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Abstract. Long ago inferred by biochemists, the linear diffusion of proteins along DNA has recently been
observed at a single-molecule level using fluorescence microscopy. This imaging technique requires labeling
the protein of interest with a fluorophore, usually an organic nanosized dye that is not supposed to impact
the dynamics of the protein. Yet individual proteins can also be tracked using much larger labels, like
quantum dots or beads. We investigate here the impact of such a large label on the protein diffusion along
DNA. Solving a Fokker-Planck equation, we estimate the diffusion constant of a protein-label complex
diffusing in a periodic potential that mimics the DNA-protein interaction, the link between the protein
and the label being modeled as a Hookean spring. Our results indicate that the diffusion constant can
generally be calculated by considering that the motion of the protein in the DNA potential is decoupled
from the Brownian motion of the label. Our conclusions are in good agreement with the experimental results
we obtained with the restriction enzyme EcoRV, assuming a rotation-coupled diffusion of the enzyme along

DNA.

1 Introduction

Many biological functions depend on interactions between
DNA and site-specific DNA-binding proteins, which must
search through large nonspecific regions of DNA to find
their target, usually a few base-pair DNA sequence. With-
out consuming energy, some of these proteins are able to
rapidly find their target DNA, occasionally even faster
than allowed by three-dimensional diffusion [1]. Since long
this “facilitated diffusion” has been connected to a translo-
cation of proteins along nonspecific DNA [2]. Although
the characterization of the microscopic processes involved
in this translocation has been widely discussed over the
past forty years [3-11], it is only recently that facilitated
diffusion has been addressed using single-molecule ap-
proaches [12,13]. Among them, fluorescence-based tech-
niques have been frequently used because they allow the
direct visualization of the interaction between a protein
and a DNA molecule [14]. Several teams have observed and
characterized the diffusive motion of single fluorescently
labeled proteins interacting with noncognate DNA [15-
22], thus confirming the long-dating assumption that some
proteins can slide along the nonspecific parts of DNA to
accelerate their target search [23]. Furthermore, single-
molecule fluorescence microscopy gives access to quantita-
tive information regarding the dynamics of DNA-protein
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interactions. For instance, the diffusion constant D associ-
ated to the Brownian motion of a protein along the DNA
can be deduced from the analysis of single-protein tra-
jectories. Recently, Blainey et al. [24], by comparing the
linear diffusion constants D of proteins of various sizes,
found that D decreases as the protein radius increases
in a way consistent with a helical motion, which indicates
that, for these proteins, sliding is a rotation-coupled trans-
lation. To detect the proteins by fluorescence microscopy,
Blainey et al. used organic dyes whose sizes were much
smaller than those of the proteins. It is therefore unlikely
that the dynamics of the proteins was impacted by the
size of the fluorescent dyes, and thus the labeled proteins
could be considered as rigid bodies for the estimation of
the linear diffusion constant and comparison with experi-
mental data [24].

However, the fluorescent label used to track the pro-
tein motion by fluorescence microscopy can be as large
as or even larger than the protein [20,25]. For instance,
we recently investigated the linear diffusion of the restric-
tion enzyme EcoRV, fluorescently labeled with a quan-
tum dot (QD), the size of which was about 4 times the
size of EcoRV. We found a diffusion constant Dqp for the
EcoRV-QD complex which was about one third of the dif-
fusion constant of EcoRV labeled with an organic dye [21,
26]. This value for Dqgp is much larger than that expected
by considering the protein-QD complex as a rigid body
diffusing along DNA, whether or not the complex rotates
while sliding (see sect. 4).

To account for our experimental results, here we inves-
tigate the impact of the label size on the diffusion constant



of a protein sliding along DNA. We do not consider the
protein-label complex as a rigid body, but we assume that
the label is attached to the protein by a flexible link which
allows rapid Brownian fluctuations of the label. To derive
the diffusion constant D of such a protein-label complex,
we follow an approach developed by Zeldovich et al. [27],
who described the motion of a molecular motor to which
a large cargo is elastically attached. We similarly model
the link between the protein and its label as a Hookean
spring, and we solve the Fokker-Planck equation for the
protein-label complex, modeling the DNA-protein inter-
action potential as a sinusoidal potential. This approach
allows us to determine the dependence of D on the size of
the label, a dependence which strongly differs from that
predicted when considering the protein-label complex as
a rigid body.

We then compare the diffusion constants D predicted
by our model with the experimental results we obtained
with EcoRV, a type-II restriction enzyme the linear dif-
fusion of which we recently characterized [21,26]. In our
experiments, we labeled EcoRV with three different flu-
orescent labels of increasing size, and we measured the
diffusion constants D using single-molecule fluorescence
microscopy. We show here that our model accounts for
our experimental values for D, if we assume that the pro-
tein rotates when sliding along the DNA.

The paper is organized as follows. In sect. 2, we intro-
duce the model and we derive the analytical expression of
the linear diffusion constant D of the protein-label com-
plex. Then we calculate D by solving both analytically and
numerically the Fokker-Planck equation that describes our
system. We derive a simple expression of D, for which we
give a physical interpretation. In sect. 3, the dependence
of D on the label size predicted by our model is compared
with experimental data obtained with EcoRV. In sect. 4,
we discuss alternative models, showing however that they
fail to interpret our data.

2 Estimation of the linear diffusion coefficient
of a labeled protein

2.1 A model for a protein sliding along DNA

We consider a protein-label complex sliding along DNA
(fig. 1(a)). We assume that only the protein interacts with
the DNA, and that the label is attached to the protein by
a flexible linker, e.g. a PEG linker of a few tens of ethy-
lene glycol units [24]. In the following we suppose that the
typical time 75 the protein-label complex needs to slide
over one DNA base-pair is large compared to the relax-
ation time 7r of the linker. Typically, for a PEG linker,
TR ~ 50ns [24], to be compared to T = a?/2D ~ 5 s,
with ¢ = 0.34nm (length of one DNA base-pair) and
D ~ 1072 ym?s71, as measured for EcoRV [21]. Under
the assumption 7¢ > 7g, the dynamics of the label can
be studied, as a first approximation, by considering that
the protein is immobile. We then describe the linker as a
polymer with a mean end-to-end length zo that is within

Fig. 1. Model of a labeled protein diffusing along DNA.
(a) The protein and the label are modeled as beads with vis-
cous friction coefficient ¢, and (;. The protein slides along the
DNA and is attached to the label by a linker modeled as a
linear elastic spring with a spring constant k. (b) The DNA-
protein interaction is modeled as a sinusoidal potential U(z)
with an amplitude Uy and a periodicity a = 1 DNA base-pair.
The positions of the protein and of the label are denoted by x
and y, respectively.

the nanometer range, a length that is also the typical am-
plitude of the Brownian fluctuations of the label around
its equilibrium position. The elasticity of such a linker is
entropic in nature, thus nonlinear, but for simplicity we
model the linker as a Hookean spring with a spring con-
stant k ~ kpT'/23 (about 1pN/nm for zop = 2nm), with
T denoting the temperature and kg the Boltzmann’s con-
stant. In addition, the fast relaxation of the linker allows
us to well define the position of the label and to consider
that 75 is the smallest characteristic time involved in our
calculations. Since the assumption 7¢ > 7g is crucial in
our approach, we now investigate its validity. First, since
Tg scales as D!, this assumption fails for rapidly dif-
fusing proteins (D > 1um?s™!). Second, the relaxation
time 7p of the linker-label complex can be estimated as-
suming that the label is a sphere of radius r; attached
to a flexible polymer whose second end is immobile. For
a small label (r; < zp), 7r is the relaxation time of the
polymer: 7r ~ nz3/ksT, where 1 is the viscosity of the
solution (1072 Pa s for water), thus 7¢ > 75 (20 = 2 nm
gives Tp ~ 2 ns). For a large label (r; > z), the relax-
ation time is given by 7 ~ (;/k, where (; is the friction
coefficient of the label. Assuming (; = 6mnr;, one gets
TR ~ 6mnz¢r;/ksT, and the relation 75 > 7 leads to
r; < 300nm for 7¢ ~ 5pus. In conclusion, the hypothesis
Tg > Tg is correct when D < 1 me s~ and r; < 300nm,
two conditions well satisfied in our experiments.

The diffusion of a protein along DNA is a base-pair
reading interaction, and thus sequence dependent [28]. Yet
for simplicity we neglect this dependence in the first in-
stance, and we consider here sliding as a one-dimensional
diffusion in a sinusoidal potential (fig. 1(b)):

U(z) = —% cos(2mzx/a),

where Uy is the amplitude of the potential, = the position
of the protein interacting with the DNA, and a the length
of one DNA base-pair. We discuss later the case of diffu-
sion in a random potential, a more realistic description of
the DNA-protein interaction.



Our first goal is to calculate the 1D diffusion con-
stant D of a labeled protein diffusing in the potential
U(z) as a function of D, and Dy, the 3D diffusion con-
stants of the protein and of the label, i.e. the diffusion
constants of objects freely diffusing in solution. Assuming
that the protein and the label can be treated as spherical
objects of radius 7, and r;, their friction coefficients are
Cpy = 671y 1, and D, are related to ¢, ; by the Einstein

relation Dy, ; = kgT/(,,;. The radius of most of the pro-

teins that have been observed sliding along DNA is in the
nanometer range (for instance we measured that the ra-
dius of EcoRV is about 4 nm [21]). Therefore, when consid-
ering an organic dye as a label, we expect D; > D, as the
dye radius is about 0.5nm [29]. The label size, however,
can be much larger than that of the protein: the radius
of a commercial functionalized quantum dot is typically
15-20nm (according to suppliers), and the beads used for
tracking proteins by bright-field light microscopy are usu-
ally much larger than 20 nm, which implies that D; < D,,.
Apart from these two extreme regimes (D; > D, and
D; <« Dy), protein sliding can also be investigated using
fluorescent proteins, such as fluorescently labeled strep-
tavidin. In this case D; ~ D, as the size of the label is
similar to that of the protein. It is therefore essential to
find an expression for D that is not restricted to limit-
ing cases (D; > D, or D; < D,,) but valid whatever the
label size.

2.2 General expression of the diffusion coefficient of a
labeled protein

We follow an approach initially developed for studying
motor proteins transporting cargos [27]. Though most of
the results of this section can be derived from the original
paper, we remind the reader the main steps of deriving
D, using our own notations. The probability P(z,y,t) of
finding the protein at position z with the label at position
y at time t satisfies the Fokker-Planck equation:

opP o%p o%p 0 y—x
— =D + D, + Dj— |P*¥——
ot = ron THige T lay[ 22 ]
0 dU  x—vy
+Dp5 P(E—F 2 ) : (1)

with U = U/kgT. Following [27], we look for a solution of
this equation in the form

P- \/%f(ﬂu, 5),

with 7 = /v Dt, u = z/a and Z = (x — y)/2p. At long

time, 4.e. when the characteristic length v/Dt over which
the protein has diffused is much larger than the period-
icity a of U(xz), the diffusive motion of the protein-label
complex is described by the large-scale variation of f with
7, while the variations of f with u and z reflect the mod-
ulation of the protein motion by the potential U(x) [27].

Thus, introducing the small parameter ¢ = a/v/ Dt, the
Fokker-Planck equation (1) can be written as

[fzo +ely + GQEQ} f= (2)

Expressions of the operators ﬁo, Ly and Ly can be found
in appendix A. Inserting a solution f in the form

2
) = Z eigi(T)hi(uv 5)7

i=0

f(T7 u? 5

(3)
in relation (2), and stating the following relations between
91(7), g2(7) and go(7):

dgo(7)
dr ’

d?go(7)
dr2

g1(7) = go(7) =
one obtains, at second order in €, go(7) = exp(—72/4) and
the following expression for the diffusion coefficient D of
the protein-label complex:

D=D, <1+/ du/ dz<—+—z>h1(u,é)>.

(4)
Thus an estimation of hq(u, Z) is necessary for calculating
D. We propose two approaches to determine this prob-
ability: i) an analytical approach, which provides an ap-
proximate solution valid when the amplitude of the Brow-
nian fluctuations is large compared to the DNA-protein
potential periodicity (20 > a), ii) a numerical approach,
following a numerical scheme proposed in [27].

2.3 Analytical expression of the diffusion coefficient

The differential equation that drives hi(u, Z) is obtained
from eq. (2) at first order in e. It involves hg(u, ), which

can be derived from eq. (2) at the lowest order in e: Lo fo =
0, with fo = go(7)ho(u, ). This equation can be written as

L0u+ LOuz+( )
20

where the operator Lo has been split into three sub-
operators fzo,u, fjo7z and iO,uz (given in appendix A), re-
spectively acting on w only, z only and coupling u and
z. Equation (5) has an analytical solution in the form
ho(u, 2) = lo(u)ko(2) (see appendix A for the expressions
of lp(u) and ko(2)). Since ﬁoyulo(u) = 0, lop(u) describes
the diffusion of an unlabeled protein in the potential U.
Similarly, ﬁ07zko(§) = 0, and thus ko(2) describes the
Brownian fluctuations of the label around a static pro-
tein. Consequently, as Lo fo =0, one gets fzo,uzho =0, as
in this case the label motion is independent of that of the
protein.

D, + D,
DP

LO z] hO = 07 (5)



At the first order in e, eq. (2) reads gi(7)Lohy +
ﬁlgoho =0, which can be written as

D,+D .
L0u+ LOuz+( ) 71L0z‘| hl(uvz):
20 Dp
(WUO sin(2mu) + zi> lo(w)ko(2). (6)
20

We did not find an analytical solution of this equation.
Yet without the coupling term Lg ,.h1, a solution of (6)
is given by

hi¢(u, 2) = lo(u)k1(Z) + l1(uw)ko(2), (7)

where /1 (u) and kq(2) are solutions of

Lo uli(u) = 7l sin(2mu)lo (u),
a D + Dl

% Dp Lo zk1( ) = Zko(z)

The expressions of [y(u) and kq(Z) are given in ap-
pendix A. Then we looked for an approximate solution
of (6) with the following ansatz:

(2) + Bli(u)ko(2), (8)

where A and B are constants. Inserting (8) in (6), we
found A and B that depend only on D, D; and Uy (see
appendix A). The ansatz function hf is then solution of

hi( (u, 5) =A lo (u)k1

Loht(u, 3) = (WUO sin(2mu) + ZZL‘;) lo(w)ko(2) + é(u, 2),

which is similar to (6) with the additional term ¢(u, 2)

a Dl
¢(u7 Z) =zZ—
20 D + DZI() (U0/2)

(lo(u) = Dko(2),

where I is the modified Bessel function of the first kind.
Thus, the probability hj(u,2) is a good approximation
of hy(u, 2) if |¢(u, )| is small compared to the absolute
value of the right-hand side of eq. (6). This assumption is
well satisfied when the 3D diffusion constant of the pro-
tein is large compared to that of the label (D, > D),
also for low amplitude potentials (f]o < 1), as in this case
lo(u) ~ 1, and for large amplitude potentials (U, > 1), as
I3(Uy/2) > 1. For a potential of intermediate amplitude,
the assumption a < zp roughly ensures that |¢(u, 2)| is
small compared to the term proportional to Uy on the
right-hand side of eq. (6), and thus that h}(u, Z) remains
a good approximation of hi(u, 2). As demonstrated in ap-
pendix B, this approximation fails when a/zy > 1.

Assuming a < zg, an analytical expression of the linear
diffusion constant D of the protein-label complex can thus
be found inserting h}(u, 2) in eq. (4). We found

_ Dle
D, + DiI3(Uy/2)

This expression for D can be interpreted by rewriting it
in the following form:

11 I3(0o/2)
D~ D, D,

Setting D = kpT'/(, which defines an effective friction
constant ¢ for the protein-label complex, eq. (9) gives

C=¢+ Ig(UO/Q)Cp. This relation can be interpreted as

follows: ( is the sum of the friction constant of the label in
solution and that of the protein diffusing in the potential.
This result is valid under the assumptions that the ampli-
tude zg of the Brownian fluctuations of the label is large
compared to the size of the protein diffusion step a and
that the relaxation time 7z of the protein-label linker is
small compared to the time 7¢ the protein needs to slide
over a. Since a friction coefficient is proportional to viscos-
ity, one can also interpret this result by considering that
the protein diffuses in a medium of viscosity 12(Uo/2)n,
while the label, although following the protein in its dif-
fusive motion, still moves in a medium of viscosity 7.

We now consider some cases for which the expression
of D given by eq. (9) is consistent with known results. For
an unlabeled protein diffusing along the DNA, our model
predicts D = D,,/13(Uy/2), which is the exact solution of
the Fokker-Planck equation in the case of the periodic po-
tential U(z) [30]. When Uy < 1, the friction coefficient of
the protein-label complex is { = (; + (, which is also the
expected result. Finally, for potentials of large amplitude
(Uo > 1), I3(Uy/2) > 1, thus D ~ D,/I3(Uy/2), and
the diffusion coefficient of the protein-label complex does
not depend on the size of the label. Even if not explicit,
this assumption has been frequently made in many single-
molecule experiments. For instance, when the diffusion of
membrane receptors labeled with quantum dots was eval-
uated in living cells using single-molecule fluorescence mi-
croscopy [31], the diffusive behavior of a receptor was con-
sidered to be not impacted by the size of the QD, though
bigger than that of the receptor. This assumption is in
fact justified as the viscosity of a cell membrane is much
larger than that of the buffer surrounding the cell, whose
viscosity is close to that of water [32]. Though in this case
the receptors diffuse in a 2D space, while our analysis is
related to linear diffusion, the conclusions should qualita-
tively be the same.

(9)

2.4 Numerical estimation of the diffusion coefficient
and comparison with analytical data

The diffusion constant D of a labeled protein can also
be numerically estimated by solving eq. (6) following a
numerical scheme proposed by [27]. Briefly, the function
hi(u, 2) is expanded in Fourier series

+M
Z Z Cmn —i2Tmu —zQ‘/rean (10)
—M n=—N

with €5, = 29/L., where L, is the size of the box over
which the dependence of hy on Z is evaluated and C,, ,
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Fig. 2. Diffusion constants D (analytical result, solid lines)
and D" (numerical result, circles) of a protein-label complex
as a function of the amplitude Up of the sinusoidal potential,
for a/zo = 0.2. We plot the ratios D/D, and D"/D,, where
D,, is the 3D diffusion constant of the protein. Upper curve:
unlabeled protein. Middle curves: protein attached to a label
whose size is 4 times the protein size. Analytical solution D
(solid line) and numerical solution D™ (circles) coincide what-
ever the amplitude Us. Lower curves: protein attached to a
label whose size is 139 times the protein size. Similarly, analyt-
ical solution D (solid line) and numerical solution D™ (circles)
coincide whatever the amplitude Up. For large values of Uy,
D/D, tends to the upper curve (unlabeled protein), whatever
the size of the label.

are complex Fourier coefficients. The expression (10) of hy
is inserted in eq. (6), and 2(N +1)(M +1) linear algebraic
equations on C,, , are obtained by identifying terms with
equal frequencies. The coefficients C,, ;, are then obtained
by inverting the related complex matrix using Mathemat-
ica [33], with M =10, N = 15 and e, = 0.1. The bound-
ary conditions for the variables v and z were treated sim-
ilarly as in [27], as well as the normalization of hy. A nu-
merical value D" of the diffusion constant is then obtained
by calculating numerically the integral in eq. (4).

In fig. 2 we compare the numerical D™ with the an-
alytical expression of D given by eq. (9). We plot both
D/D, and D"/D, as a function of Uy for an unlabeled
protein and for a protein attached to a label whose size is
4 or 139 times the size of the protein, as these three cases
will be discussed later (see sect. 3). Figure 2 shows that
D coincides with D™ whatever the label size, which vali-
dates our analytical approach. Numerical results shown in
fig. 2 were obtained with a/zp = 0.2, and we verified that
these results do not depend on the ratio a/zp as long as
a/z) < 1 (see fig. 4 in appendix B). When a/zp > 1, the
numerical D™ departs from the analytical result D and,
when a/zp > 1, the protein-label complex behaves like a
solid (see appendix B).

Finally, fig. 2 shows that for large values of U, the
ratio D/D,, tends to the value associated to an unlabeled
protein, whatever the label size. It confirms that, for an
interaction potential with a large amplitude, the dynamics
of the complex is governed by that of the protein.

2.5 Diffusion coefficient of a labeled protein diffusing
in a random potential

The sinusoidal potential U (z) we chose to mimic the DNA-
protein interaction, although unrealistic, has the advan-
tage of making the calculations possible. Yet the DNA-
protein potential is sequence-dependent, and thus its am-
plitude varies during the protein motion. A more real-
istic modeling of the DNA-protein interaction is a ran-
dom potential with a roughness o [28], the characteris-
tic length over which the potential varies along the DNA
remaining a (one DNA base-pair). Setting 6 = o/kpT,
the linear diffusion coefficient of the protein in such a
random potential is given by [28]: D = D,/F(&), with
F(5) = (1 +&%/2)" Y2 exp(752%/4). This expression for D
is similar to that obtained for a sinusoidal potential, F'(5)
replacing IOQ(f]o /2). Again, one can interpret this expres-
sion of D as the diffusion coefficient of a protein diffusing
in a medium of viscosity F'(¢)n. Therefore we assume that,
in the case of a labeled protein diffusing in a random po-
tential, eq. (9) can be rewritten as

1_r
D™D

F(o)
D, ’

(11)

which will be used to interpret our experimental data.

3 Results

3.1 Experimental values of the linear diffusion
constant of EcoRV

Our modeling effort was motivated by the results of re-
cent single-molecule experiments we performed in order
to characterize the facilitated diffusion of EcoRV. The flu-
orescence microscopy set-up and the protocol for these ex-
periments are detailed in [21]. Through these experiments,
we showed, by direct observation of the enzyme interact-
ing with the DNA, that EcoRV can slide along the DNA.
In addition, we measured the linear diffusion constant D
of EcoRV labeled with three different fluorescent labels of
increasing sizes:

i) An organic dye called Cy3B (PA63131, GE Health-
care). Cy3B is a bright version of the standard Cy3
dye, which was attached to the enzyme through a re-
action between a Cy3B-maleimide and a EcoRV cys-
teine at position 58. We measured the hydrodynamic
radius of EcoRV-Cy3B using Fluorescence Correlation
Spectroscopy (FCS) and found r(EcoRV — Cy3B) =
3.9 £ 0.1 nm [21]. Since the molecular weight of Cy3B
(~ 0.8kDa) is small compared to that of EcoRV
(58 kDa), we state that the radius of EcoRV-Cy3B
is also the radius of unlabeled EcoRV, and thus
that the linear diffusion constant D we measured
for the EcoRV-Cy3B complex coincides with that of
EcoRV.



Table 1. Experimental diffusion constants D of EcoRV (ra-
dius r, = 3.9 £ 0.1 nm) attached to three labels of increasing
radius r;.

EcoRV-Cy3B|EcoRV-savCy3|EcoRV-QD
~ 0.5 3.94+0.2 15.44+0.3
1.1+0.2 1.2+ 0.1 0.32+0.02

r; (nm)

D (1072 ym?s™1)

ii) A protein, streptavidin-Cy3 (016-160-084, Jackson),
called from now as savCy3, which is streptavidin la-
beled with the organic dye Cy3. To attached this
label to EcoRV, the enzyme was first biotinylated
through a reaction between a Maleimide-PEG»-Biotin
reagent (Pierce) and a cysteine at position 58 [21].
The strong affinity between biotin and streptavidin
provided an efficient labeling of EcoRV. According to
the provider, the length of the PEG spacer arm in
the maleimide reagent is about 3nm, which ensures
that the protein and the label are linked by a flex-
ible molecule, as stated in our model. We measured
the hydrodynamic radius of savCy3 by FCS and found
r(savCy3) = 3.9 4+ 0.2 nm, which is also the radius of
EcoRV. This result was predictable as the molecular
weight of streptavidin (53kDa) is similar to that of
EcoRV (58kDa).

605 nm streptavidin-coated quantum-dots from Invit-
rogen (Q10001MP), designed from now on as QD. QD
was attached to EcoRV in the same way savCy3 was.
We measured the hydrodynamical radius of QD by
FCS and found »(QD) = 15.4 £+ 0.3nm, in agreement
with the value given by the provider.

The linear diffusion constants D for EcoRV labeled
with these fluorophores was determined as previously de-
scribed [21], using a PIPES buffer at pH = 6.8. The exper-
imental values of D labeled with Cy3B [21], savCy3 (see
appendix C) and QD [26] are listed in table 1.

The diffusion constant of EcoRV-savCy3 is thus similar
to that of EcoRV-Cy3B, although the size of streptavidin
is similar to that of EcoRV and much larger than that of
Cy3B. The value of D for EcoRV labeled with a QD, the
size of which is 4 times that of EcoRV, is only one third of
that of EcoRV. We next confront these experimental data
with the results predicted by our model.

iii)

3.2 Comparison with the model

The comparison between the experimental diffusion con-
stants and the results provided by our model requires to
estimate F(5), D, and D; (eq. (11)). For this we as-
sume, as in [21], that the enzyme tracks the DNA he-
lix when sliding along the DNA, i.e. that the motion of
EcoRV is a rotation-coupled linear diffusion, an assump-
tion that has been recently reinforced for other DNA-
binding proteins [24]. The value F(&) ~ 74, which cor-
responds to a roughness ¢ = 1.65 kg1 of the DNA-
EcoRV nonspecific interaction potential, is deduced from
Deysg = 1.1£0.2 1072 um?s~! [21]. For estimating D,,

the friction coefficient ¢, of the free enzyme must be mod-
ified to take into account the rotation of the protein-label

complex [34,35]
4 (TO_Cﬂ 7
3 Tp

where 7, is the radius of the protein, h = 3.4nm, and
roc the distance between the center of mass of protein
and the DNA axis. The crystallographic structure of the
nonspecific DNA-EcoRV complex [36] suggests that roc
is small compared to 7, and thus can be omitted. From
now we note D1 = kgT/(;°" the diffusion constant of an
unlabeled enzyme that spins while diffusing freely along
the DNA. We also estimate D; by similarly modifying the
friction coefficient (; of the label to account for a rotation-
coupled diffusion of the label at the distance roc = rp,+m;
from the DNA axis, where r; is the radius of the label, and
we note Df°t = kgT'/(f°" the diffusion constant of a label
that spins while diffusing.

The diffusion coefficient D of a protein-label complex
tracking the DNA helix is then derived from eq. (11)

G =6 ()

D 1
= o = (12)
Dret Dret/ Dot + F(a)

where the ratio D;°*/Dj°" is given by

Dyt _ gt _ (ﬂ)g 143 (Tp+n>2
D{ot C}I;Ot Tp 4 7
When EcoRV is labeled with Cy3B, r; < 7, and thus
DcygB/D;Ot = 1/F(c = 1.65) ~ 0.0135 (see fig. 3).
When EcoRV is labeled with savCy3, r, = r,, then
Dyt /Dit = 4. In our model (sect. 2), this amounts to
considering that the size of the label is 4 times the size of
the protein (see fig. 2). We conclude that Dgavoys/ D;Ot =
1/(4+4 F(6)) ~ 0.0128 (see fig. 3), a value which is close
to DcysB /D}r)Ot = 0.0135. Thus, our model predicts that
the diffusion constant of EcoRV labeled with streptavidin
is similar to that of EcoRV labeled with a small organic
dye, in agreement with our experimental results.

When EcoRV is labeled with a QD, m = 4rp, then
Dit = 139D;°". In our model, this amounts to consid-
ering that the size of the label is 139 times the size of
the protein (see fig. 2). We conclude that Dqp/Dy* =
1/(139 4+ F(5)) =~ 0.0047 (see fig. 3). Thus, our model
predicts Dqgp ~ 0.35Dgy3p, a result which is close to the
experimental one (Dqp ~ Dcysg/3).

4 Discussion

Here we consider alternative models for the enzyme diffu-
sion, and we show that these models do not account for
the diffusion constants we measured.

First, we maintain the assumption that the linear dif-
fusion of EcoRV is a rotation-coupled motion, and we
consider the protein-label complex as a rigid body. The
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Fig. 3. Diffusion constant D of a EcoRV-label complex spin-
ning along DNA as a function of the roughness & of a random
potential. We plot the ratio D/ D;Ot, where D;,Ot is the 3D dif-
fusion constant of the protein modified to take into account
the rotation of EcoRV. Solid line: unlabeled enzyme with a
rotation-coupled linear diffusion. Dotted line: enzyme attached
to a fluorescent streptavidin. For ¢ = 1.65, the diffusion con-
stant Dsavcys is close to that of the unlabeled enzyme or, equiv-
alently, to that of EcoRV labeled with Cy3B. Dashed line: en-
zyme attached to a QD. For 6 = 1.65, the diffusion constant
Dqp is about one third of the diffusion constant of the unla-
beled enzyme.

friction coefficient of the complex diffusing in the DNA-
protein interaction potential is then ¢ = (°* + (") F(),
and the diffusion coefficient is now given by

D 1

= — . 13
Dyt (Dret/ Dot + 1) F(5) (13)

This expression of D differs greatly from that given by
eq. (12). Together with Dcysp/Dy* = 1/F(5), eq. (13)
predicts Dgavcys/Doyss = 1/5, which is not consistent
with our experimental data ( Dsaycys/ D;Ot ~ Dcysp/ D;Ot).
The result is even worse when considering EcoRV la-
beled with a QD. In this case, eq. (13) predicts
Dqp/Dcysg = 1/140, while experimentally we observed
Dqp ~ Dcysp/3. Therefore, considering the protein-label
complex as a rigid body that spins during linear diffusion
does not account for our experimental data.

Second, we suppose that EcoRV does not rotate when
sliding along the DNA. Under this assumption, F(¢) =
D,/Dcysg ~ 5 - 103, and thus & ~ 2.3. If we consider
the protein-label complex as a rigid body, the friction co-
efficient of the complex diffusing in the DNA-protein in-
teraction potential is ¢ = (¢, + (;)F(7), and we expect
DsavaS/DCySB = 1/2 and DQD/DCySB = 1/5 Again,
these predictions are not consistent with our experimen-
tal data. If we consider that the label motion is decoupled
from that of the protein, the friction coefficient of the com-
plex is ¢ = (pF(0) + G =~ (F (), as F(6) > (;/{p. Thus
the diffusion constant of the labeled enzyme should not

Table 2. Linear diffusion constant of the protein-label

complex predicted by different models. Experimentally,
Dgaveys/Deyse >~ 1 and Dqop/Dcysg ~ 1/3.
Link Rotation Dsaveys/Dceyss Dqp/Dcysp
elastic yes 0.95 0.35
rigid yes 1/5 1/140
rigid no 1/2 1/5
elastic no ~1 ~1

depend on the label size, which, again, is not consistent
with our experimental data.

The diffusion constants predicted by all the models
discussed here are listed in table 2, which shows that
the model which assumes a rotation-coupled diffusion of
EcoRV and a label elastically attached to the enzyme best
accounts for our experimental data.

Other models could be considered, such as rotation-
coupled diffusion of EcoRV alternating with a transla-
tional diffusion along the DNA, which would however in-
troduce additional parameters [37]. Finally, the random
potential we used to describe the interaction between the
protein and the DNA should be refined, as EcoRV is a
sequence-specific enzyme which could encounter, during
sliding, localized potential wells that mimicks its cognate
site and thus may impact on the linear diffusion [38]. How-
ever, provided that an effective friction coefficient for an
unlabeled site-specific protein can be defined in the pres-
ence of such wells, our approach should be relevant to de-
scribe the impact of a large label on the protein diffusion.
Our goal here was to show that our data are consistent
with the predictions of a model in which the motion of
the label and that of the protein are decoupled, yet more
data would be needed to demonstrate unambiguously that
EcoRV rotates when diffusing along the DNA.

5 Conclusion

We calculated the diffusion constant of a labeled protein
sliding along DNA according to the size of the label, as-
suming that the motion of the label and that of the pro-
tein are decoupled. Our results are in agreement with
our previous experimental data concerning the diffusion
of the type-II restriction enzyme EcoRV labeled with flu-
orophores of different sizes, assuming a rotation-coupled
diffusion of the enzyme along DNA. Our results may be
useful in interpreting experiments performed at the single-
molecule level, especially those using large labels to study
the diffusive motion of molecules.
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Appendix A. Detailed equations

The function f(7,u,2),
eq. (3), is solution of

whose expression is given by

[ﬁo tely + egﬁg} = (A1)

with the following expressions for the operators ﬁo, L,
and Ls:

Lo =D, [3822 ?E 8au * dgg
+Dp% [2%25 + g% " é%
+(D, +Dz)(zo> [aaj aa~+1]
b=y +D[F 2 +3].

At the lowest order in €, eq. (A.1) reads Lofo = 0, with
fo = go(7)ho(u, z). This equation is rewritten as (5) by
splitting the operator Ly into three sub-operators, given
by

2
ﬁ();u, =53 + 7, s1n(27m)a3 + 2720, cos(27u),
2
Lo ur = 2888 + U, s1n(27m)a3 + Za%
. 02 0
L 1.
0= = 552 + Zaz +

Equation (5) has an analytical solution in the form

ho(u, 5) = lo(u)ko(g), with
lo(u) = m exp (Uo cos(27ru)/2> ,
to(E) = <= exp(—2/2),

where Iy is the modified Bessel function of the first kind.
One can easily check that: i) Lo uzho = 0, ii) Loulo =0
and lo(u) satisfies the expected periodic boundary condi-
tions (lo(u+1) = lo(u)), iii) ko(Z) is solution of Ly ko =0
with vanishing boundary conditions (ko(Z — :I:oo) =0
and d ko(2 — £o0) = 0) [27]. The multiplicative con-
stants for lp and kg have been determined to satisfy the
probability normalization [27]

1 [eS)
/ du/ dz ho(u, 2) = 1.
0 —o0

The estimation of h(u, Z) requires to solve eq. (6) with
boundary conditions similar to those given for hg(u, 2).

Without the coupling term f/O;u,zhla one can find an ana-
lytical solution h}¢(u, z) of (6), whose expression is given
in eq. (7) and which involves the two functions I (u) and

k1(2), given by
lo(u) ( “ -U 27x) /2 ]
Iy (u) = —=—— /dxe 0cos@ma)/2 _ 4 10(Uo/2) | ,
Io(Uo/2) \Jo
- R0 D, )
ki(2) = — aD +Dl\/_exp( 22/2).

Inserting the ansatz function h¥(u, 2), defined in eq. (8),
in eq. (6) one gets

W«ZO + (A—FB)Z—Oilo(u)ko(é)

+ (B + A%) 70 sin(2mu)lo(u)ko(Z) =

(wffo sin(2mu) + %) lo(w)ko(2). (A.2)

Although no (A, B) pair is solution of (A.2), we suppose
that these two constants satisfy

D,
AD +Dl+B_1 and A+B(1—

1
15(Uo/ 2))
Thus A and B only depend on D,, D; and Uy, equality
between terms with a sinusoidal dependence in eq. (A.2) is
obtained, and, overall, eq. (A.2) is correctly fulfiled when
a/zy < 1. A and B are easily derived from this set of
linear equations:

B D, + D,
Dy + Dy I§(Uo/2)

_ Di3(Uo/2)
Dy + Dy I§(Uo/2)

The function ¢(u, 2), whose expression is given in sect. 2,
is then obtained by inserting h¥(u, 2), as defined in eq. (8),

in eq. (6).

Appendix B. Dependence of D"/D on a/z,

We investigated the dependence of the linear diffusion con-
stant D™ (numerically estimated) on a/z. The ratio a/zg
is related to the amplitude of the label fluctuations: when
a/zy < 1, the amplitude of the Brownian fluctuations
of the label are sufficiently large to delocalize the label
around the protein, while when a/z9 > 1, i.e. when the
spring is hard (k — c0), the fluctuations of the label can
be neglected, and we expect the protein-label complex to
be similar to a rigid body.

We used the numerical approach presented in sect. 2 to
calculate D" for different values of a/z¢ and we compared
D™ to D, the linear diffusion constant obtained from an
analytical solution of the Fokker-Planck equation solved
under the assumption a/z9 < 1. In fig. 4, we plot the
ratio D™/ D as a function of the amplitude Uy of the DNA-
protein potential for different values of a/zy. When 2y > a,
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Fig. 4. Ratio D™/D for a savCy3-labeled protein (Df** =
Dt /4) as a function of the amplitude Uy of the DNA-protein
interaction potential for different values of the parameter a/zo.
For a/zo > 1 the diffusion coefficient D™ of the labeled protein
is close to that of a rigid body diffusing along the DNA (solid
curve).

D™ ~ D, as already shown in fig. 3. When a/ 2 increases,
D™ deviates from D and, for large values of a/zy, D"™/D
converges towards D/ D (fig. 4), where Dy is the diffusion
coefficient of a solid composed of a protein stuck to the
label:
D, D, 1
Dy + Dy I§(Uo/2)

Altogether, these results make our numerical resolution
credible.

S

Appendix C. Experimental determination of
Dsava3

The linear diffusion constant Dsaycys of EcoRV labeled
with savCy3 was determined as previously described
n [21]. Briefly, DNA molecules were attached specifically
by their ends to the wall of a flow cell, and Total In-
ternal Reflection Fluorescence Microscopy (TIRFM) was
used to visualize interactions of enzymes with the DNA.
Tracking of proteins moving on DNA allowed us to re-
construct EcoRV trajectories and to compute the Mean
Square Displacement (MSD) of the enzyme. We then plot
the MSD averaged over all interaction events, and we de-
duced Dgavcys by least-square fitting of the first five points
of this MSD (fig. 5).
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