖xi − x⋆‖+ (ξi + α)

}
. (11)

Since f is L0-Lipschitz around x⋆ and L1 > L0, we get for all i ∈ {1, . . . , k}

f(xi) > f(x⋆)− L0‖xi − x⋆‖ > f(x⋆)− L1‖xi − x⋆‖ .

Plugging f(xi) + L1‖xi − x⋆‖ > f(x⋆) and ξi > −α in Equation (11) gives f̂k(x
⋆) > f(x⋆). Furthermore,

the definition of f̂j(xk) and ξk 6 α imply, since j > k,

f̂j(xk) = min
i∈{1,...,j}

{
f(xi) + L1‖xi − xk‖+ (ξi + α)

}
6 f(xk) + L1‖xk − xk‖+ (ξk + α) 6 f(xk) + 2α ,

which concludes the proof.

Before proving the main result, we first state a key lemma which shows that if the Piyavskii–Shubert
algorithm observes f at a ∆-suboptimal point xi, then the next query points xj are all distant from xi

by at least roughly ∆/L1. In other words, the Piyavskii–Shubert algorithm does not explore too much in
suboptimal regions.

Lemma 2. Assume that f is L0-Lipschitz around x⋆ (Assumption 1) and let L1 > L0. Assume also that
the perturbations in (7) are bounded by α > 0, and that the Piyavskii–Shubert algorithm (Algorithm 1) is
run with inputs L1, n ∈ N

⋆, α, and x1 ∈ D.
Fix any ∆ > 0 and assume that there exists i ∈ {1, . . . , n − 1} such that the point xi queried by the

Piyavskii–Shubert algorithm during the i-th iteration satisfies xi ∈ X c
∆. Then, for all j > i, the j-th queried

point satisfies

‖xj − xi‖ >
∆− 3α

L1
.

Proof. Assume that xi ∈ X c
∆ for some i ∈ {1, . . . , n− 1} and let j > i. Then

f̂j−1(xj) > f̂j−1(x
⋆)− α (xj was selected at iteration j)

> f(x⋆)− α (by Lemma 1)

> f(xi) + ∆− α (xi ∈ X c
∆)

> f̂j−1(xi) + ∆− 3α (by Lemma 1)

Since f̂j−1 is L1-Lipschitz (Lemma 1), we have L1‖xj − xi‖ > |f̂j−1(xj)− f̂j−1(xi)| > ∆− 3α.

We can now prove Theorem 1, the main result of Section 3.1. To this end, we use a peeling technique in
which the input space D is partitioned in terms of the output values of f .

Proof of Theorem 1. Let mε :=
⌈
log2(ε0ε

−1)
⌉
> 1. We use a peeling technique and partition the set X c

ε of
ε-suboptimal points into multiple layers (recall Equation (4)). Note that

(ε02
−mε ,+∞) = (ε02

−mε , ε02
−mε+1] ∪ · · · ∪ (ε0/2, ε0] ∪ (ε0,+∞) .
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Moreover Xε02−mε ⊂ Xε and X c
ε0 = ∅ (by definition of ε0 in Equation (5)). Thus we have

X c
ε ⊂ X c

ε02−mε ⊂
(

mε⋃

s=1

As

)

with As := X(ε02−s,ε02−s+1] for all 1 6 s 6 mε. We remark that (As)16s6mε
is a collection of disjoint sets

that covers X c
ε . Therefore, for any 1 6 k 6 n, if xk ∈ X c

ε , there exists a unique s ∈ {1, . . . ,mε} such that
xk ∈ As. For any s ∈ {1, . . . ,mε}, by Lemma 2, the maximum number of rounds k at which xk can be

chosen in As = X c
ε02−s ∩ Xε02−s+1 is upper bounded by N

(
As,

ε02
−s−3α
L1

)
. Then

∣∣∣
{
k ∈ {1, . . . , n} : xk ∈ X c

ε

}∣∣∣ 6
mε∑

s=1

∣∣∣
{
k ∈ {1, . . . , n} : xk ∈ As

}∣∣∣ 6
mε∑

s=1

N
(
As,

ε02
−s − 3α

L1

)
.

Therefore, if

n >

mε∑

s=1

N
(
As,

ε02
−s − 3α

L1

)
+ 1

then there exists k ∈ {1, . . . , n} such that xk ∈ Xε, which implies (by definition of x⋆
n) that

f(x⋆
n) > f(xk) + ξk − ξi⋆n > f(x⋆)− ε− 2α .

3.2 Automatic stopping.

In the previous section we derived bounds ñ and n on the number n of iterations after which the Piyavskii–
Shubert algorithm guarantees a regret rn smaller than ε. However, these bounds can rarely be computed in
practice, since they involve unknown quantities such as packing numbers or the constants C⋆ and d⋆. We
now study a version of the Piyavskii–Shubert algorithm that stops automatically outputting an ε-optimal
solution after stopping, without requiring these unknown quantities (Algorithm 2). The only prior knowledge
on the shape of f is an upper bound L1 on the Lipschitz constant L0 (Assumption 1). We derive an upper
bound on the number n of queries to f needed to automatically stop; see Theorem 2 and Corollary 3 below.

Formally, the algorithm applies to the following online optimization protocol.

A function f : D ⊂ R
d → R that attains its maximum at some point x⋆ ∈ D is fixed in advance. Only

the compact domain D of the function, an upper bound L1 on the Lipschitz constant L0 (Assumption 1),
an upper bound α > 0 on the absolute value of the perturbations (see below), and a prescribed accuracy
ε > 0 are known to the learner in advance.

For each k = 1, 2, . . .:

1. the learner chooses a point xk ∈ D,

2. the environment picks a deterministic perturbation

ξk ∈ [−α, α] (12)

depending on f and all points xs chosen by the learner up to and including the current one xk,

3. the value yk := f(xk) + ξk is revealed to the learner.

At the end of each iteration n the learner can decide to interrupt the process and output a prediction x⋆
n

with the goal of returning an ε-optimal point. In other words, the regret rn := f(x⋆)− f(x⋆
n) at time n has

to satisfy
rn 6 ε .
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Algorithm 2 ε-Piyavskii–Shubert algorithm (with known accuracy ε)

inputs: Lipschitz constant L1, accuracy ε > 0, perturbation scale α > 0, initial guess x1 ∈ D
initialization: k ← 0 and f̂⋆

0 − f⋆
0 ← ε+ 2α+ 1

while f̂⋆
k − f⋆

k > ε do

update k← k + 1
observe yk ← f(xk) + ξk

update f̂k(x)← mini∈{1,...,k}

{
yi + L1‖xi − x‖ + α

}
for all x ∈ D

pick xk+1 ∈ D such that f̂k(xk+1) > supx∈D f̂k(x)− α

update f̂⋆
k ← f̂k(xk+1) and f⋆

k ← maxi∈{1,...,k} yi
end while

compute i⋆k = argmax i∈{1,...,k} yi

return x⋆
k ← xi⋆

k

The ε-Piyavskii–Shubert algorithm (Algorithm 2, presented below) applies to our setting with perturbations.

It behaves similarly to Algorithm 1. The only difference is that it stops as soon as the quantity f̂⋆
k − f⋆

k ≈
max f̂k −maxi6k yi (which controls the regret by Lemma 1) falls below ε.

The main result of the section (Theorem 2) shows that the number of iterations that the ε-Piyavskii–
Shubert algorithm performs before stopping (and returning an ε-optimal point) can be controlled by packing
numbers, similarly to Theorem 1.

The ε-Piyavskii–Shubert algorithm was extensively studied in dimension d = 1 when α = 0. For example,
Hansen et al. [1991] derived a tight upper bound on the number of evaluations of f needed before stopping,
in terms of an integral involving the increments f(x⋆) − f(x). In Appendix D we discuss how to derive a
regret bound similar to that of Corollary 3 from their upper bound. Our result could thus be interpreted as
a generalization of this result to an arbitrary dimension d > 1.

We now state the main result of this section, which we prove in Section 3.2.1.

Theorem 2. Assume that f is L0-Lipschitz around x⋆ (Assumption 1) and let L1 > L0. Define ε0 as in
Equation (5) and let ε ∈ (0, ε0). Assume also that the perturbations in (7) are bounded by α ∈ [0, ε/12),
and that the ε-Piyavskii–Shubert algorithm (Algorithm 2) is run with inputs L1, ε, α, x1 ∈ D. Then, the
ε-Piyavskii–Shubert algorithm stops after n 6 ñ′ iterations,4 where ñ′ is defined by

ñ′ := N
(
Xε/2,

ε− 3α

L1

)
+

⌈log2
ε0
ε ⌉∑

s=0

N
(
X(ε02−s−1,ε02−s],

ε02
−s−1 − 3α

L1

)
(13)

and its simple regret (8) satisfies rn 6 ε+ 2α.

Note that ñ′ (Equation (13)) is very similar to ñ (Equation (9)). The main difference is that the +1 term
is replaced by N

(
Xε/2,

ε−3α
L1

)
, which reveals a subtle but crucial difference between the Piyavskii–Shubert

algorithm (Algorithm 1) and the ε-Piyavskii–Shubert algorithm (Algorithm 2). Consider a constant function
f . Since all suboptimal layers are empty (because all points in D are optimal), Equation (9) reflects the fact
that as little as ñ = 1 evaluation is needed in order for Algorithm 1 to guarantee a near-optimal solution,
since the first prediction is necessarily already optimal. However, with the same constant objective, the

bound ñ′ on the number of iterations of Algorithm 2 is of order N
(
Xε/2,

ε−3α
L1

)
&
(
1
ε

)d
, which is as big as it

gets! This huge gap, which was already noticed by Hansen et al. [1991] in dimension d = 1, is unavoidable
and due to the fact that Algorithm 2 is asked to complete a task that is significantly harder than that of
Algorithm 1. The Piyavskii–Shubert algorithm simply runs for a prescribed amount of iterations, during
which it happens to make good predictions if the objective is flat. In contrast, the ε-Piyavskii–Shubert

4This means that f is evaluated at most ñ′ times in total.
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algorithm has to become aware that its predictions are accurate after they became so. If the function is very
flat, a full grid search has to be performed in order to make sure that the proxy function at its highest value
is close enough to the value of the objective. Note, however, that the term N

(
Xε/2,

ε−3α
L1

)
is not always this

large. E.g., it is comparable to the rest of the bound if the objective function is x 7→ 1 − ‖x‖, as shown in
Example 1.

As we did in the previous section, we now express the previous result in terms of the constants C⋆, d⋆

introduced in (6). The following corollary is proved in Appendix C. It shows that the number of iterations
before stopping and returning an ε-optimal point is logarithmic in 1/ε if d⋆ = 0, otherwise scales as (1/ε)d

⋆

.
Note that as in Corollary 1, our bound is continuous in d⋆.

Corollary 3. Assume that f is L0-Lipschitz around x⋆ (Assumption 1) and let L1 > L0. Define ε0 as in
Equation (5) and let ε ∈ (0, ε0). Assume also that the perturbations in (7) are bounded by α ∈ [0, ε/15],
and that the ε-Piyavskii–Shubert algorithm (Algorithm 2) is run with inputs L1,

(
13/15

)
ε, α, x1 ∈ D. Fix any

C⋆ > 0 and d⋆ ∈ [0, d] satisfying (6). Then, the ε-Piyavskii–Shubert algorithm stops after n 6 n′ iterations,
where n′ is defined by

n′ := C⋆

(
1 + 52

L1

L0
1L1 6=L0 orα6=0

)d

×





log2

(ε0
ε

)
+ log2

(
120

13

)
if d⋆ = 0

(
4d

⋆

+ 2d
⋆ − 1

)(15

13

)d⋆ (ε0
ε

)d⋆

− 1

2d⋆ − 1
if d⋆ > 0

and its simple regret (8) satisfies rn 6 ε.

3.2.1 Proof of Theorem 2.

In this section we present a formal proof of Theorem 2. Before proving the main result, we first state a
useful lemma analogous to Lemma 2. It shows that if the ε-Piyavskii–Shubert algorithm observes f at a
suboptimal point xi, then the next query points xj are all distant from xi and in any case it never queries
points that are too close to each other. In other words, the ε-Piyavskii–Shubert algorithm does not explore
too much in suboptimal regions and it does not waste evaluations on neighboring points.

Lemma 3. Assume that f is L0-Lipschitz around x⋆ (Assumption 1) and let L1 > L0. Define ε0 as in
Equation (5) and let ε ∈ (0, ε0). Assume also that the perturbations in (7) are bounded by α > 0, and
that the ε-Piyavskii–Shubert algorithm (Algorithm 2) is run with inputs L1, ε, α, x1 ∈ D and stops after n
iterations.5 Then, for all distinct i, j ∈ {1, . . . , n},

‖xi − xj‖ >
ε− 3α

L1
.

Moreover, if i < j and there exists 0 6 k 6 mε :=
⌈
log2

ε0
ε

⌉
such that xi ∈ X(ε02−k−1,ε02−k], then

‖xi − xj‖ >
ε02

−k−1 − 3α

L1
.

Proof. Proof of Lemma 3. Without loss of generality, assume i < j. Note that

f̂j−1(xj) = f̂⋆
j−1 (by definition of f̂⋆

j−1)

> f⋆
j−1 + ε (the algorithm ran for at least j iterations)

> f(xi) + ε− α (by definition of f⋆ and ξi > −α)
> f̂j−1(xi) + ε− 3α . (by Lemma 1)

5This means that f̂⋆

k
− f⋆

k
> ε for all k ∈ {1, . . . , n− 1} and that f̂⋆

n − f⋆
n 6 ε.
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Since f̂j−1 is L1-Lipschitz (Lemma 1), we have L1‖xi − xj‖ >
∣∣f̂j−1(xj) − f̂j−1(xi)

∣∣ > ε− 3α, which gives
the first inequality. As for the second inequality, it follows from Lemma 2 applied with ∆ = ε02

−k−1 (note
that xi ∈ X c

∆ and that Algorithms 1 and 2 coincide until iteration n).

We can now prove Theorem 2. The proof proceeds similarly to that of Theorem 1: we rely on a peeling
technique in which the input space D is partitioned in terms of the output values of f .

Proof of Theorem 2. Fix any ε ∈ (0, ε0) and α ∈ [0, ε/12). Let T = {1, . . . , n} be the set of indices of all
iterations performed by the ε-Piyavskii–Shubert algorithm (Algorithm 2) before stopping, mε :=

⌈
log2

ε0
ε

⌉
>

1, and for all k ∈ {0, . . . ,mε},

Tk :=
{
t ∈ T : xt ∈ X(ε02−k−1,ε02−k]

}
,

Tmε+1 :=
{
t ∈ T : xt ∈ Xε/2

}
.

Lemma 3 implies, for all k ∈ {0, . . . ,mε},

|Tk| 6 N
(
X(ε02−k−1,ε02−k],

ε02
−k−1 − 3α

L1

)
,

|Tmε+1| 6 N
(
Xε/2,

ε− 3α

L1

)
.

Since X(ε0,+∞) = ∅ (by definition of ε0 in Equation (5)) and [0, ε0] = [0, ε/2] ∪ (ε02
−mε−1, ε02

−mε ] ∪
· · · ∪ (ε02

−1, ε0], we have D = Xε/2 ∪
(⋃mε

s=0 X(ε02−s−1,ε02−s]

)
. Hence, for all iterations i ∈ T there exists

k ∈ {0, . . . ,mε + 1} such that i ∈ Tk, which in turn gives

|T | 6
mε+1∑

k=0

|Tk| 6 N
(
Xε/2,

ε− 3α

L1

)
+

mε∑

k=0

N
(
X(ε02−k−1,ε02−k],

ε02
−k−1 − 3α

L1

)
,

which shows that n 6 ñ′. To conclude, note that after the last iteration n performed by the algorithm before
stopping, we have

rn = f(x⋆)− f(x⋆
n) 6 f̂n(x

⋆)− f(x⋆
n) 6 f̂⋆

n − f⋆
n + 2α 6 ε+ 2α ,

where the first inequality follows by Lemma 1, the second by definition of f̂⋆
n and f⋆

n, and the last one by
the fact that the condition in the while loop is false after the last iteration.

4 Stochastic perturbations.

In this section we show how to apply the results proven in Section 3 to an algorithm designed for the stochastic
setting (Algorithm 3). More precisely, we assume that the values of f are observed up to subgaussian noise.
We then use a mini-batch sampling technique to produce tight estimates of the value of f at each iteration
of the algorithm.

Assumption 2. Let ξ := (ξk,i)k,i∈N∗ be a sequence of independent random variables. We assume that there
exists σ0 > 0 such that all random variables in the sequence are σ0-subgaussian, i.e., for all i, k ∈ N

∗ and
for all λ ∈ R,

E
(
eλξk,i

)
6 eλ

2σ2
0/2 .

(In particular, the random variables ξk,i are centered.) We say in this case that ξ is a σ0-subgaussian noise
sequence. Moreover, we assume that an upper bound σ1 on σ0 is known to the learner.
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We study directly the version of the problem in which an accuracy level ε is given and the algorithm
stops automatically guaranteeing an ε-optimal solution. Formally, the algorithm applies to the following
online optimization protocol.

A function f : D ⊂ R
d → R that attains its maximum at some point x⋆ ∈ D and a σ0-subgaussian noise

sequence ξ (Assumption 2) are fixed in advance. Only the compact domain D of the function, an upper
bound L1 on the Lipschitz constant L0 (Assumption 1), an upper bound σ1 on σ0, and a prescribed accuracy
ε > 0 are known to the learner in advance.

For each k = 1, 2, . . .:

1. the learner queries a point xk ∈ D for a finite amount of times,

2. for each query i of xk, the value f(xk) + ξk,i is revealed to the learner.

At the end of each iteration n the learner can decide to interrupt the process and output a prediction x⋆
n

with the goal of returning an ε-optimal point. In other words, the regret rn := f(x⋆)− f(x⋆
n) at time n has

to satisfy
rn 6 ε . (14)

The stochastic ε-Piyavskii–Shubert algorithm (Algorithm 3) applies to our setting with stochastic pertur-

bations. It behaves similarly to Algorithm 2. We maintain a proxy f̂k of the objective function f that
upper bounds f at the maximizer x⋆ with high probability. The proxy is updated during each iteration by
querying the same value multiple times in order to build an estimate of the real value f(xk) of the function
at that point up to a small perturbation ξk. It then proceeds like Algorithm 2 with the guarantee that the
perturbation will be controlled with high probability. All remarks made for Algorithms 1 and 2 still apply
with high probability.

Algorithm 3 Stochastic ε-Piyavskii–Shubert algorithm

inputs: Lipschitz constant L1, subgaussian constant σ1 > 0, accuracy ε > 0, confidence 1−δ ∈ (0, 1), initial
guess x1 ∈ D
initialization: ε′ ← (13/15)ε, α← ε/15, k ← 0 and f̂⋆

0 − f⋆
0 ← ε′ + 1

while f̂⋆
k − f⋆

k > ε′ do

update k← k + 1 and mk =
⌈
2σ2

1

α2 ln
(

2k(k+1)
δ

)⌉

observe f(xk) + ξk,1, . . . , f(xk) + ξk,mk
and compute the average yk ← f(xk) + ξk, where

ξk =
1

mk

mk∑

i=1

ξk,i

update f̂k(x)← mini∈{1,...,k}

{
yi + L1‖xi − x‖ + α

}
for all x ∈ D

pick i⋆k ∈ argmax i∈{1,...,k} yi and xk+1 ∈ D such that f̂k(xk+1) > supx∈D f̂k(x) − α

update f⋆
k ← f

(
xi⋆

k

)
+ ξi⋆

k
= maxi∈{1,...,k} yi and f̂⋆

k ← f̂k(xk+1) > sup f̂k − α
end while

return x⋆
k ← xi⋆

k

Before proving the main result of the section, we state a very standard concentration inequality for the
empirical average of subgaussian random variables (see, e.g., [Boucheron et al., 2013, Section 2.3]).

Lemma 4. Let ξ be a σ0-subgaussian noise sequence (Assumption 2), and σ1 > σ0. Then, for all k,m ∈ N
∗

and all α > 0,

P

(∣∣∣∣∣
1

m

m∑

i=1

ξk,i

∣∣∣∣∣ > α

)
6 2e−mα2/(2σ2

0) 6 2e−mα2/(2σ2
1) . (15)
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Similarly to the previous section, we upper bound the number of evaluations of f after which the stochastic
ε-Piyavskii–Shubert algorithm (Algorithm 3) automatically stops outputting an ε-optimal point. The proof
of the next theorem follows by applying Theorem 2 (Section 3.2.1) on a “nice” event, the probability of
which is controlled through multiple calls to Lemma 4.

Theorem 3. Assume that f is L0-Lipschitz around x⋆ (Assumption 1), the noise ξ is σ0-subgaussian
(Assumption 2), and let L1 > L0 and σ1 > σ0. Let also ε0 be defined by Equation (5), ε ∈ (0, ε0), δ ∈ (0, 1),
x1 ∈ D, and assume that the stochastic ε-Piyavskii–Shubert algorithm (Algorithm 3) is run with inputs
L1, σ1, ε, 1 − δ, x1. Then, with probability at least 1 − δ, the stochastic ε-Piyavskii–Shubert algorithm stops
after performing N 6 Ñ ′ evaluations of f , where

Ñ ′ := 900
σ2
1

ε2
(
ñ′ + 1

)
ln

(
4
(
ñ′ + 1

)

δ

)
+ ñ′ ,

ñ′ := N
(
X 13

30 ε
,
2

3

ε

L1

)
+

⌈log2( 15
13

ε0
ε )⌉∑

k=0

N
(
X(ε02−k−1,ε02−k],

ε02
−k−1 − ε/5

L1

)
,

and its simple regret (1) satisfies rN 6 ε.

Note again the presence of the first term in the definition of ñ′. As highlighted before (see discussion
after Theorem 2), this additional term is due to the price of automatic stopping and cannot be avoided.

Proof. Let ε′ = (13/15)ε and α = ε/15 as in the initialization of the stochastic ε-Piyavskii–Shubert algorithm
(Algorithm 3). Consider the “bad” event E :=

{
∃k ∈ N

∗ : |ξk| > α
}
, where we recall that ξk = 1

mk

∑mk

i=1 ξk,i.

By applying a union bound, Inequality (15), and the definition of mk =
⌈
(2σ2

1/α
2) ln

(
2k(k + 1)/δ

)⌉
, we get

P(E) 6

+∞∑

k=1

P

(∣∣∣∣∣
1

mk

mk∑

i=1

ξk,i

∣∣∣∣∣ > α

)
6

+∞∑

k=1

δ

k(k + 1)
= δ .

For each outcome belonging to the complement of E, during each iteration k the value f(xk) is observed up
to a perturbation ξk with |ξk| 6 α. With probability at least 1− δ we can therefore apply Theorem 2 (with
ε′ = (13/15)ε instead of ε) to upper bound the number of iterations before stopping by ñ′, which in turn
gives that the total number of evaluations of f before stopping is at most

ñ′∑

i=1

mi 6

ñ′∑

i=1

(
4σ2

1

α2
ln(i) +

2σ2
1

α2
ln

(
4

δ

)
+ 1

)
6

4σ2
1

α2

(
ñ′ + 1

)
ln

(
4
(
ñ′ + 1

)

δ

)
+ ñ′ , (16)

where in the last inequalities we used 2k(k + 1) 6 4k2 and

n∑

k=1

ln(k) 6

∫ n+1

1

ln(x) dx = (n+ 1) ln(n+ 1)− n .

We conclude the proof by substituting the value of α = ε/15 in (16).

Note that the large leading constant 900 depends on our choice of letting ε′ = (13/15)ε and α = ε/15 in
the initialization of the stochastic ε-Piyavskii–Shubert algorithm (Algorithm 3). Inequality (16) shows that
this term appears because of the multiplicative constant 4/α2. In principle, one could reduce it by picking a
larger α. This, however, would result in larger packing numbers which could in turn increase the bound even
further. The same observation applies to Corollary 4, in which a bigger α would translate into a constant

larger than 52 in
(
1 + 52L1

L0

)d
.

Combining the proofs of Corollary 3 and Theorem 3 gives immediately the following upper bound on
the number of evaluations of f after which the stochastic ε-Piyavskii–Shubert algorithm (Algorithm 3)
automatically stops.
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Corollary 4. Assume that f is L0-Lipschitz around x⋆ (Assumption 1), the noise ξ is σ0-subgaussian
(Assumption 2), and let L1 > L0 and σ1 > σ0. Let also ε0 be defined by Equation (5), ε ∈ (0, ε0), δ ∈ (0, 1),
x1 ∈ D, and assume that the stochastic ε-Piyavskii–Shubert algorithm (Algorithm 3) is run with inputs
L1, σ1, ε, 1 − δ, x1. Fix any C⋆ > 0 and d⋆ ∈ [0, d] satisfying (6). Then, with probability at least 1 − δ, the

stochastic ε-Piyavskii–Shubert algorithm stops after performing N 6 N
′
evaluations of f , where

N
′
:= 900

σ2
1

ε2
(
n′ + 1

)
ln

(
4
(
n′ + 1

)

δ

)
+ n′ ,

n′ := C⋆

(
1 + 52

L1

L0
1L1 6=L0 orα6=0

)d

×





log2

(ε0
ε

)
+ log2

(
120

13

)
if d⋆ = 0

(
4d

⋆

+ 2d
⋆ − 1

)(15

13

)d⋆ (ε0
ε

)d⋆

− 1

2d⋆ − 1
if d⋆ > 0

and its simple regret (1) satisfies rN 6 ε.

The above high-probability bound is of the form n . (1/ε)d
⋆+2, where the . notation hides logarithmic

terms and problem-dependent constants. As mentioned in the introduction, if we switch the roles of n and
ε, it corresponds to a regret bound roughly of the form:

rn . n−1/(d⋆+2) ,

which is known to be worst-case optimal as a consequence of the minimax lower bound of Bubeck et al.
[2011a, Theorem 13] (this lower bound is stated for the cumulative regret, but it could be adapted for the
simple regret).

A Useful inequalities about packing and covering numbers.

Covering numbers and packing numbers (see Section 2.2) are closely related. In particular, the following
well-known inequalities hold—see, e.g., [Wainwright, 2019, Lemma 5.5 and Example 5.8, with permuted
notation ofM and N ].6

Lemma 5. For any bounded set A ⊂ R
d and any real number r > 0,

N (A, 2r) 6M(A, r) 6 N (A, r) . (17)

Furthermore, for all δ > 0 and all r > 0,

M
(
B‖·‖(δ), r

)
6

(
1 + 2

δ

r
1r<δ

)d

. (18)

We now state a known lemma about packing numbers at different scales. This result will be useful to
control how an overestimation L1 of the Lipschitz constant L0 impacts the regret of our algorithms.

Lemma 6. For any bounded set A ⊂ R
d and any real numbers r1, r2 > 0,

N (A, r1) 6

(
1 + 4

r2
r1

1r2>r1

)d

×N (A, r2) .

6The definition of r-covering number of a subset A of Rd implied by [Wainwright, 2019, Definition 5.1] is slightly stronger
than the one used in our paper, because elements x1, . . . , xN of r-covers belong to A rather than just R

d. Even if we do not
need it for our analysis, Inequality (18) holds also in this stronger sense.
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Proof. We can assume without loss of generality that A is nonempty and that r1 < r2. Then,

N (A, r1) 6M(A, r1/2) (by (17))

6M(A, r2)×M
(
B‖·‖(r2), r1/2

)
(see below)

6 N (A, r2)×M
(
B‖·‖(r2), r1/2

)
(by (17))

6 N (A, r2)×
(
1 +

4r2
r1

)d

. (by (18))

The second inequality is obtained by building the r1/2-covering of A in two steps. First, we cover A with
balls of radius r2. Second, we cover each ball of the first cover with balls of radius r1/2.

B Simple bound on d⋆, near-optimality dimension.

The next well-known lemma shows that Inequality (6) is always true with C⋆ = 9d and d⋆ = d (though a
significantly smaller value of d⋆ may exist, see Section 2.3). We recall that throughout the paper D ⊂ R

d is
compact.

Lemma 7. Assume that f : D → R is L0-Lipschitz around a maximizer x⋆ (Assumption 1) and set ε0 =
L0 supx,y∈D ‖x− y‖. Then, for all ε ∈ (0, ε0],

N
(
Xε,

ε

2L0

)
6 9d

(ε0
ε

)d
.

Proof. Let ε ∈ (0, ε0]. Fix any a ∈ D and set B = B‖·‖

(
supy∈D ‖y − a‖

)
. Then Xε ⊂ D ⊂ a+B, which in

turn yields

N
(
Xε,

ε

2L0

)
6 N

(
a+B,

ε

2L0

)
6M

(
B,

ε

4L0

)
6

(
1 +

8 supy∈D ‖y − a‖L0

ε

)d

6 9d
(ε0
ε

)d
,

where the second inequality follows by translation invariance and by (17), the third by (18), and the last
one by definition of ε0.

When the minimum

d⋆(L0) := min

{
d′ ∈ R

+ : ∃C > 0, ∀ε ∈ (0, ε0],N
(
Xε,

ε

2L0

)
6 C

(ε0
ε

)d′
}

exists, the quantity d⋆(L0) is called the near-optimality dimension of f Bubeck et al. [2011a]. The zooming
dimension is defined similarly by packing the layers X(ε/2,ε] instead of the sets Xε (see Kleinberg et al.
[2008]). When d⋆(L0) is well defined, Inequality (6) is satisfied with d⋆ = d⋆(L0) and the constant C⋆ equal
to

C⋆(L0) := min

{
C > 0 : ∀ε ∈ (0, ε0],N

(
Xε,

ε

2L0

)
6 C

(ε0
ε

)d⋆(L0)
}

.

Note however that a small d⋆(L0) does not necessarily imply that the sets Xε are small, since the constant
C⋆(L0) can be arbitrarily large. Consider, for example, a small ρ > 0 and the function x 7→ max

{
ρ− ‖x−

x0‖, 0
}
. Its near-optimality dimension is 0 but picking d⋆ = 0 gives a constant C⋆ of the order of (1/ρ)d.

Besides, in Example 3, we can check that d⋆(L0) = d/2, so that the near-optimality dimension corresponds
here to the worst-case value of d⋆ among the linear and quadratic regimes. Our bounds in Sections 3 and 4
do not depend on this worst-case value but instead combine all best values of d⋆ at all scales ε.
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C Proofs of Corollaries 1 and 3.

In this section we prove Corollaries 1 and 3 stated in Section 3. We begin by Corollary 1, which gives a
sample complexity bound for the Piyavskii–Shubert algorithm in terms of the near-optimality dimension of
f .

Proof of Corollary 1. Fix any C⋆ > 0, and d⋆ ∈ [0, d] satisfying (6), ε ∈ (0, ε0), and α ∈ [0, ε/9]. Let
also c := 1L1 6=L0 orα6=0 and ε′ := (7/9)ε. Note that ε′ ∈ (0, ε0) and α ∈ [0, ε′/6). We can therefore apply
Theorem 1 (with ε′ instead of ε) to conclude that, if n > ñ, the simple regret of the Piyavskii–Shubert
algorithm satisfies rn 6 ε′ + 2α 6 ε, where

ñ =

⌈log2
ε0
ε′
⌉∑

s=1

N
(
X(ε02−s,ε02−s+1],

ε02
−s − 3α

L1

)
+ 1 (by (9) in Theorem 1)

6

⌈log2
ε0
ε′
⌉∑

s=1

N
(
Xε02−s+1 ,

ε02
−s − 3α

L1

)
+ 1

6

⌈log2
ε0
ε′
⌉∑

s=1

(
1 + 4

ε02
−s

L0

ε02−s−3α
L1

c

)d

N
(
Xε02−s+1 ,

ε02
−s

L0

)
+ 1 (by Lemma 6 in Appendix A)

6

(
1 + 4

L1

L0

ε′

ε′ − 6α
c

)d



⌈log2 ε0

ε′
⌉∑

s=1

N
(
Xε02−s+1 ,

ε02
−s+1

2L0

)

+ 1 (x 7→ x

x−3α is decreasing)

6 C⋆

(
1 + 4

L1

L0

ε′

ε′ − 6α
c

)d



⌈log2

ε0
ε′
⌉−1∑

s=0

(
2d

⋆
)s

+ 1 (by (6))

6 1 + C⋆

(
1 + 4

L1

L0

ε′

ε′ − 6α
c

)d

×





log2

(ε0
ε′

)
+ 1 if d⋆ = 0

2d
⋆
(ε0
ε′

)d⋆

− 1

2d⋆ − 1
if d⋆ > 0

6 1 + C⋆

(
1 + 28

L1

L0
c

)d

×





log2

(ε0
ε

)
+ log2

(
18

7

)
if d⋆ = 0

(
18

7

)d⋆ (ε0
ε

)d⋆

− 1

2d⋆ − 1
if d⋆ > 0

= n

where the last inequality follows by α 6 ε
9 = ε′

7 and ε′ = 7
9ε.

We now show the analogous proof for automatic stopping, which concludes this section.

Proof of Corollary 3. Fix any C⋆ > 0 and d⋆ ∈ [0, d] satisfying (6), ε ∈ (0, ε0), and α ∈ [0, ε/15]. Let also
c = 1L1 6=L0 orα6=0, ε

′ := (13/15)ε, and mε′ =
⌈
log2

ε0
ε′

⌉
. Note that ε′ ∈ (0, ε0) and α ∈ [0, ε′/12). We can

therefore apply Theorem 2 (with ε′ instead of ε) to conclude that the simple regret of the ε-Piyavskii–Shubert
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algorithm after the last iteration n satisfies rn 6 ε′ + 2α 6 ε. Moreover, the total number n of iterations is
bounded by

ñ′ = N
(
Xε′/2,

ε′ − 3α

L1

)
+

⌈log2 ε0
ε′
⌉∑

k=0

N
(
X(ε02−k−1,ε02−k],

ε02
−k−1 − 3α

L1

)
(by Theorem 2)

=: (I) + (II)

For the first term, we have

(I) 6 N
(
Xε′ ,

ε′ − 3α

L1

)
6

(
1 + 4

ε′

2L0

ε′−3α
L1

c

)d

N
(
Xε′ ,

ε′

2L0

)
6

(
1 + 2

L1

L0

ε′

ε′ − 3α
c

)d

C⋆
(ε0
ε′

)d⋆

where the first inequality follows by the fact that A 7→ N (A, r) is nondecreasing (with respect to the
inclusion) for all r > 0, the second by Lemma 6, and the last inequality follows by (6). Combining the fact
that α 6 ε/15 = ε′/13 with x 7→ x

x−3α being decreasing on (3α,+∞), and finally plugging ε′ = (13/15) ε in
the last bound above, we get

(I) 6 C⋆

(
1 +

13

5

L1

L0
c

)d (
15

13

)d⋆ (ε0
ε

)d⋆

.

The second term (II) can be upper bounded by following the same lines as in the proof of Corollary 1.
More precisely, we have

(II) 6

⌈log2
ε0
ε′
⌉∑

k=0

N
(
Xε02−k ,

ε02
−k−1 − 3α

L1

)
6

⌈log2
ε0
ε′
⌉∑

k=0

(
1 + 4

ε02
−k

2L0

ε02−k−1−3α
L1

c

)d

N
(
Xε02−k ,

ε02
−k

2L0

)

6

(
1 + 52

L1

L0
c

)d

C⋆

⌈log2
ε0
ε′
⌉∑

k=0

(
2d

⋆
)k

6

(
1 + 52

L1

L0
c

)d

C⋆





log2
(
ε0
ε

)
+ log2

(
60
13

)
if d⋆ = 0

(
2d

⋆)⌈log2 ε0
ε′ ⌉+1 − 1

2d⋆ − 1
if d⋆ > 0

6

(
1 + 52

L1

L0
c

)d

C⋆





log2
(
ε0
ε

)
+ log2

(
60
13

)
if d⋆ = 0

(
60
13

)d⋆ (
ε0
ε

)d⋆

− 1

2d⋆ − 1
if d⋆ > 0

Thus

ñ′ = (I) + (II)

6

(
1 + 52

L1

L0
c

)d

C⋆



(
15

13

)d⋆ (ε0
ε

)d⋆

+





log2
(
ε0
ε

)
+ log2

(
60
13

)
if d⋆ = 0

(
60
13

)d⋆ (
ε0
ε

)d⋆

− 1

2d⋆ − 1
if d⋆ > 0




6

(
1 + 52

L1

L0
c

)d

C⋆





log2
(
ε0
ε

)
+ log2

(
120
13

)
if d⋆ = 0

(
2d

⋆ − 1
) (

15
13

)d⋆ (
ε0
ε

)d⋆

+
(
60
13

)d⋆ (
ε0
ε

)d⋆

− 1

2d⋆ − 1
if d⋆ > 0

6

(
1 + 52

L1

L0
c

)d

C⋆





log2
(
ε0
ε

)
+ log2

(
120
13

)
if d⋆ = 0

(
4d

⋆

+ 2d
⋆ − 1

) (
15
13

)d⋆ (
ε0
ε

)d⋆

− 1

2d⋆ − 1
if d⋆ > 0
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D Connections with a known regret bound in dimension d = 1.

Hansen et al. [1991] provided an extensive study of the ε-Piyavskii–Shubert algorithm without perturbations
(Algorithm 2 with α = 0) for Lipschitz functions defined on a compact interval. Theorems 4 and 5 in
Hansen et al. [1991] imply the following upper bound on the number nPy of iterations performed by the
ε-Piyavskii–Shubert algorithm before stopping.

Theorem 4 (Hansen et al. [1991]). Assume that D = [0, 1], f is globally L0-Lipschitz on [0, 1], and let
L1 > L0. Let also ε > 0, α = 0, x1 ∈ D, and assume that the ε-Piyavskii–Shubert algorithm (Algorithm 2)
is run with inputs L1, ε, 0, x1. Then, the ε-Piyavskii–Shubert algorithm stops after at most nPy iterations,
where

nPy := 1 +
2L0

ln (1 + L0/L1)

∫ 1

0

dx

f(x⋆)− f(x) + ε
. (19)

Using (6), we can further upper bound nPy in terms of the pair (d⋆, C⋆), as shown below.

Corollary 5. Assume that D = [0, 1], f is globally L0-Lipschitz on [0, 1], and let L1 > L0. Let also
ε > 0, α = 0, x1 ∈ D, and assume that the ε-Piyavskii–Shubert algorithm (Algorithm 2) is run with inputs
L1, ε, 0, x1. Fix any C⋆ > 0 and d⋆ ∈ [0, d] satisfying (6). Then, the ε-Piyavskii–Shubert algorithm stops
after at most nPy iterations, where

nPy := 1 +
v1C

⋆

ln(1 + L0/L1)
×





2 log2

(ε0
ε

)
+ 3 if d⋆ = 0

(
2d

⋆+1

2d⋆ − 1
+ 1

)(ε0
ε

)d⋆

if d⋆ > 0

and v1 is the volume
∫
R
1‖x‖61dx of the real unit ball with respect to ‖ · ‖.

Proof. We start from Equation (19). This proof relies on a peeling technique similar to that of Theo-
rems 1 and 2. Fix any C⋆ > 0 and d⋆ ∈ [0, d] satisfying (6), and without loss of generality let ε ∈ (0, ε0).
Defining againmε :=

⌈
log2(ε0ε

−1)
⌉
> 1, we have [0, ε0] = [0, ε]∪(ε02−mε , ε02

−mε+1]∪(ε02−mε+1, ε02
−mε+2]∪

· · · ∪ (ε0/2, ε0] which in turn yields

∫ 1

0

dx

f(x⋆)− f(x) + ε
6

mε∑

i=1

∫

X(ε02−i,ε02−i+1]

dx

f(x⋆)− f(x) + ε
+

∫

Xε

dx

f(x⋆)− f(x) + ε

6

mε∑

i=1

∫

X(ε02−i,ε02−i+1]

dx

ε02−i
+

∫

Xε

dx

ε
.

Let v1 be the volume
∫
R
1‖x‖61dx of the real unit ball with respect to ‖ · ‖. For any nonempty subset A of

[0, 1], any radius α > 0, and any collection B of ‖ · ‖-balls of radius α covering A, we have

∫

A

dx 6
∑

B∈B

∫

B

dx 6 αv1 · |B| .

Plugging this in the previous inequality gives

∫ 1

0

dx

f(x⋆)− f(x) + ε
6

mε∑

i=1

1

2−iε0

2−iε0
L0

v1 ·M
(
X( ε0

2i
,

ε0
2i−1 ]

,
2−iε0
L0

)
+

1

ε

ε

2L0
v1 · M

(
Xε,

ε

2L0

)
,

where the covering number M(A, δ) is the minimum number of δ-balls required to cover A. Using the
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inclusion X(ε02−i,ε02−i+1] ⊂ Xε02−i+1 , and applying (17) and (6), we obtain

∫ 1

0

dx

f(x⋆)− f(x) + ε
6

v1
L0

mε∑

i=1

C⋆

(
ε0

2−i+1ε0

)d⋆

+
v1
2L0

C⋆
(ε0
ε

)d⋆

6
v1C

⋆

L0

mε∑

i=1

2(i−1)d⋆

+
v1C

⋆

2L0

(ε0
ε

)d⋆

6





v1C
⋆

2L0
(2mε + 1) if d⋆ = 0

v1C
⋆

L0

2mεd
⋆ − 1

2d⋆ − 1
+

v1C
⋆

2L0

(ε0
ε

)d⋆

if d⋆ > 0

6





v1C
⋆

2L0

(
2 log2

(ε0
ε

)
+ 3
)

if d⋆ = 0

v1C
⋆

2L0

(
2d

⋆+1

2d⋆ − 1
+ 1

)(ε0
ε

)d⋆

if d⋆ > 0

which gives the result.
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